Genomic and Proteomic Advances in Gastric Cancer

  • Alex Boussioutas
  • Patrick Tan


The “omic” revolution has affected every discipline in medicine and the life sciences. Gastric cancer is no exception to this phenomenon, with significant publications in genomics, proteomics, transcriptomics, and metabolomics appearing in the literature over recent years. In this chapter, we focus on some of the major advances in gastric cancer research uncovered by the availability of new technologies in the areas of genomics and proteomics.

We are cognizant that there is no easier way to date a written piece of work than to write about novel technologies. Indeed, the pace of technology at this time makes it inevitable that by the time of publication the technology has moved forward. Our objective in this chapter is to highlight the principles of existing technologies and concentrate on how these have been used to advance our understanding or management of gastric cancer. Given the disparate technologies that are discussed, we have divided the chapter into two broad...


Gastric Cancer Pylorus Infection Protein Spot Gastric Cancer Patient Microarray Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aggarwal, A., Li Guo, D., Hoshida, Y., Tsan Yuen, S., Chu, K. M., So, S., Boussioutas, A., Chen, X., Bowtell, D., Aburatani, H., et al. (2006). Topological and functional discovery in a gene coexpression meta-network of gastric cancer. Cancer Res 66:232–41.PubMedCrossRefGoogle Scholar
  2. Bach, S., Makristathis, A., Rotter, M., and Hirschl, A. M. (2002). Gene expression profiling in AGS cells stimulated with Helicobacter pylori isogenic strains (cagA positive or cagA negative). Infect Immun 70:988–92.PubMedCrossRefGoogle Scholar
  3. Bae, S. H., Harris, A. G., Hains, P. G., Chen, H., Garfin, D. E., Hazell, S. L., Paik, Y. K., Walsh, B. J., and Cordwell, S. J. (2003). Strategies for the enrichment and identification of basic proteins in proteome projects. Proteomics 3:569–79.PubMedCrossRefGoogle Scholar
  4. Baggerly, K. A., Morris, J. S., and Coombes, K. R. (2004). Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20:777–85.PubMedCrossRefGoogle Scholar
  5. Blanc-Brude, O. P., Yu, J., Simosa, H., Conte, M. S., Sessa, W. C., and Altieri, D. C. (2002). Inhibitor of apoptosis protein survivin regulates vascular injury. Nat Med 8:987–94.PubMedCrossRefGoogle Scholar
  6. Bonner, R. F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S., and Liotta, L. A. (1997). Laser capture microdissection: molecular analysis of tissue. Science 278:1481–3.PubMedCrossRefGoogle Scholar
  7. Borrmann, R. (1926). Gescwulste des Magens und Duodenums. In: Henke F, and Lubarch O., editors. Handbuch der speziellen pathologischen Anatomie und Histologie. New York: Springer; pp. 865–79.Google Scholar
  8. Boussioutas, A., Li, H., Liu, J., Waring, P., Lade, S., Holloway, A. J., Taupin, D., Gorringe, K., Haviv, I., Desmond, P. V., and Bowtell, D. D. (2003). Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Res 63:2569–77.PubMedGoogle Scholar
  9. Brekken, R. A., and Sage, E. H. (2001). SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19:816–27.PubMedCrossRefGoogle Scholar
  10. Censini, S., Lange, C., Xiang, Z., Crabtree, J. E., Ghiara, P., Borodovsky, M., Rappuoli, R., and Covacci, A. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93:14648–53.PubMedCrossRefGoogle Scholar
