Skip to main content

Androgens and the Lipogenic Switch in Prostate Cancer

  • Chapter
  • First Online:
Androgen Action in Prostate Cancer

Abstract

Androgens have a major impact on prostate cancer cell biology and modulate a variety of key cellular processes and functions. One of the processes that are most strikingly affected is lipid biosynthesis. Through a unique indirect mechanism that involves activation of the lipogenic transcription factor SREBP, androgens coordinately stimulate the expression of more than 20 enzymes involved in lipid synthesis, and in this way they affect the entire lipogenic program in prostate cancer cells. Through additional mechanisms, including the stimulation of an ubiquitin-specific protease that removes the degradation-tag ubiquitin from lipogenic enzymes such as fatty acid synthase, an even more complex network of regulatory control is created. Progressive deregulation of this network results in a marked overexpression of lipogenic enzymes, referred to as the lipogenic switch. This switch typically accompanies the development and progression of prostate cancer and is thought to play an active role in prostate cancer cell biology. In fact, interference with the lipogenic process impairs proper membrane formation and functioning, halts cell proliferation, and induces cell death selectively in cancer cells. These findings suggest that enhanced lipogenesis in cancer cells is an essential trait of prostate cancer progression and is a promising novel target for antineoplastic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandyopadhyay S, Pai SK, Watabe M, Gross SC, Hirota S, Hosobe S, Tsukada T, Miura K, Saito K, Markwell SJ, Wang Y, Huggenvik J, Pauza ME, Iiizumi M, Watabe K (2005) FAS expression inversely correlates with PTEN level in prostate cancer and a PI 3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis. Oncogene 24: 5389–5395.

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S, Takano Y, Saito K, Furuta E, Iiizumi M, Mohinta S, Watabe M, Chalfant C, Watabe K (2006) Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res 66: 5934–5940.

    Article  PubMed  CAS  Google Scholar 

  • Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24: 6314–6322.

    Article  PubMed  CAS  Google Scholar 

  • Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G, Swinnen JV (2007) Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 67: 8180–8187.

    Article  PubMed  CAS  Google Scholar 

  • Bova GS, Carter BS, Bussemakers MJ, Emi M, Fujiwara Y, Kyprianou N, Jacobs SC, Robinson JC, Epstein JI, Walsh PC, et al. (1993) Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 53: 3869–3873.

    PubMed  CAS  Google Scholar 

  • Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Brusselmans K, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV (2003) Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int J Cancer 106: 856–862.

    Article  PubMed  CAS  Google Scholar 

  • Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV (2005a) RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res 65: 6719–6725.

    Article  CAS  Google Scholar 

  • Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV (2005b) Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem 280: 5636–5645.

    Article  CAS  Google Scholar 

  • Brusselmans K, Timmermans L, Van de Sande T, Van Veldhoven PP, Guan G, Shechter I, Claessens F, Verhoeven G, Swinnen JV (2007) Squalene synthase, a determinant of Raft-associated cholesterol and modulator of cancer cell proliferation. J Biol Chem 282: 18777–18785.

    Article  PubMed  CAS  Google Scholar 

  • Bull JH, Ellison G, Patel A, Muir G, Walker M, Underwood M, Khan F, Paskins L (2001) Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using cDNA microarray. Br J Cancer 84: 1512–1519.

    Article  PubMed  CAS  Google Scholar 

  • Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V (2006) Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res 66: 5287–5294.

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy MV, Zhu Y, López M, Yin L, Wozniak DF, Coleman T, Hu Z, Wolfgang M, Vidal-Puig A, Lane MD, Semenkovich CF (2007) Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis. J Clin Invest 117: 2539–2552.

    Article  PubMed  CAS  Google Scholar 

  • Chalbos D, Joyeux C, Galtier F, Escot C, Chambon M, Maudelonde T, Rochefort H (1990) Regulation of fatty acid synthetase by progesterone in normal and tumoral human mammary glands. Rev Esp Fisiol 46: 43–46.

    PubMed  CAS  Google Scholar 

  • Chambon M, Rochefort H, Vial HJ, Chalbos D (1989) Progestins and androgens stimulate lipid accumulation in T47D breast cancer cells via their own receptors. J Steroid Biochem 33: 915–922.

    Article  PubMed  CAS  Google Scholar 

  • Clegg DJ, Wortman MD, Benoit SC, McOsker CC, Seeley RJ (2002) Comparison of central and peripheral administration of C75 on food intake, body weight, and conditioned taste aversion. Diabetes 51: 3196–3201.

    Article  PubMed  CAS  Google Scholar 

  • De Schrijver E, Brusselmans K, Heyns W, Verhoeven G, Swinnen JV (2003) RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res 63: 3799–3804.

