The Role of Helicobacter pylori Virulence Factors in Rodent and Primate Models of Disease

  • Dawn A. Israel
  • Richard M. PeekJr.


Helicobacter pylori colonizes the stomach of at least half of the world's population, and this process usually persists for the lifetime of the host. Virtually all persons infected with H. pylori develop gastric inflammation, which confers an increased risk for developing gastric cancer. However, only a fraction of infected persons ever develop these clinical sequelae. Identification of bacterial biomarkers associated with increased disease risk has profound ramifications because such findings will not only provide mechanistic insights into inflammatory carcinogenesis, but may also identify a subpopula-tion of H. pylori—infected individuals who can then be targeted for intervention.

Animal models provide a unique opportunity to study mechanisms by which H. pylori colonizes its host and to identify bacterial factors related to virulence and the development of disease (Ferraro and Fox 2001; O'Rourke and Lee 2003). Rodents, including mice and gerbils, as well as monkeys...


Urease Activity Gastric Epithelial Cell Pylorus Strain Mongolian Gerbil Methionine Sulfoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akada J. K., Ogura K., Dailidiene D., Dailide G., Cheverud J. M., Berg D. E. 2003. Helicobacter pylori tissue tropism: mouse-colonizing strains can target different gastric niches. Microbiology 149:1901–1909.PubMedGoogle Scholar
  2. Alamuri P., Maier R. J. 2006. Methionine sulfoxide reductase in Helicobacter pylori: interaction with methionine-rich proteins and stress-induced expression. J. Bacteriol. 188:5839–5850.PubMedGoogle Scholar
  3. Alm R. A., Ling L. S., Moir D. T., King B. L., Brown E. D., Doig P. C., Smith D. R., Noonan B., Guild B. C., deJonge B. L., Carmel G., Tummino P. J., Caruso A., Uria-Nickelsen M., MillsD. M., Ives C., Gibson R., Merberg D., Mills S. D., Jiang Q., Taylor D. E., Vovis G. F., Trust T. J. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180.PubMedGoogle Scholar
  4. Alm R. A., Trust T. J. 1999. Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. J. Mol. Med. 77:834–846.PubMedGoogle Scholar
  5. Andermann T. M., Chen Y. T., Ottemann K. M. 2002. Two predicted chemoreceptors of Helicobacter pylori promote stomach infection. Infect. Immun. 70:5877–5881.PubMedGoogle Scholar
  6. Andrews S. C., Robinson A. K., Rodriguez-Quinones F. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27:215–237.PubMedGoogle Scholar
  7. Aras R. A., Kang J., Tschumi A. I., Harasaki Y., Blaser M. J. 2003. Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc. Natl. Acad. Sci. USA 100:13579–13584.PubMedGoogle Scholar
  8. Aspholm M., Olfat F. O., Norden J., Sonden B., Lundberg C., Sjostrom R., Altraja S., Odenbreit S., Haas R., Wadstrom T., Engstrand L., Semino-Mora C., Liu H., Dubois A., Teneberg S., Arnqvist A., Boren T. 2006. SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans. PLoS Pathog. 2:e110.PubMedGoogle Scholar
  9. Ayraud S., Janvier B., Labigne A., Ecobichon C., Burucoa C., Fauchere J. L. 2005. Polyphosphate kinase: a new colonization factor of Helicobacter pylori. FEMS Microbiol. Lett. 243:45–50.PubMedGoogle Scholar
  10. Ayraud S., Janvier B., Salaun L., Fauchere J. L. 2003. Modification in the ppk gene of Helicobacter pylori during single and multiple experimental murine infections. Infect. Immun. 71:1733–1739.PubMedGoogle Scholar
  11. Baldwin D. N., Shepherd B., Kraemer P., Hall M. K., Sycuro L. K., Pinto-Santini D. M., Salama N. R. 2007. Identification of Helicobacter pylori genes that contribute to stomach colonization. Infect. Immun. 75:1005–1016.PubMedGoogle Scholar