  11. Chen, Y. R., Juan, H. F., Huang, H. C., Huang, H. H., Lee, Y. J., Liao, M. Y., Tseng, C. W., Lin, L. L., Chen, J. Y., Wang, M. J., et al. (2006). Quantitative proteomic and genomic profiling reveals metastasis-related protein expression patterns in gastric cancer cells. J Proteome Res 5:2727–42.PubMedCrossRefGoogle Scholar
  12. Chen, J., Kahne, T., Rocken, C., Gotze, T., Yu, J., Sung, J. J., Chen, M., Hu, P., Malfertheiner, P., and Ebert, M. P. (2004). Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of metastasis-related proteins. J Proteome Res 3:1009–16.PubMedCrossRefGoogle Scholar
  13. Chan, C. H., Ko, C. C., Chang, J. G., Chen, S. F., Wu, M. S., Lin, J. T., and Chow, L. P. (2006). Subcellular and functional proteomic analysis of the cellular responses induced by Helicobacter pylori. Mol Cell Proteomics 5:702–13.PubMedGoogle Scholar
  14. Chen, X., Leung, S. Y., Yuen, S. T., Chu, K. M., Ji, J., Li, R., Chan, A. S., Law, S., Troyanskaya, O. G., Wong, J., et al. (2003). Variation in gene expression patterns in human gastric cancers. Mol Biol Cell 14:3208–15.PubMedCrossRefGoogle Scholar
  15. Chen, C. N., Lin, J. J., Chen, J. J., Lee, P. H., Yang, C. Y., Kuo, M. L., Chang, K. J., and Hsieh, F. J. (2005). Gene expression profile predicts patient survival of gastric cancer after surgical resection. J Clin Oncol 23:7286–95.PubMedCrossRefGoogle Scholar
  16. Chen, N., Ye, X. C., Chu, K., Navone, N. M., Sage, E. H., Yu-Lee, L. Y., Logothetis, C. J., and Lin, S. H. (2007). A secreted isoform of ErbB3 promotes osteonectin expression in bone and enhances the invasiveness of prostate cancer cells. Cancer Res 67:6544–8.PubMedCrossRefGoogle Scholar
  17. Cormier, R. T., Hong, K. H., Halberg, R. B., Hawkins, T. L., Richardson, P., Mulherkar, R., Dove, W. F., and Lander, E. S. (1997). Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet 17:88–91.PubMedCrossRefGoogle Scholar
  18. Correa, P. (1992). Human gastric carcinogenesis: a multistep and multifactorial processa—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52:6735–40.PubMedGoogle Scholar
  19. Correa, P., Haenszel, W., Cuello, C., Tannenbaum, S., and Archer, M. (1975). A model for gastric cancer epidemiology. Lancet 2:58–60.PubMedCrossRefGoogle Scholar
  20. Craanen, M. E., Blok, P., Dekker, W., Ferwerda, J., and Tytgat, G. N. (1992). Subtypes of intestinal metaplasia and Helicobacter pylori. Gut 33:597–600.PubMedCrossRefGoogle Scholar
  21. Dahl, F., Stenberg, J., Fredriksson, S., Welch, K., Zhang, M., Nilsson, M., Bicknell, D., Bodmer, W. F., Davis, R. W., and Ji, H. (2007). Multigene amplification and massively parallel sequencing for cancer mutation discovery. Proc Natl Acad Sci USA 104:9387–92.PubMedCrossRefGoogle Scholar
  22. DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su, Y. A., and Trent, J. M. (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer [see comments]. Nat Genet 14:457–60.PubMedCrossRefGoogle Scholar
  23. Diamandis, E. P. (2003). Point: proteomic patterns in biological fluids—do they represent the future of cancer diagnostics? Clin Chem 49:1272–5.PubMedCrossRefGoogle Scholar
  24. Diamandis, E. P. (2004). Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J Natl Cancer Inst 96:353–6.PubMedCrossRefGoogle Scholar
  25. Dobbin, K., and Simon, R. (2005). Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics 6:27–38.PubMedCrossRefGoogle Scholar
