Genetic Models of Gastric Cancer in the Mouse

  • Andrew S. Giraud
  • Louise M. Judd


This chapter concentrates on murine genetic models that mimic gastric adenocarci-noma development, the most common stomach cancer of humans, rather than gastric lymphoma, or endocrine (ECL) carcinoids for which only a handful of mouse models have been described. Epithelial tumors are much less common in mice than humans; in the former, extragastric lymphomas and sarcomas predominate (Rangarajan and Weinberg 2003). Therefore, for epithelial tumors of the mouse stomach to be a dominant phenotype, the gene defect is likely to be important, and by homology may also contribute to human gastric cancer pathogenesis.

To date, the vast majority of genetic models recapitulate some or all of the developmental stages associated with intestinal-type gastric adenocarcinoma development rather than the less common sporadic (diffuse) gastric cancer. Thus, stepwise progression beginning with gastritis, atrophy, intestinal metaplasia, spasmolytic polypeptide expressing metaplasia (SPEM),...


Gastric Cancer Gastric Mucosa Intestinal Metaplasia Parietal Cell Submucosal Invasion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akhurst, B., E. J. Croager, et al. (2001). A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology 34(3): 519–22.PubMedGoogle Scholar
  2. Andersson, P., J. McGuire, et al. (2002). A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc Natl Acad Sci USA 99(15): 9990–5.PubMedGoogle Scholar
  3. Ang, D. K., T. C. Brodnicki, et al. (2007). Two genetic loci independently confer susceptibility to autoimmune gastritis. Int Immunol 19(9): 1135–44.PubMedGoogle Scholar
  4. Atreya, R., J. Mudter, et al. (2000). Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat Med 6(5): 583–8.PubMedGoogle Scholar
  5. Bae, S. C. and Y. Ito (2003). Comment on Levanon et al., Runx3 knockouts and stomach cancer, in EMBO reports (June 2003). EMBO Rep 4(6): 538–9.PubMedGoogle Scholar
  6. Baxter, A. G., M. A. Jordan, et al. (2005). Genetic control of susceptibility to autoimmune gastritis. Int Rev Immunol 24(1–2): 55–62.PubMedGoogle Scholar
  7. Blyth, K., E. R. Cameron, et al. (2005). The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer 5(5): 376–87.PubMedGoogle Scholar
  8. Bockman, D. E., R. Sharp, et al. (1995). Regulation of terminal differentiation of zymogenic cells by transforming growth factor alpha in transgenic mice. Gastroenterology 108(2): 447–54.PubMedGoogle Scholar
  9. Brenner, O., D. Levanon, et al. (2004). Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci USA 101(45): 16016–21.PubMedGoogle Scholar
  10. Cai, J. P., T. Ishibashi, et al. (2003). Mouse MTH2 protein which prevents mutations caused by 8-oxoguanine nucleotides. Biochem Biophys Res Commun 305(4): 1073–7.PubMedGoogle Scholar
  11. Coste, I., J. N. Freund, et al. (2007). Precancerous lesions upon sporadic activation of beta-catenin in mice. Gastroenterology 132(4): 1299–308.PubMedGoogle Scholar
  12. Crawford, S. E., V. Stellmach, et al. (1998). Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 93(7): 1159–70.PubMedGoogle Scholar
  13. Dempsey, P. J., J. R. Goldenring, et al. (1992). Possible role of transforming growth factor alpha in the pathogenesis of Menetrier ' s disease: supportive evidence form humans and transgenic mice. Gastroenterology 103(6): 1950–63.PubMedGoogle Scholar
  14. Derynck, R., R. J. Akhurst, et al. (2001). TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29(2): 117–29.PubMedGoogle Scholar
  15. Elso, C. M., X. Lu, et al. (2004). Heightened susceptibility to chronic gastritis, hyperplasia and metaplasia in Kcnq1 mutant mice. Hum Mol Genet 13(22): 2813–21.PubMedGoogle Scholar