  12. Bijlsma J. J., Gerrits M. M., Imamdi R., Vandenbroucke-Grauls C. M., Kusters J. G. 1998. Ureasepositive, acid-sensitive mutants of Helicobacter pylori: urease-independent acid resistance involved in growth at low pH. FEMS Microbiol. Lett. 167:309–313.PubMedGoogle Scholar
  13. Birkholz S., Knipp U., Nietzki C., Adamek R. J., Opferkuch W. 1993. Immunological activity of lipopolysaccharide of Helicobacter pylori on human peripheral mononuclear blood cells in comparison to lipopolysaccharides of other intestinal bacteria. FEMS Immunol. Med. Microbiol. 6:317–324.PubMedGoogle Scholar
  14. Bjorkholm B., Lundin A., Sillen A., Guillemin K., Salama N., Rubio C., Gordon J. I., Falk P., Engstrand L. 2001a. Comparison of genetic divergence and fitness between two subclones of Helicobacter pylori. Infect. Immun. 69:7832–7838.Google Scholar
  15. Bjorkholm B., Sjolund M., Falk P. G., Berg O. G., Engstrand L., Andersson D. I. 2001b. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl. Acad. Sci. USA 98:14607–14612.Google Scholar
  16. Boonjakuakul J. K., Canfield D. R., Solnick J. V. 2005. Comparison of Helicobacter pylori virulence gene expression in vitro and in the Rhesus macaque. Infect. Immun. 73:4895–4904.PubMedGoogle Scholar
  17. Cerda O., Rivas A., Toledo H. 2003. Helicobacter pylori strain ATCC700392 encodes a methylaccepting chemotaxis receptor protein (MCP) for arginine and sodium bicarbonate. FEMS Microbiol. Lett. 224:1751–1781.Google Scholar
  18. Chaturvedi R., Asim M., Lewis N. D., Algood H. M., Cover T. L., Kim P. Y., Wilson K. T. 2007. L-arginine availability regulates inducible nitric oxide synthase-dependent host defense against Helicobacter pylori. Infect. Immun. 75:4305–4315.PubMedGoogle Scholar
  19. Comtois S. L., Gidley M. D., Kelly D. J. 2003. Role of the thioredoxin system and the thiolperoxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology 149:121–129.PubMedGoogle Scholar
  20. Cooke M. S., Evans M. D., Dizdaroglu M., Lunec J. 2003. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17:1195–11214.PubMedGoogle Scholar
  21. Cooksley C., Jenks P. J., Green A., Cockayne A., Logan R. P., Hardie K. R. 2003. NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J. Med. Microbiol. 52:461–469.PubMedGoogle Scholar
  22. Crabtree J. E., Ferrero R. L., Kusters J. G. 2002. The mouse colonizing Helicobacter pylori strain SS1 may lack a functional cag pathogenicity island. Helicobacter 7:139–140.PubMedGoogle Scholar
  23. Croxen M. A., Sisson G., Melano R., Hoffman P. S. 2006. The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J. Bacteriol. 188:2656–2665.PubMedGoogle Scholar
  24. Dubois A., Berg D. E., Incecik E. T., Fiala N., Heman-Ackah L. M., Del Valle J., Yang M., Wirth H. P., Perez-Perez G. I., Blaser M. J. 1999. Host specificity of Helicobacter pylori strains and host responses in experimentally challenged nonhuman primates. Gastroenterology 116:90–96.PubMedGoogle Scholar
  25. Dubois A., Berg D. E., Incecik E. T., Fiala N., Heman-Ackah L. M., Perez-Perez G. I., Blaser M. J. 1996. Transient and persistent experimental infection of nonhuman primates with Helicobacter pylori: implications for human disease. Infect. Immun. 64:2885–2891.PubMedGoogle Scholar
  26. Eaton K. A., Cover T. L., Tummuru M. K., Blaser M. J., Krakowka S. 1997. Role of vacuolating cytotoxin in gastritis due to Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 65:3462–3464.PubMedGoogle Scholar
  27. Eaton K. A., Gilbert J. V., Joyce E. A., Wanken A. E., Thevenot T., Baker P., Plaut A., Wright A. 2002. In vivo complementation of ureB restores the ability of Helicobacter pylori to colonize. Infect. Immun. 70:771–778.PubMedGoogle Scholar
  28. Eaton K. A., Suerbaum S., Josenhans C., Krakowka S. 1996. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun. 64:2445–2448.PubMedGoogle Scholar
