Androgen-Metabolic Genes in Prostate Cancer Predisposition and Progression



Prostate cancer is the most common nonskin cancer and the second leading cause of cancer deaths among men in most Western countries, including the US and Australia. Despite its high morbidity and mortality, the etiology of prostate cancer remains elusive. Longstanding clinical and compelling laboratory data suggest a role for androgens in prostate carcinogenesis. This chapter reviews the status of research on hormones, particularly androgens, and prostate cancer and focuses first on hormone-related genetic loci in constitutional (“germline”) DNA. This set of loci has been investigated in a number of studies to date that will undoubtedly expand further. These data provide insights into susceptibility for prostate cancer. This review next explores the emerging field of somatic mutations in tumor (“somatic”) DNA in androgen-metabolic genes, especially the androgen receptor and the type II steroid 5α-reductase. Integration of these forthcoming data with those on susceptibility may provide novel insights into the etiology and progression of prostate cancer. These lines of investigation may lead to the presymptomatic identification of high-risk individuals for active disease prevention, diagnostic improvements in affected men and personalized treatment. Current and future data on individual markers and genes should be integrated into a comprehensive, pathway-based picture that includes constitutional DNA (for prostate cancer susceptibility) and tumor DNA (for disease progression). These efforts may lead to a comprehensive genetically based risk and progression assessment algorithm.


Prostate Cancer Androgen Receptor Prostate Cancer Risk Androgen Receptor Gene HSD17B1 Gene 



This work was supported in part by NCI grant P01 CA108964 (project 1) to JKVR who is also a Medical Foundation Fellow at the University of Sydney and by NIH Intramural Support (AWH).


  1. Akalu, A., Elmajian, D. A., Highshaw, R. A., Nichols, P. W., Reichardt, J. K. V.: Somatic mutations at the SRD5A2 locus encoding prostatic steroid 5α-reductase during prostate cancer progression. Journal of Urology,161: 1355–1358, 1999.PubMedCrossRefGoogle Scholar
  2. Bangsi, D., Zhou, J., Sun, Y., Patel, N. P., Darga, L. L., Heilbrun, L. K., Powell, I. J., Severson, R. K., Everson, R. B.: Impact of a genetic variant in CYP3A4 on risk and clinical presentation of prostate cancer among white and African-American men. Urologic Oncology, 24: 21–27, 2006.PubMedGoogle Scholar
  3. Belanger,A., Hum,D. W., Beaulieu,M., Levesque,E., Guillemette,C., Tchernof,A., Belanger,G., Turgeon,D., Dubois,S.: Characterization and regulation of UDP-glucuronosyltransferases in steroid target tissues. The Journal of Steroid Biochemistry and Molecular Biology, 65:301–310, 1998.PubMedCrossRefGoogle Scholar
  4. Carey, A. H., Waterworth, D., Patel, K., White, D., Little, J., Novelli, P., et al. Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Human Molecular Genetics, 3: 1873–1876, 1994.PubMedCrossRefGoogle Scholar
  5. Chamberlain, N. L., Driver, E. D., Miesfeld, R. L.: The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Research, 22: 3181–3186, 1994.PubMedCrossRefGoogle Scholar