  16. El-Zaatari, M., A. Tobias, et al. (2007). De-regulation of the sonic hedgehog pathway in the InsGas mouse model of gastric carcinogenesis. Br J Cancer 96(12): 1855–61.PubMedGoogle Scholar
  17. Fox, J. G., C. A. Dangler, et al. (1997). Mice carrying a truncated Apc gene have diminished gastric epithelial proliferation, gastric inflammation, and humoral immunity in response to Helicobacter felis infection. Cancer Res 57(18): 3972–8.PubMedGoogle Scholar
  18. Fox, J. G., X. Li, et al. (1996). Hypertrophic gastropathy in Helicobacter felis-infected wild-type C57BL/6 mice and p53 hemizygous transgenic mice. Gastroenterology 110(1): 155–66.PubMedGoogle Scholar
  19. Fox, J. G., A. B. Rogers, et al. (2003a). Helicobacter pylori-associated gastric cancer in INS-GAS mice is gender specific. Cancer Res 63(5): 942–50.Google Scholar
  20. Fox, J. G., B. J. Sheppard, et al. (2002). Germ-line p53-targeted disruption inhibits Helicobacter-induced premalignant lesions and invasive gastric carcinoma through down-regulation of Th1 proinflammatory responses. Cancer Res 62(3): 696–702.PubMedGoogle Scholar
  21. Fox, J. G., T. C. Wang, et al. (2003b). Host and microbial constituents influence Helicobacter pylori-induced cancer in a murine model of hypergastrinemia. Gastroenterology 124(7): 1879–90.Google Scholar
  22. Franic, T. V., L. M. Judd, et al. (2001). Regulation of gastric epithelial cell development revealed in H(+)/K(+)-ATPase beta-subunit- and gastrin-deficient mice. Am J Physiol Gastrointest Liver Physiol 281(6): G1502–11.PubMedGoogle Scholar
  23. Franic, T. V., I. R. van Driel, et al. (2005). Reciprocal changes in trefoil 1 and 2 expression in stomachs of mice with gastric unit hypertrophy and inflammation. J Pathol 207(1): 43–52.PubMedGoogle Scholar
  24. Friis-Hansen, L. (2002). Gastric functions in gastrin gene knock-out mice. Pharmacol Toxicol 91(6): 363–7.PubMedGoogle Scholar
  25. Friis-Hansen, L. (2006). Achlorhydria is associated with gastric microbial overgrowth and development of cancer: lessons learned from the gastrin knockout mouse. Scand J Clin Lab Invest 66(7): 607–21.PubMedGoogle Scholar
  26. Friis-Hansen, L., F. Sundler, et al. (1998). Impaired gastric acid secretion in gastrin-deficient mice. Am J Physiol 274(3 Pt 1): G561–8.PubMedGoogle Scholar
  27. Fukamachi, H., K. Ito, et al. (2004). Runx3—/— gastric epithelial cells differentiate into intestinal type cells. Biochem Biophys Res Commun 321(1): 58–64.PubMedGoogle Scholar
  28. Fukui, T., A. Nishio, et al. (2006). Gastric mucosal hyperplasia via upregulation of gastrin induced by persistent activation of gastric innate immunity in major histocompatibility complex class II deficient mice. Gut 55(5): 607–15.PubMedGoogle Scholar
  29. Garcia de Galdeano, A., J. C. Cruz-Conde, et al. (2001). Effect of IL-2 and IL-6 on parameters related to metastatic activity in a murine melanoma. Pathobiology 69(4): 230–6.PubMedGoogle Scholar
  30. Gawenis, L. R., J. M. Greeb, et al. (2005). Impaired gastric acid secretion in mice with a targeted disruption of the NHE4 Na + /H + exchanger. J Biol Chem 280(13): 12781–9.PubMedGoogle Scholar
  31. Goldenring, J. R. and S. Nomura (2006). Differentiation of the gastric mucosa. III. Animal models of oxyntic atrophy and metaplasia. Am J Physiol Gastrointest Liver Physiol 291(6): G999–1004.PubMedGoogle Scholar
  32. Goldenring, J. R., G. S. Ray, et al. (1996). Overexpression of transforming growth factor-alpha alters differentiation of gastric cell lineages. Dig Dis Sci 41(4): 773–84.PubMedGoogle Scholar
  33. Gut, M. O., S. Parkkila, et al. (2002). Gastric hyperplasia in mice with targeted disruption of the carbonic anhydrase gene Car9. Gastroenterology 123(6): 1889–903.PubMedGoogle Scholar