  29. Eutsey R., Wang G., Maier R. J. 2007. Role of a MutY DNA glycosylase in combating oxidative DNA damage in Helicobacter pylori. DNA Repair (Amst) 6:19–26.Google Scholar
  30. Evans D. J., Jr., Evans D. G., Takemura T., Nakano H., Lampert H. C., Graham D. Y., Granger D. N., Kvietys P. R. 1995. Characterization of a Helicobacter pylori neutrophil-activating protein. Infect. Immun. 63:2213–2220.PubMedGoogle Scholar
  31. Evans M. D., Dizdaroglu M., Cooke M. S. 2004. Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res. 567:1–61.PubMedGoogle Scholar
  32. Ezraty B., Aussel L., Barras F. 2005. Methionine sulfoxide reductases in prokaryotes. Biochim. Biophys. Acta 1703:221–229.PubMedGoogle Scholar
  33. Ferraro R. L., Fox J. G. 2001. In vivo modeling of Helicobacter-associated gastrointestinal diseases. In: Mobley H. L. T., Mendz G. L., Hazell S. L., editors. Helicobacter pylori: physiology and genetics. Washington, D.C.: ASM Press; pp. 565–582.Google Scholar
  34. Fox J. G., Wang T. C., Rogers A. B., Poutahidis T., Ge Z., Taylor N., Dangler C. A., Israel D. A., Krishna U., Gaus K., Peek R. M., Jr. 2003. Host and microbial constituents influence Helicobacter pylori-induced cancer in a murine model of hypergastrinemia. Gastroenterology 124:1879–1890.PubMedGoogle Scholar
  35. Franco A. T., Israel D. A., Washington M. K., Krishna U., Fox J. G., Rogers A. B., Neish A. S., Collier-Hyams L., Perez-Perez G. I., Hatakeyama M., Whitehead R., Gaus K., O'Brien D. P., Romero-Gallo J., Peek R. M., Jr. 2005. Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc. Natl. Acad. Sci. USA 102:10646–10651.PubMedGoogle Scholar
  36. Franco A.T., Johnston E., Krishna U., Yamaoka Y., Israel D.A., Nagy T. A., Wroblewski L. E., Piazuelo M. B., Correa P., Peek R. M., Jr. 2008. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 68(2):379–387.PubMedGoogle Scholar
  37. Gerhard M., Lehn N., Neumayer N., Boren T., Rad R., Schepp W., Miehlke S., Classen M., Prinz C. 1999. Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc. Natl. Acad. Sci. USA 96:12778–12783.PubMedGoogle Scholar
  38. Gobert A. P., McGee D. J., Akhtar M., Mendz G. L., Newton J. C., Cheng Y., Mobley H. L., Wilson K. T. 2001. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl. Acad. Sci. USA 98:13844–13849.PubMedGoogle Scholar
  39. Grant R. A., Filman D. J., Finkel S. E., Kolter R., Hogle J. M. 1998. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat. Struct. Biol. 5:294–303.PubMedGoogle Scholar
  40. Gressmann H., Linz B., Ghai R., Pleissner K. P., Schlapbach R., Yamaoka Y., Kraft C., Suerbaum S., Meyer T. F., Achtman M. 2005. Gain and loss of multiple genes during the evolution of Helicobacter pylori. PLoS Genet. 1:e43.PubMedGoogle Scholar
  41. Guo B. P., Mekalanos J. J. 2002. Rapid genetic analysis of Helicobacter pylori gastric mucosal colonization in suckling mice. Proc. Natl. Acad. Sci. USA 99:8354–8359.PubMedGoogle Scholar
  42. Hansen L. M., Solnick J. V. 2001. Selection for urease activity during Helicobacter pylori infection of rhesus macaques (Macaca mulatta). Infect. Immun. 69:3519–3522.PubMedGoogle Scholar
  43. Harris A. G., Hinds F. E., Beckhouse A. G., Kolesnikow T., Hazell S. L. 2002. Resistance to hydrogen peroxide in Helicobacter pylori:role of catalase (KatA) and Fur, and functional analysis of a novel gene product designated ‘KatA-associated protein,’ KapA (HP0874). Microbiology 148:3813–3825.PubMedGoogle Scholar
  44. Harris A. G., Wilson J. E., Danon S. J., Dixon M. F., Donegan K., Hazell S. L. 2003. Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model. Microbiology 149:665–672.PubMedGoogle Scholar
