Imaging Androgen Receptor Function In Vivo

  • Michael Carey
  • Lily Wu


Bioluminescence imaging (BLI) is a facile method for studying androgen receptor (AR) signaling during tumor progression in xenografts and genetic models of prostate cancer in mice. This chapter summarizes work where BLI and positron emission tomography coupled with CT were used to analyze AR-mediated transcriptional activity using gene expression-based imaging approaches.


Androgen Receptor LNCaP Cell Androgen Receptor Signaling Androgen Receptor Activity Tramp Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, J. Y., Johnson, M., Sato, M., Berger, F., Gambhir, S. S., Carey, M., Iruela-Arispe, M. L., and Wu, L.2002. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med8: 891–897.PubMedGoogle Scholar
  2. Bok, R. A., and Small, E. J.2002. Bloodborne biomolecular markers in prostate cancer development and progression. Nat Rev Cancer2: 918–926.PubMedCrossRefGoogle Scholar
  3. Burton, J. B., Johnson, M., Sato, M., Koh, S. B. S., Mulholland, D., Stout, D., Chatziioannou, A. F., Phelps, M. E., Wu, H., and Wu, L.2008. Adenovirus mediated gene expression imaging to detect sentinel lymph node metastasis of prostate cancer. Nat Med14: 882–888.PubMedCrossRefGoogle Scholar
  4. Cleutjens, K. B., van der Korput, H. A., van Eekelen, C. C., van Rooij, H. C., Faber, P. W., and Trapman, J.1997. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol11: 148–161.PubMedCrossRefGoogle Scholar
  5. Cleutjens, K. B., van Eekelen, C. C., van der Korput, H. A., Brinkman, A. O., and Trapman, J.1996. Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem271: 6379–6388.PubMedCrossRefGoogle Scholar
  6. Contag, C. H., and Bachmann, M. H.2002. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng4: 235–260.PubMedCrossRefGoogle Scholar
  7. Contag, C. H., Jenkins, D., Contag, P. R., and Negrin, R. S.2000. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia2: 41–52.PubMedCrossRefGoogle Scholar
  8. Cruzalegui, F. H., Cano, E., and Treisman, R.1999. ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene18: 7948–7957.PubMedCrossRefGoogle Scholar
  9. Dehdashti, F., Picus, J., Michalski, J. M., Dence, C. S., Siegel, B. A., Katzenellenbogen, J. A., and Welch, M. J.2005. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging32: 344–350.PubMedCrossRefGoogle Scholar
  10. Dehm, S. M., and Tindall, D. J.2007. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol21: 2855–2863.PubMedCrossRefGoogle Scholar
  11. Ellwood-Yen, K., Wongvipat, J., and Sawyers, C.2006. Transgenic mouse model for rapid pharmacodynamic evaluation of antiandrogens. Cancer Res66: 10513–10516.PubMedCrossRefGoogle Scholar
  12. Emami, K. H., and Carey, M.1992. A synergistic increase in potency of a multimerized VP16 transcriptional activation domain. Embo J11: 5005–5012.PubMedGoogle Scholar
  13. Gambhir, S. S.2002. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer2: 683–693.PubMedCrossRefGoogle Scholar
  14. Gingrich, J. R., Barrios, R. J., Morton, R. A., Boyce, B. F., DeMayo, F. J., Finegold, M. J., Angelopoulou, R., Rosen, J. M., and Greenberg, N. M.1996. Metastatic prostate cancer in a transgenic mouse. Cancer Res56: 4096–4102.PubMedGoogle Scholar
  15. Gioeli, D., Mandell, J. W., Petroni, G. R., Frierson, H. F., Jr., and Weber, M. J.1999. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res59: 279–284.PubMedGoogle Scholar
  16. Gregory, C. W., He, B., Johnson, R. T., Ford, O. H., Mohler, J. L., French, F. S., and Wilson, E. M.2001a. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res61: 4315–4319.Google Scholar