  26. Ebert, M. P., Kruger, S., Fogeron, M. L., Lamer, S., Chen, J., Pross, M., Schulz, H. U., Lage, H., Heim, S., Roessner, A., et al. (2005). Overexpression of cathepsin B in gastric cancer identified by proteome analysis. Proteomics 5:1693–704.PubMedCrossRefGoogle Scholar
  27. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–8.PubMedCrossRefGoogle Scholar
  28. Ellmark, P., Ingvarsson, J., Carlsson, A., Lundin, B. S., Wingren, C., and Borrebaeck, C. A. (2006). Identification of protein expression signatures associated with Helicobacter pylori infection and gastric adenocarcinoma using recombinant antibody microarrays. Mol Cell Proteomics 5:1638–46.PubMedCrossRefGoogle Scholar
  29. Engwegen, J. Y., Gast, M. C., Schellens, J. H., and Beijnen, J. H. (2006). Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry. Trends Pharmacol Sci 27:251–9.PubMedCrossRefGoogle Scholar
  30. Faivre, S., Kroemer, G., and Raymond, E. (2006). Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671–88.PubMedCrossRefGoogle Scholar
  31. Graham, J. E., Peek, R. M., Jr., Krishna, U., and Cover, T. L. (2002). Global analysis of Helicobacter pylori gene expression in human gastric mucosa. Gastroenterology 123:1637–48.PubMedCrossRefGoogle Scholar
  32. Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature 446:153–8.PubMedCrossRefGoogle Scholar
  33. Guillemin, K., Salama, N. R., Tompkins, L. S., and Falkow, S. (2002). Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection. Proc Natl Acad Sci USA 99:15136–41.PubMedCrossRefGoogle Scholar
  34. Gupta, G. P., and Massague, J. (2006). Cancer metastasis: building a framework. Cell 127:679–95.PubMedCrossRefGoogle Scholar
  35. Han, D. K., Eng, J., Zhou, H., and Aebersold, R. (2001). Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19:946–51.PubMedCrossRefGoogle Scholar
  36. Hasegawa, S., Furukawa, Y., Li, M., Satoh, S., Kato, T., Watanabe, T., Katagiri, T., Tsunoda, T., Yamaoka, Y., and Nakamura, Y. (2002). Genome-wide analysis of gene expression in intestinal-type gastric cancers using a complementary DNA microarray representing 23,040 genes. Cancer Res 62:7012–7.PubMedGoogle Scholar
  37. He, Q. Y., Cheung, Y. H., Leung, S. Y., Yuen, S. T., Chu, K. M., and Chiu, J. F. (2004). Diverse proteomic alterations in gastric adenocarcinoma. Proteomics 4:3276–87.PubMedCrossRefGoogle Scholar
  38. Hippo, Y., Taniguchi, H., Tsutsumi, S., Machida, N., Chong, J. M., Fukayama, M., Kodama, T., and Aburatani, H. (2002). Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res 62:233–40.PubMedGoogle Scholar
  39. Honda, S., Fujioka, T., Tokieda, M., Gotoh, T., Nishizono, A., and Nasu, M. (1998). Gastric ulcer, atrophic gastritis, and intestinal metaplasia caused by Helicobacter pylori infection in Mongolian gerbils. Scand J Gastroenterol 33:454–60.PubMedCrossRefGoogle Scholar
  40. International Agency for Research on Cancer (1994). Schistosomes, liver flukes and Helicobacter pylori. In: IARC monographs on the evaluation of carcinogenic risks to humans. Lyons: IARC.Google Scholar
  41. Iruela-Arispe, M. L., Hasselaar, P., and Sage, H. (1991). Differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab Invest 64:174–86.PubMedGoogle Scholar
  42. Ishigami, S., Natsugoe, S., Hokita, S., Che, X., Tokuda, K., Nakajo, A., Iwashige, H., Tokushige, M., Watanabe, T., Takao, S., and Aikou, T. (2001). Clinical importance of preoperative carcinoembryonic antigen and carbohydrate antigen 19-9 levels in gastric cancer. J Clin Gastroenterol 32:41–4.PubMedCrossRefGoogle Scholar
