Advertisement

Role of Bone Marrow—Derived Cells in Gastric Adenocarcinoma

  • JeanMarie Houghton
  • Timothy C. Wang

Cancer Stem Cell Hypothesis

The origin of gastric cancer has remained mysterious for many years. Waldeyer originally developed the idea that gastric cancer arose from gastric epithelial cells, and believed that almost any gastric epithelial cell could be converted to a cancer cell (Houghton et al. 2007). Our understanding of the origins of gastric cancer has undergone a considerable change in recent years, partly based on the evolving paradigm of cancer stem cells (CSCs). Although for many years physicians and scientists regarded tumors as generally homogeneous tissues, accumulating evidence supports the view that cancer is sustained by a subset of cells—cancer stem cells—that have the exclusive ability to renew and propagate a tumor.

The origin of the CSC hypothesis dates back to the discovery of the light microscope in the nineteenth century. During that time, it was recognized that tumors were composed of a heterogeneous mixture of cell types with varying levels of differentiation,...

Keywords

Stem Cell Gastric Cancer Green Fluorescent Protein Cancer Stem Cell Adult Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., and Clarke M.F. 2003. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988.CrossRefGoogle Scholar
  2. Anjos-Alfonso F., and Bonnet D. 2007. Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 109(3):1298–1306.CrossRefGoogle Scholar
  3. Aractingi S., Kanitakis J., Euvrard S., Le Danff C., Peguillet I., Khosrotehrani K., Lantz O., and Carosella E.D.2005. Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res 65(5):1755–1760.CrossRefPubMedGoogle Scholar
  4. Avital I., Moreira A., and Downey R.J. 2006. The origin of epithelial neoplasms after allogeneic stem cell transplantation. Haematologica 91:283–284.Google Scholar
  5. Avital I., Moreira A., Klimstra D., Leversha M., Papadopolous E., Brennan M., and Downey R.J. 2007. Donor derived human bone marrow stem cells potentially contribute to solid organ cancers. Stem Cells 25(11):2903–2909.CrossRefPubMedGoogle Scholar
  6. Bailey A., Willenbring H., Jiang S., Anderson D., Schroeder D., Wong M., Grompe M., and Fleming W. 2006. Myeloid lineage progenitors give rise to vascular endothelium. PNAS 103(35):13156–13161.CrossRefPubMedGoogle Scholar
  7. Balkwill F., and Mantovani A. 2001. Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545.CrossRefPubMedGoogle Scholar
  8. Barozzi P., Luppi M., Facchetti F., Mecucci C., Alu M., Sarid R., Rasini V., Ravazzini L., Rossi E., Festa S., Crescenzi B., Wolf D.G., Schulz T.F., and Torelli G. 2003. Erratum to “Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors.” Nat Med 9(7):975.Google Scholar
  9. Bjerknes M., and Cheng H. 2002. Multipotential stem cells in adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol 283(3):G767–G777.PubMedGoogle Scholar
  10. Bjornson C., Reitze R., Reynolds B., Magli M., and Vescovi A. 1999 Turning brain into blood: a hematopoietic fate adopted by neural stem cells in vivo. Science 283:534–537.CrossRefPubMedGoogle Scholar
  11. Boivin G.P., Washington K., Yang K., Ward J.M., Pretlow T.P., Russell R., Besselsen D.G., Godfrey V.L., Doetschman T., Dove W.F., Pitot H.C., Halberg R.B., Itzkowitz S.H., Groden J., and Coffey R.J. 2003. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124:762–777.CrossRefPubMedGoogle Scholar