  6. Chang, B. L., Zheng, S. L., Hawkins, G. A., Isaacs, S. D., Wiley, K. E., Turner, A., Carpten, J. D., Bleecker, E. R., Walsh, P. C., Trent, J. M., Meyers, D. A., Isaacs, W. B., Xu, J.: Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Research, 62: 1784–1789, 2002.PubMedGoogle Scholar
  7. Chokkalingam,A. P., Stanczyk,F. Z., Reichardt,J. K. V., HsingA. W.: Molecular Epidemiology of Prostate Cancer: Hormone-Related Genetic Loci. Frontiers in Bioscience,12:3436–60, 2007.PubMedCrossRefGoogle Scholar
  8. Chouinard, S., Barbier, O., Belanger, A.: UDP-glucuronosyltransferase (UGT)2B15 and UGT2B17 enzymes are major determinants of the androgen response in prostate cancer LNCaP cells. The Journal of Biological Chemistry, 282: 33466–33474, 2007; [Epub ahead of print]PubMedCrossRefGoogle Scholar
  9. Coffey, D. S.: The Molecular Biology of the Prostate. In: Prostate Diseases (Lepor, H. and Lawson, R. K., eds.), WB Saunders, Philadelphia, PA, 28–56, 1993.Google Scholar
  10. Culig, Z., Hobisch, A., Hittmair, A., Peterziel, H., Radmayr, C., Bartsch, G., et al. Hyperactive androgen receptor in prostate cancer: what does it mean for new therapy concepts?Histology and Histopathology, 12: 781–786, 1997.PubMedGoogle Scholar
  11. Dalhoff,K., Buus Jensen,K., Enghusen Poulsen,H.: Cancer and molecular biomarkers of phase 2. Methods Enzymology, 400: 618–627, 2005.CrossRefGoogle Scholar
  12. Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T., Chakraborty, R.: Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics, 12: 241–253, 1992.PubMedCrossRefGoogle Scholar
  13. Freedland, S. J., Giovannucci, E., and Platz, E. A.: Are findings from studies of obesity and prostate cancer really in conflict?Cancer Causes Control, 17: 5–9, 2006.CrossRefGoogle Scholar
  14. Fung,K. M., Samara,E. N., Wong,C., Metwalli,A., Krlin,R., Bane,B., Liu,C. Z., Yang,J. T., Pitha,J. V., Culkin,D. J., Kropp,B. P., Penning,T. M., Lin,H. K.: Increased expression of type 2 3alpha-hydroxysteroid dehydrogenase/type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) and its relationship with androgen receptor in prostate carcinoma. Endocrine Related-Cancer, 13: 169–180, 2006.PubMedCrossRefGoogle Scholar
  15. Gallagher,C. J., Kadlubar,F. F., Muscat,J. E., Ambrosone,C. B., Lang,N. P., Lazarus,P.: The UGT2B17 gene deletion polymorphism and risk of prostate cancer A case-control study in Caucasians. Cancer Detection and Prevention, 31: 310–315, 2007.PubMedCrossRefGoogle Scholar
  16. Harkonen, P. L. and Makela, S. I.: Role of estrogens in development of prostate cancer. The Journal of Steroid Biochemistry and Molecular Biology, 92: 297–305, 2004.PubMedCrossRefGoogle Scholar
  17. He,D, Falany,C. N.: Inhibition of SULT2B1b expression alters effects of 3beta-hydroxysteroids on cell proliferation and steroid hormone receptor expression in human LNCaP prostate cancer cells. Prostate, 67: 1318–1329, 2007.PubMedCrossRefGoogle Scholar
  18. He,D., Meloche,C. A., Dumas,N. A., Frost,A. R., Falany,C. N.: Different subcellular localization of sulphotransferase 2B1b in human placenta and prostate. Biochemistry Journal379: 533–40, 2004.CrossRefGoogle Scholar
  19. Hoffmann, R., Happle, R.: Current understanding of androgenetic alopecia. Part I: etiopathogenesis. European Journal of Dermatology, 10: 319–327, 2000.PubMedGoogle Scholar
  20. Hsing, A. W., Reichardt, J. K., and Stanczyk, F. Z.: Hormones and prostate cancer: current perspectives and future directions. Prostate, 52: 213–235, 2002a.CrossRefGoogle Scholar