  45. Heneghan M. A., McCarthy C. F., Moran A. P. 2000. Relationship of blood group determinants on Helicobacter pylori lipopolysaccharide with host lewis phenotype and inflammatory response. Infect. Immun. 68:937–941.PubMedGoogle Scholar
  46. Higashi H., Tsutsumi R., Muto S., Sugiyama T., Azuma T., Asaka M., Hatakeyama M. 2002. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295:683–686.PubMedGoogle Scholar
  47. Ilver D., Arnqvist A., Ogren J., Frick I. M., Kersulyte D., Incecik E. T., Berg D. E., Covacci A., Engstrand L., Boren T. 1998. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377.PubMedGoogle Scholar
  48. Imlay J. A. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57:395–418.PubMedGoogle Scholar
  49. Israel D. A., Salama N., Krishna U., Rieger U. M., Atherton J. C., Falkow S., Peek R. M., Jr. 2001. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl. Acad. Sci. USA 98:14625–14630.PubMedGoogle Scholar
  50. Josenhans C., Labigne A., Suerbaum S. 1995. Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J. Bacteriol. 177:3010–3020.PubMedGoogle Scholar
  51. Kavermann H., Burns B. P., Angermuller K., Odenbreit S., Fischer W., Melchers K., Haas R. 2003. Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J. Exp. Med. 197:813–822.PubMedGoogle Scholar
  52. Kersulyte D., Mukhopadhyay A. K., Velapatino B., Su W., Pan Z., Garcia C., Hernandez V., Valdez Y., Mistry R. S., Gilman R. H., Yuan Y., Gao H., Alarcon T., Lopez-Brea M., Balakrish Nair G., Chowdhury A., Datta S., Shirai M., Nakazawa T., Ally R., Segal I., Wong B. C., Lam S. K., Olfat F. O., Boren T., Engstrand L., Torres O., Schneider R., Thomas J. E., Czinn S., Berg D. E. 2000. Differences in genotypes of Helicobacter pylori from different human populations. J. Bacteriol. 182:3210–3218.PubMedGoogle Scholar
  53. Kuipers E. J., Israel D. A., Kusters J. G., Gerrits M. M., Weel J., van Der Ende A., van Der Hulst R. W., Wirth H. P., Hook-Nikanne J., Thompson S. A., Blaser M. J. 2000. Quasispecies development of Helicobacter pylori observed in paired isolates obtained years apart from the same host. J. Infect. Dis. 181:273–282.PubMedGoogle Scholar
  54. Linden S., Boren T., Dubois A., Carlstedt I. 2004. Rhesus monkey gastric mucins: oligomeric structure, glycoforms and Helicobacter pylori binding. Biochem. J. 379:765–775.PubMedGoogle Scholar
  55. Loughlin M. F., Barnard F. M., Jenkins D., Sharples G. J., Jenks P. J. 2003. Helicobacter pylori mutants defective in RuvC Holliday junction resolvase display reduced macrophage survival and spontaneous clearance from the murine gastric mucosa. Infect. Immun. 71:2022–2031.PubMedGoogle Scholar
  56. Lundin A., Bjorkholm B., Kupershmidt I., Unemo M., Nilsson P., Andersson D. I., Engstrand L. 2005. Slow genetic divergence of Helicobacter pylori strains during long-term colonization. Infect. Immun. 73:4818–4822.PubMedGoogle Scholar
  57. Mahdavi J., Sonden B., Hurtig M., Olfat F. O., Forsberg L., Roche N., Angstrom J., Larsson T., Teneberg S., Karlsson K. A., Altraja S., Wadstrom T., Kersulyte D., Berg D. E., Dubois A., Petersson C., Magnusson K. E., Norberg T., Lindh F., Lundskog B. B., Arnqvist A., Hammarstrom L., Boren T. 2002. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578.PubMedGoogle Scholar
  58. Manos J., Kolesnikow T., Hazell S. L. 1998. An investigation of the molecular basis of the spontaneous occurrence of a catalase-negative phenotype in Helicobacter pylori. Helicobacter 3:28–38.PubMedGoogle Scholar
  59. Marchetti M., Rappuoli R. 2002. Isogenic mutants of the cag pathogenicity island of Helicobacter pylori in the mouse model of infection: effects on colonization efficiency. Microbiology 148:1447–1456.PubMedGoogle Scholar
  60. McGee D. J., Langford M. L., Watson E. L., Carter J. E., Chen Y. T., Ottemann K. M. 2005. Colonization and inflammation deficiencies in Mongolian gerbils infected by Helicobacter pylori chemotaxis mutants. Infect. Immun. 73:1820–1827.PubMedGoogle Scholar