  12. Bowie M.B., McKnight K.D., Kent D.G., McCaffrey L., Hoodless P.A., and Eaves C.J. 2006. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Invest 116(10):2808–2816.CrossRefPubMedGoogle Scholar
  13. Brittan M., Chance V., Elia G., Poulsom R., Alison M.R., MacDonald T.T., and Wright N.A. 2005. A regenerative role for bone marrow following experimental colitis: contribution to neovascu-logenesis and myofibroblasts. Gastroenterology 128(7):1984–1995.CrossRefPubMedGoogle Scholar
  14. Burger J.A., Spoo A., Dwenger A., Burger M., and Behringer D. 2003. CXCR4 chemokine receptors (CD184) and alpha4beta1 integrins mediate spontaneous migration of human CD34+ progenitors and acute myeloid leukaemia cells beneath marrow stromal cells (pseudoemperipolesis). Br J Haematol 122(4):579–589.CrossRefPubMedGoogle Scholar
  15. Cai X., Carlson J., Stoicov C., Li H., Wang T.C., and Houghton J. 2005. Helicobacter felis eradication restores normal architecture and inhibits gastric cancer progression in C57BL/6 mice. Gastroenterology 128:1937–1952.CrossRefPubMedGoogle Scholar
  16. Carstanjen D., Gross A., Kosova N., Fichtner I., and Salama A. 2005. The alpha4beta1 and alpha-5beta1 integrins mediate engraftment of granulocyte-colony-stimulating factor-mobilized human hematopoietic progenitor cells. Transfusion 45(7):1192–2000.CrossRefPubMedGoogle Scholar
  17. Chakraborty A., Lazova R., Davies S., Backvall H., Ponten F., Brash D., and Pawelek J. 2004. Donor DNA in a renal cell carcinoma metastasis from a bone marrow transplant recipient. Bone Marrow Transplant 34(2):183–186.CrossRefPubMedGoogle Scholar
  18. Clarke M.F., Dick J.E., Dirks P.B., Eaves C.J., Jamieson C.H., Jones D.L., Visvader J., Weissman I.L., and Wahl G.M. 2006. Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344.CrossRefPubMedGoogle Scholar
  19. Clarke D., Johansson C., Wilbertz J., Veress B., Nilsson E., Karlstrom H., Lendahl U., and Frisen J. 2000. Generalized potential of adult neural stem cells. Science 288:1660–1663.CrossRefPubMedGoogle Scholar
  20. Cogle C.R., Theise N.D., Fu D., Ucar D., Lee S., Guthrie S.M., Lonergan J., Rybka W., Krause D.S., and Scott E.W. 2007. Bone marrow contributes to epithelial cancers in mice and humans as developmental mimicry. Stem Cells 25(8):1881–1887.CrossRefPubMedGoogle Scholar
  21. Collins A.T., Berry P.A., Hyde C., Stower M.J., and Maitland N.J. 2005. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951.CrossRefPubMedGoogle Scholar
  22. Correa P. 1992. Human gastric carcinogenesis: a multistep and multifactorial process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52:6735–6740.PubMedGoogle Scholar
  23. Dalerba P., Dylla S.J., Park I.K., Liu R., Wang X., Cho R.W., Hoey T., Gurney A., Huang E.H., Simeone D.M., Shelton A.A., Parmiani G., Castelli C., and Clarke M.F. 2007. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104(24):10158–10163.CrossRefPubMedGoogle Scholar
  24. Davidoff A.M., Ng C.Y., Brown P., Leary M.A., Spurbeck W.W., Zhou J., Horwitz E., Vanin E.F., and Nienhuis A.W. 2001. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 7(9):2870–2879.PubMedGoogle Scholar
  25. Direkze N.C., Hodivala-Dilke K., Jeffery R., Hunt T., Poulsom R., Oukrif D., Alison M.R., and Wright N.A. 2004. Bone marrow contribution to tumor associated myofibroblasts and fibroblasts. Cancer Res 64:8492–8495.CrossRefPubMedGoogle Scholar
  26. Elwood E.T., Larsen C.P., Maurer D.H., Routenberg K.L., Neylan J.F., Whelchel J.D., O'Brien D.P., and Pearson T.C. 1997. Microchimerism and rejection in clinical transplantation. Lancet 349(9062):1358–1360.CrossRefPubMedGoogle Scholar