  34. Hahm, K. B., K. M. Lee, et al. (2002). Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment Pharmacol Ther 16(Suppl 2): 115–27.PubMedGoogle Scholar
  35. Harada, N., Y. Tamai, et al. (1999). Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J 18(21): 5931–42.PubMedGoogle Scholar
  36. Hopken, U. E., A. M. Wengner, et al. (2007). CCR7 deficiency causes ectopic lymphoid neogen-esis and disturbed mucosal tissue integrity. Blood 109(3): 886–95.PubMedGoogle Scholar
  37. Howlett, M., L. M. Judd, et al. (2005). Differential regulation of gastric tumor growth by cytokines that signal exclusively through the coreceptor gp130. Gastroenterology 129(3): 1005–18.PubMedGoogle Scholar
  38. Hwang, I. R., P. I. Hsu, et al. (2003). Interleukin-6 genetic polymorphisms are not related to Helicobacter pylori-associated gastroduodenal diseases. Helicobacter 8(2): 142–8.PubMedGoogle Scholar
  39. Ishikawa, H., D. Carrasco, et al. (1997). Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-kappaB2. J Exp Med 186(7): 999–1014.PubMedGoogle Scholar
  40. Jackson, C. B., L. M. Judd, et al. (2007). Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J Pathol 213(2): 140–51.PubMedGoogle Scholar
  41. Jenkins, B. J., D. Grail, et al. (2005). Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nat Med 11(8): 845–52.PubMedGoogle Scholar
  42. Johnson, A. H., H. F. Frierson, et al. (2005). Expression of tight-junction protein claudin-7 is an early event in gastric tumorigenesis. Am J Pathol 167(2): 577–84.PubMedGoogle Scholar
  43. Judd, L. M., B. M. Alderman, et al. (2004). Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology 126(1): 196–207.PubMedGoogle Scholar
  44. Judd, L. M., A. Andringa, et al. (2005). Gastric achlorhydria in H/K-ATPase-deficient (Atp4a(—/—)) mice causes severe hyperplasia, mucocystic metaplasia and upregulation of growth factors. J Gastroenterol Hepatol 20(8): 1266–78.PubMedGoogle Scholar
  45. Judd, L. M., K. Bredin, et al. (2006). STAT3 activation regulates growth, inflammation, and vascularization in a mouse model of gastric tumorigenesis. Gastroenterology 131(4): 1073–85.PubMedGoogle Scholar
  46. Kaestner, K. H., D. G. Silberg, et al. (1997). The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev 11(12): 1583–95.PubMedGoogle Scholar
  47. Kanda, N., H. Seno, et al. (2006). Involvement of cyclooxygenase-2 in gastric mucosal hypertrophy in gastrin transgenic mice. Am J Physiol Gastrointest Liver Physiol 290(3): G519–27.PubMedGoogle Scholar
  48. Kang, W., S. Rathinavelu, et al. (2005). Interferon gamma induction of gastric mucous neck cell hypertrophy. Lab Invest 85(5): 702–15.PubMedGoogle Scholar
  49. Karam, S. M., C. Tomasetto, et al. (2004). Trefoil factor 1 is required for the commitment programme of mouse oxyntic epithelial progenitors. Gut 53(10): 1408–15.PubMedGoogle Scholar
  50. Katz, J. P., N. Perreault, et al. (2005). Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology 128(4): 935–45.PubMedGoogle Scholar
  51. Kim, B. G., C. Li, et al. (2006a). Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441(7096): 1015–9.Google Scholar
  52. Kim, S. S., K. Shetty, et al. (2006b). TGF-beta signaling pathway inactivation and cell cycle deregulation in the development of gastric cancer: role of the beta-spectrin, ELF. Biochem Biophys Res Commun 344(4): 1216–23.Google Scholar
  53. Kobayashi, T., S. Tonai, et al. (2000). Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor-deficient mice. J Clin Invest 105(12): 1741–9.PubMedGoogle Scholar
  54. Koh, T. J., J. R. Goldenring, et al. (1997). Gastrin deficiency results in altered gastric differentiation and decreased colonic proliferation in mice. Gastroenterology 113(3): 1015–25.PubMedGoogle Scholar