  43. Jendraschak, E., and Sage, E. H. (1996). Regulation of angiogenesis by SPARC and angiostatin: implications for tumor cell biology. Semin Cancer Biol 7:139–46.PubMedCrossRefGoogle Scholar
  44. Jinawath, N., Furukawa, Y., Hasegawa, S., Li, M., Tsunoda, T., Satoh, S., Yamaguchi, T., Imamura, H., Inoue, M., Shiozaki, H., and Nakamura, Y. (2004). Comparison of gene-expression profiles between diffuse- and intestinal-type gastric cancers using a genome-wide cDNA microarray. Oncogene 23:6830–44.PubMedCrossRefGoogle Scholar
  45. Juan, H. F., Chen, J. H., Hsu, W. T., Huang, S. C., Chen, S. T., Yi-Chung Lin, J., Chang, Y. W., Chiang, C. Y., Wen, L. L., Chan, D. C., et al. (2004). Identification of tumor-associated plasma biomarkers using proteomic techniques: from mouse to human. Proteomics 4:2766–75.PubMedCrossRefGoogle Scholar
  46. Kang, H. C., Kim, I. J., Park, J. H., Shin, Y., Ku, J. L., Jung, M. S., Yoo, B. C., Kim, H. K., and Park, J. G. (2004). Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays. Clin Cancer Res 10:272–84.PubMedCrossRefGoogle Scholar
  47. Kapranos, N., Kominea, A., Konstantinopoulos, P. A., Savva, S., Artelaris, S., Vandoros, G., Sotiropoulou-Bonikou, G., and Papavassiliou, A. G. (2002). Expression of the 27-kDa heat shock protein (HSP27) in gastric carcinomas and adjacent normal, metaplastic, and dysplastic gastric mucosa, and its prognostic significance. J Cancer Res Clin Oncol 128:426–32.PubMedCrossRefGoogle Scholar
  48. Kasirga, E., Coker, I., Aydogdu, S., Yagci, R. V., Taneli, B., and Gousseinov, A. (1999). Increased gastric juice leukotriene B4, C4 and E4 concentrations in children with Helicobacter pylori colonization. Turk J Pediatr 41:335–9.PubMedGoogle Scholar
  49. Kim, B., Bang, S., Lee, S., Kim, S., Jung, Y., Lee, C., Choi, K., Lee, S. G., Lee, K., Lee, Y., et al. (2003). Expression profiling and subtype-specific expression of stomach cancer. Cancer Res 63:8248–55.PubMedGoogle Scholar
  50. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409:860–921.PubMedCrossRefGoogle Scholar
  51. Lau, C. P., Poon, R. T., Cheung, S. T., Yu, W. C., and Fan, S. T. (2006). SPARC and Hevin expression correlate with tumour angiogenesis in hepatocellular carcinoma. J Pathol 210:459–68.PubMedCrossRefGoogle Scholar
  52. Lauren, P. (1965). The histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Path Microbiol Scand 64:31–49.PubMedGoogle Scholar
  53. Lee, K., Kye, M., Jang, J. S., Lee, O. J., Kim, T., and Lim, D. (2004). Proteomic analysis revealed a strong association of a high level of alpha1-antitrypsin in gastric juice with gastric cancer. Proteomics 4:3343–52.PubMedCrossRefGoogle Scholar
  54. Lefebvre, O., Chenard, M. P., Masson, R., Linares, J., Dierich, A., LeMeur, M., Wendling, C., Tomasetto, C., Chambon, P., and Rio, M. C. (1996). Gastric mucosa abnormalities and tumori-genesis in mice lacking the pS2 trefoil protein. Science 274:259–62.PubMedCrossRefGoogle Scholar
  55. Leung, S. Y., Chen, X., Chu, K. M., Yuen, S. T., Mathy, J., Ji, J., Chan, A. S., Li, R., Law, S., Troyanskaya, O. G., et al. (2002). Phospholipase A2 group IIA expression in gastric adenocarcinoma is associated with prolonged survival and less frequent metastasis. Proc Natl Acad Sci USA 99:16203–8.PubMedCrossRefGoogle Scholar