  27. Fang D., Nguyen T.K., Leishear K., Finko R., Kulp A.N., Hotz S., Van Belle P.A., Xu X., Elder D.E., and Herlyn M. 2005. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337.CrossRefPubMedGoogle Scholar
  28. Forbes S.J., Russo F.P., Rey V., Burra P., Rugge M., Wright N.A., and Alison M.R. 2004. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 126(4):955–963.CrossRefPubMedGoogle Scholar
  29. Forman D., Newell D.G., Fullerton F., Yarnell J.W., Stacey A.R., Wald N., and Sitas F. 1991. Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ 302:1302–1305.CrossRefPubMedGoogle Scholar
  30. Giannakis M., Stappenbeck T.S., Mills J.C., Leip D.G., Lovett M., Clifton S.W., Ippolito J.E., Glasscock J.I., Arumugam M., Brent M.R., and Gordon J.I. 2006. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem 281(16):11292–11300.CrossRefPubMedGoogle Scholar
  31. Harris J.R., Brown G.A.J., Jorgensen M., Kaushal S., Ellis E.A., Grant M.B., and Scott E.W. 2006. Bone marrow-derived cells home to and regenerate retinal pigment epithelium after injury. Invest Ophthalmol Vis Sci 47(5):2108–2113.CrossRefPubMedGoogle Scholar
  32. Hermann P.C. Huber S.L., Herrler R., Aicher A., Ellwart J.W, Guba M., Bruns C.J., and Hesschen C. 2007. Distinct populations of cancer stem cells determines tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323.CrossRefPubMedGoogle Scholar
  33. Houghton J.M., Morozov A., Smirnova I., and Wang T.C. 2007. Stem cells and cancer. Semin Cancer Biol 17(3):191–203.CrossRefPubMedGoogle Scholar
  34. Houghton J.M., Stoicov C., Nomura S., Rogers A.B., Carlson J., Li H., Cai X., Fox J.G., Goldenring J.R., and Wang T.C. 2004. Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571.CrossRefPubMedGoogle Scholar
  35. Ishii G., Sangai T., Oda T., Aoyagi Y., Hasebe T., Kanomata N., Endoh Y., Okumura C., Okuhara Y., Magae J., Emura M., Ochiya T., and Ochiai A. 2003. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309(1):232–240.CrossRefPubMedGoogle Scholar
  36. Iwano M., Plieth D., Danoff T.M., Xue C., Okada H., and Neilson E.G. 2002. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110(3):341–350.PubMedGoogle Scholar
  37. Jiang Y., Jahagirdar B.N., Reinhardt R.L., Schwartz R.E., Keene C.D., Ortiz-Gonzalez X.R., Reyes M., Lenvik T., Lund T., Blackstad M., Du J., Aldrich S., Lisberg A., Low W.C., Largaespada D.A., and Verfaillie C.M. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49.CrossRefPubMedGoogle Scholar
  38. Jordan C.T., Guzman M.L., and Noble M. 2006. Cancer stem cells. N Engl J Med 355(12):1253–1261.CrossRefPubMedGoogle Scholar
  39. Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., Zhu Z., Hicklin D., Wu Y., Port J.L., Altorki N., Port E.R., Ruggero D., Shmelkov S.V., Jensen K.K., Rafii S., and Lyden D. 2005. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827.CrossRefPubMedGoogle Scholar
  40. Karam S.M., and Leblond C.P. 1992. Identifying and counting epithelial cell types in the “corpus” of the mouse stomach. Anat Rec 232(2):231–246.CrossRefPubMedGoogle Scholar
  41. Karam S.M., and Leblond C.P. 1993.Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. Anat Rec 236(2):259–279.CrossRefPubMedGoogle Scholar
  42. Kassem M. 2004. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 6:369–374.CrossRefPubMedGoogle Scholar
  43. Kelly P.N., Dakic A., Adams J.M., Nutt S.L., and Strasser A. 2007. Tumor growth need not be driven by rare cancer stem cells. Science 317(20):337.CrossRefPubMedGoogle Scholar