    PubMed  CAS  Google Scholar 

  • Denoyelle C, Albanese P, Uzan G, Hong L, Vannier JP, Soria J, Soria C (2003) Molecular mechanism of the anti-cancer activity of cerivastatin, an inhibitor of HMG-CoA reductase, on aggressive human breast cancer cells. Cell Signal 15: 327–338.

    Article  PubMed  CAS  Google Scholar 

  • Epstein JI, Carmichael M, Partin AW (1995) OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology 45: 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME, Nelson CC (2004) Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res 64: 2212–2221.

    Article  PubMed  CAS  Google Scholar 

  • Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S, Loda M (2004) The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 5: 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Hager MH, Solomon KR, Freeman MR (2006) The role of cholesterol in prostate cancer. Curr Opin Clin Nutr Metab Care 9: 379–385.

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280: 32081–32089.

    Article  PubMed  CAS  Google Scholar 

  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8: 311–321.

    Article  PubMed  CAS  Google Scholar 

  • Heemers H, Vanderhoydonc F, Heyns W, Verhoeven G, Swinnen JV (2000) Progestins and androgens increase expression of Spot 14 in T47-D breast tumor cells. Biochem Biophys Res Commun 269: 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Heemers H, Maes B, Foufelle F, Heyns W, Verhoeven G, Swinnen JV (2001) Androgens stimulate lipogenic gene expression in prostate cancer cells by activation of the sterol regulatory element-binding protein cleavage activating protein/sterol regulatory element-binding protein pathway. Mol Endocrinol 15: 1817–1828.

    Article  PubMed  CAS  Google Scholar 

  • Heemers H, Vanderhoydonc F, Roskams T, Shechter I, Heyns W, Verhoeven G, Swinnen JV (2003) Androgens stimulate coordinated lipogenic gene expression in normal target tissues in vivo. Mol Cell Endocrinol 205: 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Heemers H, Verrijdt G, Organe S, Claessens F, Heyns W, Verhoeven G, Swinnen JV (2004) Identification of an androgen response element in intron 8 of the sterol regulatory element-binding protein cleavage-activating protein gene allowing direct regulation by the androgen receptor. J Biol Chem 279: 30880–30887.

    Article  PubMed  CAS  Google Scholar 

  • Heemers HV, Verhoeven G, Swinnen JV (2006) Androgen activation of the sterol regulatory element-binding protein pathway: current insights. Mol Endocrinol 20: 2265–2277.

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Rupert JL, Goldenberg L, Gleave M, Kozlowski P (2002) Going malignant: the hypoxia-cancer connection in the prostate. Bioessays 24: 749–757.

    Article  PubMed  CAS  Google Scholar 

  • Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125–1131.

    PubMed  CAS  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648–657.

    Article  PubMed  CAS  Google Scholar 

  • Joyeux C, Rochefort H, Chalbos D (1989) Progestin increases gene transcription and messenger ribonucleic acid stability of fatty acid synthetase in breast cancer cells. Mol Endocrinol 10: 681–686.

    Article  Google Scholar 

  • Kinlaw WB, Quinn JL, Wells WA, Roser-Jones C, Moncur JT (2006) Spot 14: a marker of aggressive breast cancer and a potential therapeutic target. Endocrinology 147: 4048–4055.

    Article  PubMed  CAS  Google Scholar 

  • Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW (2004) Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64: 2070–2075.

    Article  PubMed  CAS  Google Scholar 

  • Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, Pasternack GR (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A 91: 6379–6383.

    Article  PubMed  CAS  Google Scholar 

  • Kuhajda FP (2000) fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16: 202–208.

    Article  PubMed  CAS  Google Scholar 

  • Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA (2000) Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci U S A 97: 3450–3454.

    Article  PubMed  CAS  Google Scholar 

  • Lacasa D, Le Liepvre X, Ferre P, Dugail I (2001) Progesterone stimulates adipocyte determination and differentiation factor 1/sterol regulatory element-binding protein 1c gene expression. Potential mechanism for the lipogenic effect of progesterone in adipose tissue. J Biol Chem 276: 11512–11516.

    Article  PubMed  CAS  Google Scholar 

  • Li BH, Tian WX (2004) Inhibitory effects of flavonoids on animal fatty acid synthase. J Biochem (Tokyo) 135: 85–91.

    Article  CAS  Google Scholar 

  • Little JL, Wheeler FB, Fels DR, Koumenis C, Kridel SJ (2007) Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Res 67: 1262–1269.

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Wang Y, Fillgrove KL, Anderson VE (2002) Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother Pharmacol 49: 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FP (2000) Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288: 2379–2381.