  17. Gregory, C. W., Johnson, R. T., Jr., Mohler, J. L., French, F. S., and Wilson, E. M.2001b. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res61: 2892–2898.Google Scholar
  18. Helms, M. W., Brandt, B. H., and Contag, C. H.2006. Options for visualizing metastatic disease in the living body. Contrib Microbiol13: 209–231.PubMedCrossRefGoogle Scholar
  19. Hexdall, L., and Zheng, C. F.2001. Stable luciferase reporter cell lines for signal transduction pathway readout using GAL4 fusion transactivators. Biotechniques30: 1134–1138, 1140.PubMedGoogle Scholar
  20. Hsieh, C. L., Xie, Z., Liu, Z. Y., Green, J. E., Martin, W. D., Datta, M. W., Yeung, F., Pan, D., and Chung, L. W.2005. A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals. J Mol Endocrinol35: 293–304.PubMedCrossRefGoogle Scholar
  21. Hsieh, C. L., Xie, Z., Yu, J., Martin, W. D., Datta, M. W., Wu, G. J., and Chung, L. W.2007. Non-invasive bioluminescent detection of prostate cancer growth and metastasis in a bigenic transgenic mouse model. Prostate67: 685–691.PubMedCrossRefGoogle Scholar
  22. Huang, W., Shostak, Y., Tarr, P., Sawyers, C., and Carey, M.1999. Cooperative assembly of androgen receptor into a nucleoprotein complex that regulates the prostate-specific antigen enhancer. J Biol Chem274: 25756–25768.PubMedCrossRefGoogle Scholar
  23. Ignowski, J. M., and Schaffer, D. V.2004. Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol Bioeng86: 827–834.PubMedCrossRefGoogle Scholar
  24. Ilagan, R., Pottratz, J., Le, K., Zhang, L., Wong, S. G., Ayala, R., Iyer, M., Wu, L., Gambhir, S. S., and Carey, M.2006. Imaging mitogen-activated protein kinase function in xenograft models of prostate cancer. Cancer Res66: 10778–10785.PubMedCrossRefGoogle Scholar
  25. Ilagan, R., Zhang, L. J., Pottratz, J., Le, K., Salas, S., Iyer, M., Wu, L., Gambhir, S. S., and Carey, M.2005. Imaging androgen receptor function during flutamide treatment in the LAPC9 xenograft model. Mol Cancer Ther4: 1662–1669.PubMedCrossRefGoogle Scholar
  26. Iyer, M., Salazar, F. B., Lewis, X., Zhang, L., Carey, M., Wu, L., and Gambhir, S. S.2004. Noninvasive imaging of enhanced prostate-specific gene expression using a two-step transcriptional amplification-based lentivirus vector. Mol Ther10: 545–552.PubMedCrossRefGoogle Scholar
  27. Iyer, M., Salazar, F. B., Lewis, X., Zhang, L., Wu, L., Carey, M., and Gambhir, S. S.2005a. Non-invasive imaging of a transgenic mouse model using a prostate-specific two-step transcriptional amplification strategy. Transgenic Res14: 47–55.CrossRefGoogle Scholar
  28. Iyer, M., Salazar, F. B., Wu, L., Carey, M., and Gambhir, S. S.2006. Bioluminescence imaging of systemic tumor targeting using a prostate-specific lentiviral vector. Hum Gene Ther17: 125–132.PubMedCrossRefGoogle Scholar
  29. Iyer, M., Sato, M., Johnson, M., Gambhir, S. S., and Wu, L.2005b. Applications of molecular imaging in cancer gene therapy. Curr Gene Ther5: 607–618.CrossRefGoogle Scholar
  30. Iyer, M., Wu, L., Carey, M., Wang, Y., Smallwood, A., and Gambhir, S. S.2001. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci U S A98: 14595–14600.PubMedCrossRefGoogle Scholar
  31. Jacobson, O., Bechor, Y., Icar, A., Novak, N., Birman, A., Marom, H., Fadeeva, L., Golan, E., Leibovitch, I., Gutman, M., et al.2005. Prostate cancer PET bioprobes: synthesis of [18F]-radiolabeled hydroxyflutamide derivatives. Bioorg Med Chem13: 6195–6205.PubMedCrossRefGoogle Scholar