  56. Leung, S. Y., Yuen, S. T., Chu, K. M., Mathy, J. A., Li, R., Chan, A. S., Law, S., Wong, J., Chen, X., and So, S. (2004). Expression profiling identifies chemokine (C-C motif) ligand 18 as an independent prognostic indicator in gastric cancer. Gastroenterology 127:457–69.PubMedCrossRefGoogle Scholar
  57. Liang, Y., Fang, M., Li, J., Liu, C. B., Rudd, J. A., Kung, H. F., and Yew, D. T. (2006). Serum proteomic patterns for gastric lesions as revealed by SELDI mass spectrometry. Exp Mol Pathol 81:176–80PubMedCrossRefGoogle Scholar
  58. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999). High density synthetic oligonucleotide arrays. Nat Genet 21:20–4.PubMedCrossRefGoogle Scholar
  59. Lundgren, A., Stromberg, E., Sjoling, A., Lindholm, C., Enarsson, K., Edebo, A., Johnsson, E., Suri-Payer, E., Larsson, P., Rudin, A., et al. (2005). Mucosal FOXP3-expressing CD4+ CD25high regulatory T cells in Helicobacter pylori-infected patients. Infect Immun 73:523–31.PubMedCrossRefGoogle Scholar
  60. Marko-Varga, G. (2004). Proteomics principles and challenges. Pure Appl Chem 76:829–37.CrossRefGoogle Scholar
  61. Marrelli, D., Pinto, E., De Stefano, A., Farnetani, M., Garosi, L., and Roviello, F. (2001). Clinical utility of CEA, CA 19-9, and CA 72-4 in the follow-up of patients with resectable gastric cancer. Am J Surg 181:16–9.PubMedCrossRefGoogle Scholar
  62. Marrelli, D., Roviello, F., De Stefano, A., Farnetani, M., Garosi, L., Messano, A., and Pinto, E. (1999). Prognostic significance of CEA, CA 19-9 and CA 72-4 preoperative serum levels in gastric carcinoma. Oncology 57:55–62.PubMedCrossRefGoogle Scholar
  63. Melle, C., Ernst, G., Schimmel, B., Bleul, A., Kaufmann, R., Hommann, M., Richter, K. K., Daffner, W., Settmacher, U., Claussen, U., and von Eggeling, F. (2005). Characterization of pepsinogen C as a potential biomarker for gastric cancer using a histo-proteomic approach. J Proteome Res 4:1799–804.PubMedCrossRefGoogle Scholar
  64. Mootha, V. K., Bunkenborg, J., Olsen, J. V., Hjerrild, M., Wisniewski, J. R., Stahl, E., Bolouri, M. S., Ray, H. N., Sihag, S., Kamal, M., et al. (2003). Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–40.PubMedCrossRefGoogle Scholar
  65. Nishizuka, S., Charboneau, L., Young, L., Major, S., Reinhold, W. C., Waltham, M., Kouros-Mehr, H., Bussey, K. J., Lee, J. K., Espina, V., et al. (2003). Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci USA 100:14229–34.PubMedCrossRefGoogle Scholar
  66. Nishigaki, R., Osaki, M., Hiratsuka, M., Toda, T., Murakami, K., Jeang, K. T., Ito, H., Inoue, T., and Oshimura, M. (2005). Proteomic identification of differentially-expressed genes in human gastric carcinomas. Proteomics 5:3205–13.PubMedCrossRefGoogle Scholar
  67. Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287:1497–500.PubMedCrossRefGoogle Scholar
  68. Ohyama, H., Zhang, X., Kohno, Y., Alevizos, I., Posner, M., Wong, D. T., and Todd, R. (2000). Laser capture microdissection-generated target sample for high-density oligonucleotide array hybridization. Biotechniques 29:530–6.PubMedGoogle Scholar
  69. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet 1:571–3.CrossRefGoogle Scholar
  70. Park, W. S., Oh, R. R., Park, J. Y., Lee, J. H., Shin, M. S., Kim, H. S., Lee, H. K., Kim, Y. S., Kim, S. Y., Lee, S. H., et al. (2000). Somatic mutations of the trefoil factor family 1 gene in gastric cancer. Gastroenterology 119:691–8.PubMedCrossRefGoogle Scholar
  71. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–67.PubMedCrossRefGoogle Scholar