  44. Kögler G., Sensken S., Airey J.A., Trapp T., Müschen M., Feldhahn N., Rüdiger S., Sorg V., Fischer J., Rosenbaum C., Greschat S., Knipper A., Bender J., Degistirici Ö., Gao J., Caplan A.I., Colletti E.J., Almeida-Porada G., Müller H.W., and Zanjani E., Wernet P. 2004. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135.CrossRefPubMedGoogle Scholar
  45. Kopp H.G., Ramos C.A., and Rafii S. 2006. Contribution of endothelial progenitors and proang-iogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 13(3):175–181.CrossRefPubMedGoogle Scholar
  46. Krause D.S., Theise N.D., Collector M.I., Henegariu O., Hwang S., Gardner R., Neutzel S., and Sharkis S.J. 2001. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377.CrossRefPubMedGoogle Scholar
  47. Lapidot T., Sirard C., Vormoor J., Murdoch B., Hoang T., Caceres-Cortes J., Minden M., Paterson B., Caligiuri M.A., and Dick J.E. 1994.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648.CrossRefPubMedGoogle Scholar
  48. Li C., Heidt D.G., Dalerba P., Burant C.F., Zhang L., Adsay V., Wicha M., Clarke M.F., and Simeone D.M. 2007. Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037.CrossRefPubMedGoogle Scholar
  49. Li B., Sharpe E.E., Maupin A.B., Teleron A.A., Pyle A.L., Carmeliet P., and Young P.P. 2006. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497.CrossRefPubMedGoogle Scholar
  50. Li H.C., Stoicov C., Rogers A.B., and Houghton J.M. 2006. Stem cells and cancer: evidence for bone marrow stem cells in epithelial cancers. World J Gastroenterol 12(3):363–371.PubMedGoogle Scholar
  51. Ma S., Chan K.W., Hu L., Lee T.K., Wo J.Y., Ng I.O., Zheng B.J., and Guan X.Y. 2006. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 132(7):2542–2556.CrossRefGoogle Scholar
  52. Matsumoto T., Okamoto R., Yajima T., Mori T., Okamoto S., Ikeda Y., Mukai M., Yamazaki M., Oshima S., Tsuchiya K., Nakamura T., Kanai T., Olano H., Inazawa J., Hibi T., and Watanabe M. 2005. Increase of bone marrow derived secretory lineage epithelial cells during regeneration in the human intestine. Gastroenterology 128:1851–1867.CrossRefPubMedGoogle Scholar
  53. Mills J.C., Andersson N., Hong C.V., Stappenbeck T.S., and Gordon J.I. 2002. Molecular characterization of mouse gastric epithelial progenitor cells. Proc Natl Acad Sci USA 99(23):14819–14824.CrossRefPubMedGoogle Scholar
  54. Monastersky G.M., and Robl J.M., editors. 1995. Strategies in transgenic animal science. Washington, D.C.: ASM Press.Google Scholar
  55. Nomura A., Stemmermann G.N., Chyou P.H., Kato I., Perez-Perez G.I., and Blaser M.J. 1991. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 325:1132–1136.CrossRefPubMedGoogle Scholar
  56. Norton L. 1988. A Gompertzian model of human breast cancer growth. Cancer Res 48(24):7067–7071.PubMedGoogle Scholar
  57. Novak A., Guo C., Yang W., Nagy A., and Lobe C.G. 2000. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28(3–4):147–155.CrossRefPubMedGoogle Scholar
  58. Brien C.A., Pollett A., Gallinger S., and Dick J.E. 2007. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110.CrossRefPubMedGoogle Scholar
  59. Okamoto R., Yajima T., Yamazaki M., Kanai T., Mukai M., Okamoto S., Hibi T., Inazawa J., and Wantanabe M. 2002. Damaged epithelia regenerated by bone marrow derived cells in the human gastrointestinal tract. Nat Med 8(9):1011–1017.CrossRefPubMedGoogle Scholar