  55. Konda, Y., H. Kamimura, et al. (1999). Gastrin stimulates the growth of gastric pit with less-differentiated features. Am J Physiol 277(4 Pt 1): G773–84.PubMedGoogle Scholar
  56. Kuznetsov, N. V., P. Andersson, et al. (2005). The dioxin/aryl hydrocarbon receptor mediates downregulation of osteopontin gene expression in a mouse model of gastric tumourigenesis. Oncogene 24(19): 3216–22.PubMedGoogle Scholar
  57. Kuzushita, N., A. B. Rogers, et al. (2005). p27kip1 deficiency confers susceptibility to gastric carcinogenesis in Helicobacter pylori-infected mice. Gastroenterology 129(5): 1544–56.PubMedGoogle Scholar
  58. Lawler, J., M. Sunday, et al. (1998). Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 101(5): 982–92.PubMedGoogle Scholar
  59. Lee, M. P., J. D. Ravenel, et al. (2000). Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106(12): 1447–55.PubMedGoogle Scholar
  60. Lefebvre, O., M. P. Chenard, et al. (1996). Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science 274(5285): 259–62.PubMedGoogle Scholar
  61. Leppilampi, M., T. J. Karttunen, et al. (2005). Gastric pit cell hyperplasia and glandular atrophy in carbonic anhydrase IX knockout mice: studies on two strains C57/BL6 and BALB/C. Transgenic Res 14(5): 655–63.PubMedGoogle Scholar
  62. Levanon, D., D. Bettoun, et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 21(13): 3454–63.PubMedGoogle Scholar
  63. Levanon, D., O. Brenner, et al. (2003). Runx3 knockouts and stomach cancer. EMBO Rep 4(6): 560–4.PubMedGoogle Scholar
  64. Li, Q., S. M. Karam, et al. (1995). Simian virus 40 T antigen-induced amplification of pre-parietal cells in transgenic mice. Effects on other gastric epithelial cell lineages and evidence for a p53-independent apoptotic mechanism that operates in a committed progenitor. J Biol Chem 270(26): 15777–88.PubMedGoogle Scholar
  65. Li, Q. L., K. Ito, et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109(1): 113–24.PubMedGoogle Scholar
  66. Li, S., Q. Wang, et al. (2000). Gastric hyperplasia in mice lacking the putative Cdc42 effector IQGAP1. Mol Cell Biol 20(2): 697–701.PubMedGoogle Scholar
  67. Ludlow, A., K. O. Yee, et al. (2005). Characterization of integrin beta6 and thrombospondin-1 double-null mice. J Cell Mol Med 9(2): 421–37.PubMedGoogle Scholar
  68. Mutoh, H., Y. Hakamata, et al. (2002). Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem Biophys Res Commun 294(2): 470–9.PubMedGoogle Scholar
  69. Mutoh, H., S. Sakurai, et al. (2004a). Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut 53(10): 1416–23.Google Scholar
  70. Mutoh, H., S. Sakurai, et al. (2004b). Development of gastric carcinoma from intestinal metaplasia in Cdx2-transgenic mice. Cancer Res 64(21): 7740–7.Google Scholar
  71. Nockel, J., N. K. van den Engel, et al. (2006). Characterization of gastric adenocarcinoma cell lines established from CEA424/SV40 T antigen-transgenic mice with or without a human CEA transgene. BMC Cancer 6: 57.PubMedGoogle Scholar
  72. Nomura, S., S. H. Settle, et al. (2005). Evidence for repatterning of the gastric fundic epithelium associated with Menetrier ' s disease and TGFalpha overexpression. Gastroenterology 128(5): 1292–305.PubMedGoogle Scholar
  73. Ogawa, T., K. Maeda, et al. (2003). Utilization of knockout mice to examine the potential role of gastric histamine H2-receptors in Menetrier ' s disease. J Pharmacol Sci 91(1): 61–70.PubMedGoogle Scholar
  74. Oshima, H., A. Matsunaga, et al. (2006). Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology 131(4): 1086–95.PubMedGoogle Scholar
  75. Oshima, H., M. Oshima, et al. (2004). Hyperplastic gastric tumors induced by activated macro-phages in COX-2/mPGES-1 transgenic mice. EMBO J 23(7): 1669–78.PubMedGoogle Scholar