  72. Peters, B. A., St. Croix, B., Sjoblom, T., Cummins, J. M., Silliman, N., Ptak, J., Saha, S., Kinzler, K. W., Hatzis, C., and Velculescu, V. E. (2007). Large-scale identification of novel transcripts in the human genome. Genome Res 17:287–92.PubMedCrossRefGoogle Scholar
  73. Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., Fishman, D. A., Kohn, E. C., and Liotta, L. A. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–7.PubMedCrossRefGoogle Scholar
  74. Pieper, R., Su, Q., Gatlin, C. L., Huang, S. T., Anderson, N. L., and Steiner, S. (2003). Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 3:422–32.PubMedCrossRefGoogle Scholar
  75. Poon, T. C., Sung, J. J., Chow, S. M., Ng, E. K., Yu, A. C., Chu, E. S., Hui, A. M., and Leung, W. K. (2006). Diagnosis of gastric cancer by serum proteomic fingerprinting. Gastroenterology 130:1858–64.PubMedCrossRefGoogle Scholar
  76. Reiner, A., Yekutieli, D., and Benjamini, Y. (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–75.PubMedCrossRefGoogle Scholar
  77. Ren, H., Du, N., Liu, G., Hu, H. T., Tian, W., Deng, Z. P., and Shi, J. S. (2006). Analysis of variabilities of serum proteomic spectra in patients with gastric cancer before and after operation. World J Gastroenterol 12:2789–92.PubMedGoogle Scholar
  78. Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., Iyer, V., Jeffrey, S. S., Van de Rijn, M., Waltham, M., et al. (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24:227–35.PubMedCrossRefGoogle Scholar
  79. Sakakura, C., Hagiwara, A., Nakanishi, M., Shimomura, K., Takagi, T., Yasuoka, R., Fujita, Y., Abe, T., Ichikawa, Y., Takahashi, S., et al. (2002). Differential gene expression profiles of gastric cancer cells established from primary tumour and malignant ascites. Br J Cancer 87:1153–61.PubMedCrossRefGoogle Scholar
  80. Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., Kohn, K. W., Reinhold, W. C., Myers, T. G., Andrews, D. T., et al. (2000). A gene expression database for the molecular pharmacology of cancer. Nat Genet 24:236–44.PubMedCrossRefGoogle Scholar
  81. Segal, E. D., Cha, J., Lo, J., Falkow, S., and Tompkins, L. S. (1999). Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci USA 96:14559–64.PubMedCrossRefGoogle Scholar
  82. Sgroi, D. C., Teng, S., Robinson, G., LeVangie, R., Hudson, J. R., Jr., and Elkahloun, A. G. (1999). In vivo gene expression profile analysis of human breast cancer progression. Cancer Res 59:5656–61.PubMedGoogle Scholar
  83. Shiozaki, K., Nakamori, S., Tsujie, M., Okami, J., Yamamoto, H., Nagano, H., Dono, K., Umeshita, K., Sakon, M., Furukawa, H., et al. (2001). Human stomach-specific gene, CA11, is down-regulated in gastric cancer. Int J Oncol 19:701–7.PubMedGoogle Scholar
  84. Simon, R. (2005). Development and validation of therapeutically relevant multi-gene biomarker classifiers. J Natl Cancer Inst 97:866–7.PubMedCrossRefGoogle Scholar
  85. Simon, R., Radmacher, M. D., and Dobbin, K. (2002). Design of studies using DNA microarrays. Genet Epidemiol 23:21–36.PubMedCrossRefGoogle Scholar
  86. Simon, R., Radmacher, M. D., Dobbin, K., and McShane, L. M. (2003). Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95:14–8.PubMedCrossRefGoogle Scholar
  87. Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., Mandelker, D., Leary, R. J., Ptak, J., Silliman, N., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science 314:268–74.PubMedCrossRefGoogle Scholar