  32. Johnson, M., Sato, M., Burton, J., Gambhir, S. S., Carey, M., and Wu, L.2005. Micro-PET/CT monitoring of herpes thymidine kinase suicide gene therapy in a prostate cancer xenograft: the advantage of a cell-specific transcriptional targeting approach. Mol Imaging4: 463–472.PubMedGoogle Scholar
  33. Klein, K. A., Reiter, R. E., Redula, J., Moradi, H., Zhu, X. L., Brothman, A. R., Lamb, D. J., Marcelli, M., Belldegrun, A., Witte, O. N., and Sawyers, C. L.1997. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat Med3: 402–408.PubMedCrossRefGoogle Scholar
  34. Latham, J. P., Searle, P. F., Mautner, V., and James, N. D.2000. Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: construction and testing of a tissue-specific adenovirus vector. Cancer Res60: 334–341.PubMedGoogle Scholar
  35. Marais, R., Wynne, J., and Treisman, R.1993. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell73: 381–393.PubMedCrossRefGoogle Scholar
  36. Marcelli, M., Stenoien, D. L., Szafran, A. T., Simeoni, S., Agoulnik, I. U., Weigel, N. L., Moran, T., Mikic, I., Price, J. H., and Mancini, M. A.2006. Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility. J Cell Biochem98: 770–788.PubMedCrossRefGoogle Scholar
  37. Massoud, T. F., and Gambhir, S. S.2003. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev17: 545–580.PubMedCrossRefGoogle Scholar
  38. Mohler, J. L., Gregory, C. W., Ford, O. H., 3rd, Kim, D., Weaver, C. M., Petrusz, P., Wilson, E. M., and French, F. S.2004. The androgen axis in recurrent prostate cancer. Clin Cancer Res10: 440–448.PubMedCrossRefGoogle Scholar
  39. Parent, E. E., Carlson, K. E., and Katzenellenbogen, J. A.2007. Synthesis of 7alpha-(fluoromethyl)dihydrotestosterone and 7alpha-(fluoromethyl)nortestosterone, structurally paired androgens designed to probe the role of sex hormone binding globulin in imaging androgen receptors in prostate tumors by positron emission tomography. J Org Chem72: 5546–5554.PubMedCrossRefGoogle Scholar
  40. Parent, E. E., Dence, C. S., Sharp, T. L., Welch, M. J., and Katzenellenbogen, J. A.2006. Synthesis and biological evaluation of a fluorine-18-labeled nonsteroidal androgen receptor antagonist, N-(3-[18F]fluoro-4-nitronaphthyl)-cis-5-norbornene-endo-2,3-dicarboxylic imide. Nucl Med Biol33: 615–624.PubMedCrossRefGoogle Scholar
  41. Rauen, K. A., Sudilovsky, D., Le, J. L., Chew, K. L., Hann, B., Weinberg, V., Schmitt, L. D., and McCormick, F.2002. Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: potential relevance to gene therapy. Cancer Res62: 3812–3818.PubMedGoogle Scholar
  42. Reid, K. J., Hendy, S. C., Saito, J., Sorensen, P., and Nelson, C. C.2001. Two classes of androgen receptor elements mediate cooperativity through allosteric interactions. J Biol Chem276: 2943–2952.PubMedCrossRefGoogle Scholar
  43. Riegman, P. H., Vlietstra, R. J., van der Korput, J. A., Brinkmann, A. O., and Trapman, J.1991. The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol5: 1921–1930.PubMedCrossRefGoogle Scholar
  44. Roudier, M. P., True, L. D., Higano, C. S., Vesselle, H., Ellis, W., Lange, P., and Vessella, R. L.2003. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum Pathol34: 646–653.PubMedCrossRefGoogle Scholar
  45. Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M.1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature335: 563–564.PubMedCrossRefGoogle Scholar
  46. Sato, M., Figueiredo, M. L., Burton, J. B., Johnson, M., Chen, M., Powell, R., Gambhir, S. S., Carey, M., and L., W. 2008. Configurations of a two-tiered amplified gene expression system vector to improve the specificity of in vivo prostate cancer imaging. Gene Therapy (under revision).Google Scholar