  76. Oshima, M., H. Oshima, et al. (2005). Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-alpha-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Cancer Res 65(20): 9147–51.PubMedGoogle Scholar
  77. Ramalho-Santos, M., D. A. Melton, et al. (2000). Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127(12): 2763–72.PubMedGoogle Scholar
  78. Ramsay, A. J., A. J. Husband, et al. (1994). The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science 264(5158): 561–3.PubMedGoogle Scholar
  79. Rangarajan, A. and R. A. Weinberg (2003). Opinion: comparative biology of mouse versus human cells—modelling human cancer in mice. Nat Rev Cancer 3(12): 952–9.PubMedGoogle Scholar
  80. Redman, R. S., V. Katuri, et al. (2005). Orofacial and gastrointestinal hyperplasia and neoplasia in smad4 + /− and elf + /−/smad4 + /− mutant mice. J Oral Pathol Med 34(1): 23–9.PubMedGoogle Scholar
  81. Roepke, T. K., A. Anantharam, et al. (2006). The KCNE2 potassium channel ancillary subunit is essential for gastric acid secretion. J Biol Chem 281(33): 23740–7.PubMedGoogle Scholar
  82. Romagnolo, B., D. Berrebi, et al. (1999). Intestinal dysplasia and adenoma in transgenic mice after overexpression of an activated beta-catenin. Cancer Res 59(16): 3875–9.PubMedGoogle Scholar
  83. Saitou, M., M. Furuse, et al. (2000). Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11(12): 4131–42.PubMedGoogle Scholar
  84. Saukkonen, K., C. Tomasetto, et al. (2003). Cyclooxygenase-2 expression and effect of celecoxib in gastric adenomas of trefoil factor 1-deficient mice. Cancer Res 63(12): 3032–6.PubMedGoogle Scholar
  85. Scarff, K. L., L. M. Judd, et al. (1999). Gastric H(+),K(+)-adenosine triphosphatase beta subunit is required for normal function, development, and membrane structure of mouse parietal cells. Gastroenterology 117(3): 605–18.PubMedGoogle Scholar
  86. Schultheis, P. J., L. L. Clarke, et al. (1998). Targeted disruption of the murine Na + /H + exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest 101(6): 1243–53.PubMedGoogle Scholar
  87. Segre, J. A., C. Bauer, et al. (1999). Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22(4): 356–60.PubMedGoogle Scholar
  88. Senda, T., A. Iizuka-Kogo, et al. (2007). Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol 40(2): 68–81.PubMedGoogle Scholar
  89. Sharp, R., M. W. Babyatsky, et al. (1995). Transforming growth factor alpha disrupts the normal program of cellular differentiation in the gastric mucosa of transgenic mice. Development 121(1): 149–61.PubMedGoogle Scholar
  90. Shull, M. M., I. Ormsby, et al. (1992). Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397): 693–9.PubMedGoogle Scholar
  91. Snyder, A. J., S. M. Karam, et al. (2004). A transgenic mouse model of metastatic carcinoma involving transdifferentiation of a gastric epithelial lineage progenitor to a neuroendocrine phenotype. Proc Natl Acad Sci USA 101(13): 4471–6.Google Scholar
  92. Spicer, Z., M. L. Miller, et al. (2000). Stomachs of mice lacking the gastric H,K-ATPase alpha-subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. J Biol Chem 275(28): 21555–65.PubMedGoogle Scholar
  93. Stewart, L. A., I. R. van Driel, et al. (2002). Perturbation of gastric mucosa in mice expressing the temperature-sensitive mutant of SV40 large T antigen. Potential for establishment of an immortalised parietal cell line. Eur J Cell Biol 81(5): 281–93.Google Scholar
  94. Takagi, H., T. Fukusato, et al. (1997). Histochemical analysis of hyperplastic stomach of TGF-alpha transgenic mice. Dig Dis Sci 42(1): 91–8.PubMedGoogle Scholar
  95. Takagi, H., C. Jhappan, et al. (1992). Hypertrophic gastropathy resembling Menetrier ' s disease in transgenic mice overexpressing transforming growth factor alpha in the stomach. J Clin Invest 90(3): 1161–7.PubMedGoogle Scholar