  88. Stuart, J. M., Segal, E., Koller, D., and Kim, S. K. (2003). A gene-coexpression network for global discovery of conserved genetic modules. Science 302:249–55.PubMedCrossRefGoogle Scholar
  89. Su, Y., Shen, J., Qian, H., Ma, H., Ji, J., Ma, L., Zhang, W., Meng, L., Li, Z., Wu, J., et al. (2007). Diagnosis of gastric cancer using decision tree classification of mass spectral data. Cancer Sci 98:37–43.PubMedCrossRefGoogle Scholar
  90. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–50.PubMedCrossRefGoogle Scholar
  91. Tay, S. T., Leong, S. H., Yu, K., Aggarwal, A., Tan, S. Y., Lee, C. H., Wong, K., Visvanathan, J., Lim, D., Wong, W. K., et al. (2003). A combined comparative genomic hybridization and expression microarray analysis of gastric cancer reveals novel molecular subtypes. Cancer Res 63:3309–16.PubMedGoogle Scholar
  92. Tebbutt, N. C., Giraud, A. S., Inglese, M., Jenkins, B., Waring, P., Clay, F. J., Malki, S., Alderman, B. M., Grail, D., Hollande, F., et al. (2002). Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice Nat Med 8:1089–97.PubMedCrossRefGoogle Scholar
  93. Terashima, M., Maesawa, C., Oyama, K., Ohtani, S., Akiyama, Y., Ogasawara, S., Takagane, A. Saito, K., Masuda, T., Kanzaki, N., et al. (2005). Gene expression profiles in human gastric cancer: expression of maspin correlates with lymph node metastasis. Br J Cancer 92:1130–6.PubMedCrossRefGoogle Scholar
  94. Tinker, A. V., Boussioutas, A., and Bowtell, D. D. (2006). The challenges of gene expression microarrays for the study of human cancer. Cancer Cell 9:333–9.PubMedCrossRefGoogle Scholar
  95. van de Vijver, M. J., He, Y. D., van't Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., Schreiber G. J., Peterse, J. L., Roberts, C., Marton, M. J., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009.PubMedCrossRefGoogle Scholar
  96. van't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L. van der Kooy, K., Marton, M. J., Witteveen, A. T., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–6.CrossRefGoogle Scholar
  97. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O. Yandell, M., Evans, C. A., Holt, R. A., et al. (2001). The sequence of the human genome Science 291:1304–51.PubMedCrossRefGoogle Scholar
  98. Wang, C. S., Lin, K. H., Chen, S. L., Chan, Y. F., and Hsueh, S. (2004). Overexpression o SPARC gene in human gastric carcinoma and its clinic-pathologic significance. Br J Cance 91:1924–30.CrossRefGoogle Scholar
  99. Weiss, M. M., Kuipers, E. J., Postma, C., Snijders, A. M., Siccama, I., Pinkel, D., Westerga, J. Meuwissen, S. G., Albertson, D. G., and Meijer, G. A. (2003). Genomic profiling of gastric cancer predicts lymph node status and survival. Oncogene 22:1872–9.PubMedCrossRefGoogle Scholar
  100. Wijte, D., de Jong, A. L., Mol, M. A., van Baar, B. L., and Heck, A. J. (2006). ProteomIQ blue a potent post-stain for the visualization and subsequent mass spectrometry based identification of fluorescent stained proteins on 2D-gels. J Proteome Res 5:2033–8.PubMedCrossRefGoogle Scholar
  101. Yang, Y. H., and Speed, T. (2002). Design issues for cDNA microarray experiments. Nat Rev Genet 3:579–88.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Alex Boussioutas
    • 1
  • Patrick Tan
    • 2
  1. 1.Department of MedicineUniversity of MelbourneFootscrayAustralia
  2. 2.Duke-NUS Graduate Medical SchoolGenome Institute of SingaporeSingapore

Personalised recommendations