  61. McGee D. J., Radcliff F. J., Mendz G. L., Ferrero R. L., Mobley H. L. 1999. Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity. J. Bacteriol. 181:7314–7322.PubMedGoogle Scholar
  62. McGowan C. C., Cover T. L., Blaser M. J. 1994. The proton pump inhibitor omeprazole inhibits acid survival of Helicobacter pylori by a urease-independent mechanism. Gastroenterology 107:1573–1578.PubMedGoogle Scholar
  63. McGowan C. C., Cover T. L., Blaser M. J. 1996. Helicobacter pylori and gastric acid: biological and therapeutic implications. Gastroenterology 110:926–938.PubMedGoogle Scholar
  64. Mendz G. L., Hazell S. L. 1996. The urea cycle of Helicobacter pylori. Microbiology 142:2959–2967.PubMedGoogle Scholar
  65. Nielsen H., Birkholz S., Andersen L. P., Moran A. P. 1994. Neutrophil activation by Helicobacter pylori lipopolysaccharides. J. Infect. Dis. 170:135–139.PubMedGoogle Scholar
  66. Nilsson C., Skoglund A., Moran A. P., Annuk H., Engstrand L., Normark S. 2006. An enzymatic ruler modulates Lewis antigen glycosylation of Helicobacter pylori LPS during persistent infection. Proc. Natl. Acad. Sci. USA 103:2863–2868.PubMedGoogle Scholar
  67. O'Rourke E. J., Chevalier C., Pinto A. V., Thiberge J. M., Ielpi L., Labigne A., Radicella J. P. 2003. Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc. Natl. Acad. Sci. USA 100:2789–2794.PubMedGoogle Scholar
  68. O'Rourke J. L., Lee A. 2003. Animal models of Helicobacter pylori infection and disease. Microbes Infect. 5:741–748.PubMedGoogle Scholar
  69. O'Toole P. W., Lane M. C., Porwollik S. 2000. Helicobacter pylori motility. Microbes Infect. 2:1207–1214.PubMedGoogle Scholar
  70. Odenbreit S., Puls J., Sedlmaier B., Gerland E., Fischer W., Haas R. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287:1497–1500.PubMedGoogle Scholar
  71. Odenbreit S., Wieland B., Haas R. 1996. Cloning and genetic characterization of Helicobacter pylori catalase and construction of a catalase-deficient mutant strain. J. Bacteriol. 178:6960–6967.PubMedGoogle Scholar
  72. Ogura K., Maeda S., Nakao M., Watanabe T., Tada M., Kyutoku T., Yoshida H., Shiratori Y., Omata M. 2000. Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J. Exp. Med. 192:1601–1610.PubMedGoogle Scholar
  73. Olczak A. A., Olson J. W., Maier R. J. 2002. Oxidative-stress resistance mutants of Helicobacter pylori. J. Bacteriol. 184:3186–3193.PubMedGoogle Scholar
  74. Olczak A. A., Seyler R. W., Jr., Olson J. W., Maier R. J. 2003. Association of Helicobacter pylori antioxidant activities with host colonization proficiency. Infect. Immun. 71:580–583.PubMedGoogle Scholar
  75. Olczak A. A., Wang G., Maier R. J. 2005. Up-expression of NapA and other oxidative stress proteins is a compensatory response to loss of major Helicobacter pylori stress resistance factors. Free Radic. Res. 39:1173–1182.PubMedGoogle Scholar
  76. Ottemann K. M., Lowenthal A. C. 2002. Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 70:1984–1990.PubMedGoogle Scholar
  77. Philpott D. J., Belaid D., Troubadour P., Thiberge J. M., Tankovic J., Labigne A., Ferrero R. L. 2002. Reduced activation of inflammatory responses in host cells by mouse-adapted Helicobacter pylori isolates. Cell Microbiol. 4:285–296.PubMedGoogle Scholar
  78. Pinto A. V., Mathieu A., Marsin S., Veaute X., Ielpi L., Labigne A., Radicella J. P. 2005. Suppression of homologous and homeologous recombination by the bacterial MutS2 protein. Mol. Cell 17:113–120.PubMedGoogle Scholar
  79. Rieder G., Merchant J. L., Haas R. 2005. Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology 128:1229–1242.PubMedGoogle Scholar