  47. Sato, M., Johnson, M., Zhang, L., Gambhir, S. S., Carey, M., and Wu, L.2005. Functionality of androgen receptor-based gene expression imaging in hormone refractory prostate cancer. Clin Cancer Res11: 3743–3749.PubMedCrossRefGoogle Scholar
  48. Sato, M., Johnson, M., Zhang, L., Zhang, B., Le, K., Gambhir, S. S., Carey, M., and Wu, L.2003. Optimization of adenoviral vectors to direct highly amplified prostate-specific expression for imaging and gene therapy. Mol Ther8: 726–737.PubMedCrossRefGoogle Scholar
  49. Schoder, H., and Larson, S. M.2004. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med34: 274–292.PubMedCrossRefGoogle Scholar
  50. Schuur, E. R., Henderson, G. A., Kmetec, L. A., Miller, J. D., Lamparski, H. G., and Henderson, D. R.1996. Prostate-specific antigen expression is regulated by an upstream enhancer. J Biol Chem271: 7043–7051.PubMedCrossRefGoogle Scholar
  51. Seethammagari, M. R., Xie, X., Greenberg, N. M., and Spencer, D. M.2006. EZC-prostate models offer high sensitivity and specificity for noninvasive imaging of prostate cancer progression and androgen receptor action. Cancer Res66: 6199–6209.PubMedCrossRefGoogle Scholar
  52. Shah, R. B., Mehra, R., Chinnaiyan, A. M., Shen, R., Ghosh, D., Zhou, M., Macvicar, G. R., Varambally, S., Harwood, J., Bismar, T. A., et al.2004. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res64: 9209–9216.PubMedCrossRefGoogle Scholar
  53. Taplin, M. E.2007. Drug insight: role of the androgen receptor in the development and progression of prostate cancer. Nat Clin Pract Oncol4: 236–244.PubMedCrossRefGoogle Scholar
  54. Weber, M. J., and Gioeli, D.2004. Ras signaling in prostate cancer progression. J Cell Biochem91: 13–25.PubMedCrossRefGoogle Scholar
  55. Wu, L., Johnson, M., and Sato, M.2003. Transcriptionally targeted gene therapy to detect and treat cancer. Trends Mol Med9: 421–429.PubMedCrossRefGoogle Scholar
  56. Wu, L., Matherly, J., Smallwood, A., Adams, J. Y., Billick, E., Belldegrun, A., and Carey, M.2001. Chimeric PSA enhancers exhibit augmented activity in prostate cancer gene therapy vectors. Gene Ther8: 1416–1426.PubMedCrossRefGoogle Scholar
  57. Xie, X., Zhao, X., Liu, Y., Young, C. Y., Tindall, D. J., Slawin, K. M., and Spencer, D. M.2001. Robust prostate-specific expression for targeted gene therapy based on the human kallikrein 2 promoter. Hum Gene Ther12: 549–561.PubMedCrossRefGoogle Scholar
  58. Ye, X., Han, S. J., Tsai, S. Y., DeMayo, F. J., Xu, J., Tsai, M. J., and O'Malley, B. W.2005. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice. Proc Natl Acad Sci U S A102: 9487–9492.PubMedCrossRefGoogle Scholar
  59. Zhang, J., Gao, N., Kasper, S., Reid, K., Nelson, C., and Matusik, R. J.2004. An androgen-dependent upstream enhancer is essential for high levels of probasin gene expression. Endocrinology145: 134–148.PubMedCrossRefGoogle Scholar
  60. Zhang, J., Thomas, T. Z., Kasper, S., and Matusik, R. J.2000. A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology141: 4698–4710.PubMedCrossRefGoogle Scholar
  61. Zhang, L., Adams, J. Y., Billick, E., Ilagan, R., Iyer, M., Le, K., Smallwood, A., Gambhir, S. S., Carey, M., and Wu, L.2002. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol Ther5: 223–232.PubMedCrossRefGoogle Scholar
  62. Zhang, L., Johnson, M., Le, K. H., Sato, M., Ilagan, R., Iyer, M., Gambhir, S. S., Wu, L., and Carey, M.2003. Interrogating androgen receptor function in recurrent prostate cancer. Cancer Res63: 4552–4560.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Biological ChemistryrDavid Geffen School of Medicine at UCLAUSA

Personalised recommendations