  21. Hsing, A. W., Chokkalingam, A. P., Gao, Y. T., Wu, G., Wang, X., Deng, J. et al: Polymorphic CAG/CAA repeat length in the AIB1/SRC-3 gene and prostate cancer risk: a population-based case-control study. Cancer Epidemiology Biomarkers and Prevention, 11: 337–341, 2002b.Google Scholar
  22. Huggins, C. and Hodges, C. V.: Studies on prostatic cancer: Effect of castration, of estrogen, and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Research, 1: 293–297, 1941.Google Scholar
  23. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C. and Thun, M. J.: Cancer statistics, 2007. CA: A Cancer Journal for Clinicians, 57: 43–66, 2007.CrossRefGoogle Scholar
  24. Ji,Q., Chang,L., VanDenBerg,D., Stanczyk,F. Z., Stolz,A.: Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism. Prostate,2003; 54: 275–289. Erratum in: Prostate, 66: 445, 2006.PubMedCrossRefGoogle Scholar
  25. Ji,Q., Chang,L., Stanczyk,F. Z., Ookhtens,M., Sherrod,A., Stolz,A.: Impaired dihydrotestosterone catabolism in human prostate cancer: critical role of AKR1C2 as a pre-receptor regulator of androgen receptor signaling. Cancer Research, 67: 1361–1369, 2007.PubMedCrossRefGoogle Scholar
  26. Kraft, P., Pharoah, P., Chanock, S. J., Albanes, D., Kolonel, L. N., Hayes, R. B., Altshuler, D., Andriole, G., Berg, C., et al. Genetic variation in the HSD17B1 gene and risk of prostate cancer. PLoS Genet, 1: e68, 2005.PubMedCrossRefGoogle Scholar
  27. Makridakis, N. M., Ross, R. K., Pike, M. C., Crocitto, L. E., Kolonel, L. N., Pearce, C. L., Henderson, B. E., J. K.Reichardt: Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet, 354: 975–978, 1999.PubMedCrossRefGoogle Scholar
  28. Makridakis, N. M., di SalleE., Reichardt, J. K.: Biochemical and pharmacogenetic dissection of human steroid 5 alpha-reductase type II. Pharmacogenetics, 10: 407–413, 2000.PubMedCrossRefGoogle Scholar
  29. Makridakis,N. M., Akalu,A., Reichardt,J. K. V.: Identification and Characterization of Somatic Steroid 5α-Reductase (SRD5A2) Mutations in Human Prostate Cancer Tissue, Oncogene23: 7399–7405, 2004.PubMedCrossRefGoogle Scholar
  30. Makridakis, N. M., Buchanan, G., Tilley, W., Reichardt, J. K. V.: Androgen Metabolic Genes in Prostate Cancer Predisposition and Progression, Frontiers in Bioscience, 10: 2899–2903, 2005.CrossRefGoogle Scholar
  31. Margiotti, K., Kim, E., Pearce, C. L., E.Spera, G.Novelli, J. K.Reichardt: Association of the G289S single nucleotide polymorphism in the HSD17B3 gene with prostate cancer in Italian men. Prostate, 53: 65–68, 2002.PubMedCrossRefGoogle Scholar
  32. Noble, R. L.: The development of prostatic adenocarcinoma in Nb rats following prolonged sex hormone administration. Cancer Research, 37: 1929–1933, 1977.PubMedGoogle Scholar
  33. Ntais,C., Polycarpou,A., Ioannidis,J. P.: SRD5A2 gene polymorphisms and the risk of prostate cancer: a meta-analysis. Cancer Epidemiology Biomarkers and Prevention, 12: 618–624, 2003.Google Scholar
  34. Park,J., Chen,L., Shade,K., Lazarus,P., Seigne,J., Patterson,S., Helal,M., Pow-Sang,J.: Asp85tyr polymorphism in the udp-glucuronosyltransferase (UGT) 2B15 gene and the risk of prostate cancer. Journal of Urology, 171(6 Pt 1): 2484–2488, 2004.PubMedCrossRefGoogle Scholar