  60. Parsonnet J., Friedman G.D., Vandersteen D.P., Chang Y., Vogelman J.H., Orentreich N., and Sibley R.K. 1991. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325:1127–1131.CrossRefPubMedGoogle Scholar
  61. Peled A., Kollet O., Ponomaryov T., Petit I., Franitza S., Grabovsky V., Slav M.M., Nagler A., Lider O., Alon R., Zipori D., and Lapidot T. 2000. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95(11):3289–3296.PubMedGoogle Scholar
  62. Peters B.A., Diaz L.A., Polyak K., Meszler L., Romans K., Guinan E.C., Antin J.H., Myerson D., Hamilton S.R., Vogelstein B., Kinzler K.W., and Lengauer C. 2005. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11(3):261–262.CrossRefPubMedGoogle Scholar
  63. Pierce G.B. 1974. Neoplasms, differentiations and mutations. Am J Pathol 77(1):103–118.PubMedGoogle Scholar
  64. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., and Marshak D.R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147.CrossRefPubMedGoogle Scholar
  65. Plotkin M.D., and Goligorsky M.S. 2006. Mesenchymal cells from adult kidney support angio-genesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts. Am J Physiol Renal Physiol 291(4):F902–912.CrossRefPubMedGoogle Scholar
  66. Powell D.W., Adegboyega P.A., Di Mari J.F., and Mifflin R.C. 2005. Epithelial cells and their neighbors. I. Role of intestinal myofibroblasts in development, repair, and cancer. Am J Physiol Gastrointest Liver Physiol 289(1):G2–7.CrossRefPubMedGoogle Scholar
  67. Prince M.E., Sivanandan R., Kaczorowski A., Wold G.T., Kaplan M.J., Dalerba P., Weissman I.L., Clarke M.F., and Ailles L. E. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104(3):973–978.Google Scholar
  68. Pull S.L., Doherty J.M., Mills J.C., Gordon J.I., and Stappenbeck T.S. 2005. Activated macro-phages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 102(1):99–104.Google Scholar
  69. Qiao X.T., Ziel J.W., Madison B.B., McKimpson W., Todisco A., Merchant J.L., Samuelson L.C., and Gumucio D.L. 2007. Prospective identification of a multi-lineage progenitor in murine stomach epithelium. Gastroenterology (in press).Google Scholar
  70. Rather L.J. 1978. The genesis of cancer: a study in the history of ideas. Baltimore: The Johns Hopkins University Press.Google Scholar
  71. Reya T., Morrison S.J., Clarke M.F., and Weissman I.L. 2001. Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111.CrossRefPubMedGoogle Scholar
  72. Ricci-Vitiani L., Lombardi D.G., Pilozzi E., Biffoni M., Todaro M., Peschle C., and De Maria R. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115.CrossRefPubMedGoogle Scholar
  73. Rizvi A.Z., Swain J.R., Davies P.S., Bailey A.S., Decker A.D., Willenbring H., Grompe M., Fleming W.H., and Wong M.H. 2006. Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. PNAS 103:6321–6325.CrossRefPubMedGoogle Scholar
  74. Rubio D., Garcia-Castro J., Martin M., de la Fuente R., Cigudosa J., Lloyd A.C., and Bernad A. 2005. Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039.PubMedGoogle Scholar
  75. Sata M. 2006. Role of circulating vascular progenitors in angiogenesis vascular healing and pulmonary hypertension: lessons from animal models. Arterioscler Thromb Vasc Biol 26:1008–1014.CrossRefPubMedGoogle Scholar
  76. Schmidt A., Tief K., Foletti A., Hunziker A., Penna D., Hummler E., and Beermann F. 1998. lacZ transgenic mice to monitor gene expression in embryo and adult. Brain Res Brain Res Protoc 3(1):54–60.CrossRefPubMedGoogle Scholar
  77. Schofield R. 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25.PubMedGoogle Scholar