  80. Saito H., Yamaoka Y., Ishizone S., Maruta F., Sugiyama A., Graham D. Y., Yamauchi K., Ota H., Miyagawa S. 2005. Roles of virD4 and cagG genes in the cag pathogenicity island of Helicobacter pylori using a Mongolian gerbil model. Gut 54:584–590.PubMedGoogle Scholar
  81. Salama N., Guillemin K., McDaniel T. K., Sherlock G., Tompkins L., Falkow S. 2000. A wholegenome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA 97:14668–14673.PubMedGoogle Scholar
  82. Salama N. R., Otto G., Tompkins L., Falkow S. 2001. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun. 69:730–736.PubMedGoogle Scholar
  83. Salaun L., Ayraud S., Saunders N. J. 2005. Phase variation mediated niche adaptation during prolonged experimental murine infection with Helicobacter pylori. Microbiology 151:917–923.PubMedGoogle Scholar
  84. Salaun L., Linz B., Suerbaum S., Saunders N. J. 2004. The diversity within an expanded and redefined repertoire of phase-variable genes in Helicobacter pylori. Microbiology 150:817–830.PubMedGoogle Scholar
  85. Schreiber S., Konradt M., Groll C., Scheid P., Hanauer G., Werling H. O., Josenhans C., Suerbaum S. 2004. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl. Acad. Sci. USA 101:5024–5029.PubMedGoogle Scholar
  86. Selbach M., Moese S., Hauck C. R., Meyer T. F., Backert S. 2002. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Biol. Chem. 277:6775–6778.PubMedGoogle Scholar
  87. Seyler R. W., Jr., Olson J. W., Maier R. J. 2001. Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization. Infect. Immun. 69:4034–4040.PubMedGoogle Scholar
  88. Shinagawa H., Iwasaki H. 1996. Processing the Holliday junction in homologous recombination. Trends Biochem. Sci. 21:107–111.PubMedGoogle Scholar
  89. Simoons-Smit I. M., Appelmelk B. J., Verboom T., Negrini R., Penner J. L., Aspinall G. O., Moran A. P., Fei S. F., Shi B. S., Rudnica W., Savio A., de Graaff J. 1996. Typing of Helicobacter pylori with monoclonal antibodies against Lewis antigens in lipopolysaccharide. J. Clin. Microbiol. 34:2196–2200.PubMedGoogle Scholar
  90. Solnick J. V., Hansen L. M., Canfield D. R., Parsonnet J. 2001. Determination of the infectious dose of Helicobacter pylori during primary and secondary infection in rhesus monkeys (Macaca mulatta). Infect. Immun. 69:6887–6892.PubMedGoogle Scholar
  91. Solnick J. V., Hansen L. M., Salama N. R., Boonjakuakul J. K., Syvanen M. 2004. Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc. Natl. Acad. Sci. USA 101:2106–2111.PubMedGoogle Scholar
  92. Sozzi M., Crosatti M., Kim S. K., Romero J., Blaser M. J. 2001. Heterogeneity of Helicobacter pylori cag genotypes in experimentally infected mice. FEMS Microbiol. Lett. 203:109–114.PubMedGoogle Scholar
  93. Tan S., Fraley C. D., Zhang M., Dailidiene D., Kornberg A., Berg D. E. 2005. Diverse phenotypes resulting from polyphosphate kinase gene (ppk1) inactivation in different strains of Helicobacter pylori. J. Bacteriol. 187:7687–7695.PubMedGoogle Scholar
  94. Taylor J. M., Ziman M. E., Canfield D. R., Vajdy M., Solnick J. V. 2007. Effects of a Th1- versus a Th2-biased immune response in protection against Helicobacter pylori challenge in mice. Microb. Pathog. 44(1):20–27.PubMedGoogle Scholar
  95. Terry K., Williams S. M., Connolly L., Ottemann K. M. 2005. Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect. Immun. 73:803–811.PubMedGoogle Scholar
  96. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S., Dougherty B. A., Nelson K., Quackenbush J., Zhou L., Kirkness E. F., Peterson S., Loftus B., Richardson D., Dodson R., Khalak H. G., Glodek A., McKenney K., Fitzegerald L. M., Lee N., Adams M. D., Hickey E. K., Berg D. E., Gocayne J. D., Utterback T. R., Peterson J. D., Kelley J. M., Cotton M. D., Weidman J. M., Fujii C., Bowman C., Watthey L., Wallin E., Hayes W. S., Borodovsky M., Karp P. D., Smith H. O., Fraser C. M., Venter J. C. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547.PubMedGoogle Scholar