  96. Takaishi, S., G. Cui, et al. (2005). Synergistic inhibitory effects of gastrin and histamine receptor antagonists on Helicobacter-induced gastric cancer. Gastroenterology 128(7): 1965–83.PubMedGoogle Scholar
  97. Takaku, K., H. Miyoshi, et al. (1999). Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 59(24): 6113–7.PubMedGoogle Scholar
  98. Tebbutt, N. C., A. S. Giraud, et al. (2002). Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat Med 8(10): 1089–97.PubMedGoogle Scholar
  99. Thompson, J., T. Epting, et al. (2000). A transgenic mouse line that develops early-onset invasive gastric carcinoma provides a model for carcinoembryonic antigen-targeted tumor therapy. Int J Cancer 86(6): 863–9.PubMedGoogle Scholar
  100. Tomasetto, C. and M. C. Rio (2005). Pleiotropic effects of trefoil factor 1 deficiency. Cell Mol Life Sci 62(24): 2916–20.PubMedGoogle Scholar
  101. Tomita, H., Y. Yamada, et al. (2007). Development of gastric tumors in Apc(Min/ +) mice by the activation of the beta-catenin/Tcf signaling pathway. Cancer Res 67(9): 4079–87.PubMedGoogle Scholar
  102. Torres, L. F., S. M. Karam, et al. (2002). Trefoil factor 1 (TFF1/pS2) deficiency activates the unfolded protein response. Mol Med 8(5): 273–82.PubMedGoogle Scholar
  103. Tsuzuki, T., A. Egashira, et al. (2001). Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci USA 98(20): 11456–61.PubMedGoogle Scholar
  104. Wang, T. C., S. Bonner-Weir, et al. (1993). Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J Clin Invest 92(3): 1349–56.PubMedGoogle Scholar
  105. Wang, T. C., C. A. Dangler, et al. (2000). Synergistic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric cancer. Gastroenterology 118(1): 36–47.PubMedGoogle Scholar
  106. Wang, T. C., T. J. Koh, et al. (1996). Processing and proliferative effects of human progastrin in transgenic mice. J Clin Invest 98(8): 1918–29.PubMedGoogle Scholar
  107. Wang, Y. F., S. Y. Chang, et al. (2002). Clinical significance of interleukin-6 and interleukin-6 receptor expressions in oral squamous cell carcinoma. Head Neck 24(9): 850–8.PubMedGoogle Scholar
  108. Watson, S. A., A. M. Grabowska, et al. (2006). Gastrin—active participant or bystander in gastric carcinogenesis? Nat Rev Cancer 6(12): 936–46.PubMedGoogle Scholar
  109. Xu, X., S. G. Brodie, et al. (2000). Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19(15): 1868–74.PubMedGoogle Scholar
  110. Yamamura, Y., W. L. Lee, et al. (2006). RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem 281(8): 5267–76.PubMedGoogle Scholar
  111. Yang, K., W. Edelmann, et al. (1997). A mouse model of human familial adenomatous polyposis. J Exp Zool 277(3): 245–54.PubMedGoogle Scholar
  112. Yano, T., K. Ito, et al. (2006). The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol 26(12): 4474–88.PubMedGoogle Scholar
  113. Yu, C. R., J. R. Ortaldo, et al. (1999). Role of a STAT binding site in the regulation of the human perforin promoter. J Immunol 162(5): 2785–90.PubMedGoogle Scholar
  114. Zavros, Y., K. A. Eaton, et al. (2005). Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene 24(14): 2354–66.PubMedGoogle Scholar
  115. Zavros, Y., G. Rieder, et al. (2002). Genetic or chemical hypochlorhydria is associated with inflammation that modulates parietal and G-cell populations in mice. Gastroenterology 122(1): 119–33.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Andrew S. Giraud
    • 1
  • Louise M. Judd
    • 2
  1. 1.Immunity and Environment Murdoch Childrens Research InstituteRoyal Melbourne Hospital FootscrayMelbourneAustralia
  2. 2.Department of PediatricsUniversity of Melbourne, Royal Children's HospitalParkville, MelbourneAustralia

Personalised recommendations