  78. Serakinci N., Guldberg P., Burns J.S., Abdallah B., Schrodder H., Jensen T., and Kassem M. 2004. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 23:5095–5098.CrossRefPubMedGoogle Scholar
  79. Shi D., Reinecke H., Murry C.E., and Torok-Storb B. 2004. Myogenic fusion of human bone marrow stromal cells, but not hematopoietic cells. Blood 104:290–294.CrossRefPubMedGoogle Scholar
  80. Shimizu K., Sugiyama S., Aikawa M., Fukumoto Y., Rabkin E, Libby P., and Mitchell R. 2001. Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy. Nat Med 7:738–741.CrossRefPubMedGoogle Scholar
  81. Singh S.K., Hawkins C., Clarke I.D., Squire J.A., Bayani J., Hide T., Henkelman R.M., Cusimano M.D., and Dirks P.B. 2004. Identification of human brain tumour initiating cells. Nature 432(7015):396–401.CrossRefPubMedGoogle Scholar
  82. Smith M.J., van Cleef P.H., Schattenberg A.V., and van Krieken J.H. 2006. The origin of epithelial neoplasms after allogeneic stem cell transplantation. Haematologica 91(2):283–284.PubMedGoogle Scholar
  83. Spring H., Schüler T., Arnold B., Hämmerling G.J., and Ganss R. 2005. Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci USA 102(50):18111–18116.CrossRefPubMedGoogle Scholar
  84. Stoicov C., Li H., Carlson J., and Houghton J. 2005. Bone marrow cells as the origin of stomach cancer. Future Oncol 1(6):851–862.CrossRefPubMedGoogle Scholar
  85. Tong C., and Xie Y. 2003. Correlation between VLA-4 integrin and hematopoietic cell migration. J Exp Hematol 11(3):230–234.Google Scholar
  86. Uemura N., Okamoto S., Yamamoto S., Matsumura N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., and Schlemper R.J. 2001. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789.CrossRefPubMedGoogle Scholar
  87. Vassilopoulos G., Wang P.R., and Russell D.W. 2003. Transplanted bone marrow regenerates liver by cell fusion. Nature 422(6934):901–904.CrossRefPubMedGoogle Scholar
  88. Wang T.C., Goldenring J.R., Dangler C., Ito S., Mueller A., Jeon W.K., Koh T.J., and Fox J.G. 1999. Mice lacking secretory phospholipase A2 show altered apoptosis and differentiation with Helicobacter felis infection. Gastroenterology 114:675–689.CrossRefGoogle Scholar
  89. Wang X., Willenbring H., Akkari Y., Torimaru Y., Foster M., Al-Dhalimy M., Lagasse E., Finegold M., Olson S., Grompe M. 2003. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901.CrossRefPubMedGoogle Scholar
  90. Weiss D.J., Liggitt D., and Clark J.G. 1999. Histochemical discrimination of endogenous mammalian beta-galactosidase activity from that resulting from lac-Z gene expression. Histochem J 31(4):231–236.CrossRefPubMedGoogle Scholar
  91. Wojakowski W., Tendera M., Michalowska A., Majka M., Kucia M., Maslankiewicz K., Wyderka R., Ochala A., and Ratajczak M.Z. 2004. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110(20):3213–3220.CrossRefPubMedGoogle Scholar
  92. Wong M.H., Saam J.R., Stappenbeck T.S., Rexer C.H., and Gordon J.I. 2000. Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc Natl Acad Sci USA 97(23):12601–12606.CrossRefPubMedGoogle Scholar
  93. Xie T., and Spradling A.C. 2000. A niche maintaining germ line stem cells in the Drosophila ovary. Science 290(5490):328–330.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • JeanMarie Houghton
    • 1
  • Timothy C. Wang
    • 2
  1. 1.Department of Medicine and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Division of Digestive and Liver DiseasesColumbia UniversityNew YorkUSA

Personalised recommendations