  97. Tsuda M., Karita M., Morshed M. G., Okita K., Nakazawa T. 1994. A urease-negative mutant of Helicobacter pylori constructed by allelic exchange mutagenesis lacks the ability to colonize the nude mouse stomach. Infect. Immun. 62:3586–3589.PubMedGoogle Scholar
  98. van der Woude M. W., Baumler A. J. 2004. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17:581–611.PubMedGoogle Scholar
  99. van Doorn N. E., Namavar F., Kusters J. G., van Rees E. P., Kuipers E. J., de Graaff J. 1998. Genomic DNA fingerprinting of clinical isolates of Helicobacter pylori by REP-PCR and restriction fragment end-labeling. FEMS Microbiol. Lett. 160:145–150.PubMedGoogle Scholar
  100. Vogt W. 1995. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic. Biol. Med. 18:93–105.PubMedGoogle Scholar
  101. Wang D., Kreutzer D. A., Essigmann J. M. 1998. Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat. Res. 400:99–115.PubMedGoogle Scholar
  102. Wang G., Alamuri P., Humayun M. Z., Taylor D. E., Maier R. J. 2005a. The Helicobacter pylori MutS protein confers protection from oxidative DNA damage. Mol. Microbiol. 58:166–176.Google Scholar
  103. Wang G., Ge Z., Rasko D. A., Taylor D. E. 2000. Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol. Microbiol. 36:1187–1196.PubMedGoogle Scholar
  104. Wang G., Hong Y., Olczak A., Maier S. E., Maier R. J. 2006. Dual roles of Helicobacter pylori NapA in inducing and combating oxidative stress. Infect. Immun. 74:6839–6846.PubMedGoogle Scholar
  105. Wang G., Maier R. J. 2004. An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infect. Immun. 72:1391–1396.PubMedGoogle Scholar
  106. Wang G., Olczak A. A., Walton J. P., Maier R. J. 2005b. Contribution of the Helicobacter pylori thiol peroxidase bacterioferritin comigratory protein to oxidative stress resistance and host colonization. Infect. Immun. 73:378–384.Google Scholar
  107. Williams S. M., Chen Y. T., Andermann T., Carter J. E., McGee D. J., Ottemann K. M. 2007. Helicobacter pylori chemotaxis modulates inflammation and gastric-epithelium interactions in infected mice. Infect. Immun. 75:3747–3757.PubMedGoogle Scholar
  108. Wirth H. P., Beins M. H., Yang M., Tham K. T., Blaser M. J. 1998. Experimental infection of Mongolian gerbils with wild-type and mutant Helicobacter pylori strains. Infect. Immun. 66:4856–4866.PubMedGoogle Scholar
  109. Wirth H. P., Yang M., Peek R. M., Jr., Hook-Nikanne J., Fried M., Blaser M. J. 1999. Phenotypic diversity in Lewis expression of Helicobacter pylori isolates from the same host. J. Lab. Clin. Med. 133:488–500.PubMedGoogle Scholar
  110. Wirth H. P., Yang M., Sanabria-Valentin E., Berg D. E., Dubois A., Blaser M. J. 2006. Host Lewis phenotype-dependent Helicobacter pylori Lewis antigen expression in rhesus monkeys. FASEB J. 20:1534–1536.PubMedGoogle Scholar
  111. Yamaoka Y., Kita M., Kodama T., Imamura S., Ohno T., Sawai N., Ishimaru A., Imanishi J., Graham D. Y. 2002. Helicobacter pylori infection in mice: role of outer membrane proteins in colonization and inflammation. Gastroenterology 123:1992–2004.PubMedGoogle Scholar
  112. Yamaoka Y., Kwon D. H., Graham D. Y. 2000. A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc. Natl. Acad. Sci. USA 97:7533–7538.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Dawn A. Israel
    • 1
  • Richard M. PeekJr.
    • 2
  1. 1.Division of Gastroenterology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
  2. 2.Division of Gastroenterology, Departments of Medicine and Cancer BiologyVanderbilt University Medical Center, and Department of Veterans Affairs Medical CenterNashvilleUSA

Personalised recommendations