  35. Park,J., Chen,L., Ratnashinge,L., Sellers,T. A., Tanner,J. P., Lee,J. H., Dossett,N., Lang,N., Kadlubar,F. F., Ambrosone,C. B., Zachariah,B., Heysek,R. V., Patterson,S., Pow-Sang,J.: Deletion polymorphism of UDP-glucuronosyltransferase 2B17 and risk of prostate cancer in African American and Caucasian men. Cancer Epidemiology Biomarkers and Prevention, 15: 1473–1478, 2006.CrossRefGoogle Scholar
  36. Pasquali, R., Casimirri, F., Cantobelli, S., Melchionda, N., Morselli Labate, A. M., Fabbri, al: Effect of obesity and body fat distribution on sex hormones and insulin in men. Metabolism, 40: 101–104, 1991.PubMedCrossRefGoogle Scholar
  37. Penning,T. M., Jin,Y., Steckelbroeck,S., Lanisnik Rizner,T., Lewis,M.: Structure-function of human 3 alpha-hydroxysteroid dehydrogenases: genes and proteins. Molecular and Cellular Endocrinology, 215: 63–72, 2004.PubMedCrossRefGoogle Scholar
  38. Platz, E. A., Giovannucci, E., Brown, M., Cieluch, C., Shepard, T. F., Stampfer, M. J., et al. Amplified in breast cancer-1 glutamine repeat and prostate cancer risk. Prostate Journal, 2: 27–32, 2000.CrossRefGoogle Scholar
  39. Rebbeck, T. R., Jaffe, J. M., Walker, A. H., Wein, A. J., Malkowicz, S. B.: Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. Journal of National Cancer Institute, 90: 1225–1229, 1998.CrossRefGoogle Scholar
  40. Reichardt,J. K. V.: Unexpected biochemical and pharmacogenetic consequences of SNPs and haplotypes: A cautionary tale for human molecular genetics and epidemiology. Genomics,88: 673–674, 2006.PubMedCrossRefGoogle Scholar
  41. Richie, J. P.: Anti-androgens and other hormonal therapies for prostate cancer. Urology, 54: 15–18, 1999.PubMedCrossRefGoogle Scholar
  42. Ross, R. K., Bernstein, L., Lobo, R. A., Shimizu, H., Stanczyk, F. Z.,Pike, M. C. & Henderson, B. E.: 5-alpha-reductase activity and risk of prostate cancer among Japanese and US white and black males. Lancet, 339: 887–889, 1992.PubMedCrossRefGoogle Scholar
  43. Ross, R. K., Pike, M. C., Coetzee, G. A., Reichardt, J. K., Yu, M. C., Feigelson, H., et al: Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Research, 58: 4497–4504, 1998.PubMedGoogle Scholar
  44. Sawaya, M. E., Shalita, A. R.: Androgen receptor polymorphisms (CAG repeat lengths) in androgenetic alopecia, hirsutism, and acne. Journal of Cutaneous Medicine and Surgery, 3: 9–15, 1998.PubMedGoogle Scholar
  45. Thompson, I. M., Goodman, P. J., Tangen, C. M., Lucia, M. S., Miller, G. J., Ford, L. G., Lieber, M. M., Cespedes, R. D., Atkins, J. N., Lippman, S. M., Carlin, S. M., Ryan, A., Szczepanek, C. M., Crowley, J. J., Coltman, C. A.Jr.: The Influence of Finasteride on the Development of Prostate Cancer, New England Journal of Medicine, 349: 215–224, 2003.PubMedCrossRefGoogle Scholar
  46. Wilborn, T. W., Lang, N. P., Smith, M., Meleth, S., Falany, C. N.: Association of SULT2A1 allelic variants with plasma adrenal androgens and prostate cancer in African American men. The Journal of Steroid Biochemistry and Molecular Biology, 99: 209–214, 2006.PubMedCrossRefGoogle Scholar
  47. Yeh, S., Chang, C.: Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proceedings of the National Academy of Sciences of the United States of America, 93: 5517–5521, 1996.PubMedCrossRefGoogle Scholar
  48. Zhao, X. Y. and Feldman, D.: The role of vitamin D in prostate cancer. Steroids, 66: 293–300, 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Plunkett Chair of Molecular Biology (Medicine)University of Sydney, Bosch InstituteSydneyAustralia

Personalised recommendations