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Archer MC (2005) Fatty acid synthase is a potential molecular target for the chemoprevention of breast cancer. Carcinogenesis 26: 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Martel PM, Bingham CM, McGraw CJ, Baker CL, Morganelli PM, Meng ML, Armstrong JM, Moncur JT, Kinlaw WB (2006) S14 protein in breast cancer cells: direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Exp Cell Res 312: 278–288.

    PubMed  CAS  Google Scholar 

  • Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7: 763–777.

    Article  PubMed  CAS  Google Scholar 

  • Menendez JA, Vellon L, Colomer R, Lupu R (2005) Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity. Int J Cancer 115: 19–35.

    Article  PubMed  CAS  Google Scholar 

  • Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP (1997) Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin Cancer Res 3: 2115–2120.

    PubMed  CAS  Google Scholar 

  • Moore S, Knudsen B, True LD, Hawley S, Etzioni R, Wade C, Gifford D, Coleman I, Nelson PS (2005) Loss of stearoyl-CoA desaturase expression is a frequent event in prostate carcinoma. Int J Cancer 114: 563–571.

    Article  PubMed  CAS  Google Scholar 

  • Myers RB, Oelschlager DK, Weiss HL, Frost AR, Grizzle WE (2001) Fatty acid synthase: an early molecular marker of progression of prostatic adenocarcinoma to androgen independence. J Urol 165: 1027–1032.

    Article  PubMed  CAS  Google Scholar 

  • Nelson PS, Clegg N, Arnold H, Ferguson C, Bonham M, White J, Hood L, Lin B (2002) The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci U S A 99: 11890–11895.

    Article  PubMed  CAS  Google Scholar 

  • Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF (1998) Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 58: 4611–4615.

    PubMed  CAS  Google Scholar 

  • Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, Frehywot GL, Townsend CA, Kuhajda FP (2000) Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res 60: 213–218.

    PubMed  CAS  Google Scholar 

  • Pizer ES, Pflug BR, Bova GS, Han WF, Udan MS, Nelson JB (2001) Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate 47: 102–110.

    Article  PubMed  CAS  Google Scholar 

  • Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, Schulze A (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24: 6465–6481.

    PubMed  CAS  Google Scholar 

  • Prowatke I, Devens F, Benner A, Grone EF, Mertens D, Grone HJ, Lichter P, Joos S (2007) Expression analysis of imbalanced genes in prostate carcinoma using tissue microarrays. Br J Cancer 96: 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Graner E, Febbo P, Weinstein L, Bhattacharya N, Onody T, Bubley G, Balk S, Loda M (2003) Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res 1: 707–715.

    PubMed  CAS  Google Scholar 

  • Schmidt LC, Ballman KV, Tindall DJ (2007) Inhibition of fatty acid synthase activity in prostate cancer cells by dutasteride. Prostate 67: 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Segawa T, Nau ME, Xu LL, Chilukuri RN, Makarem M, Zhang W, Petrovics G, Sesterhenn IA, McLeod DG, Moul JW, Vahey M, Srivastava S (2002) Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells. Oncogene 21: 8749–8758.

    Article  PubMed  CAS  Google Scholar 

  • Shah US, Dhir R, Gollin SM, Chandran UR, Lewis D, Acquafondata M, Pflug BR (2006) Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Hum Pathol 37: 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Shurbaji MS, Kalbfleisch JH, Thurmond TS (1996) Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Hum Pathol 27: 917–921.

    Article  PubMed  CAS  Google Scholar 

  • Swinnen JV, Esquenet M, Heyns W, Rombauts W, Verhoeven G (1994) Androgen regulation of the messenger RNA encoding diazepam-binding inhibitor/acyl-CoA-binding protein in the human prostatic adenocarcinoma cell line LNCaP. Mol Cell Endocrinol 104: 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Swinnen JV, VanVeldhoven PP, Esquenet M, Heyns W, Verhoeven G (1996) Androgens markedly stimulate the accumulation of neutral lipids in the human prostatic adenocarcinoma cell line LNCaP. Endocrinology 137: 4468–4474.

    Article  PubMed  CAS  Google Scholar 

  • Swinnen JV, Esquenet M, Goossens K, Heyns W, Verhoeven G (1997a) Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Cancer Res 57: 1086–1090.

    CAS  Google Scholar 

  • Swinnen JV, Ulrix W, Heyns W, Verhoeven G (1997b) Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proc Natl Acad Sci U S A 94: 12975–12880.

    Article  CAS  Google Scholar 

  • Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W, Verhoeven G (2000a) Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene 19: 5173–5181.

    Article  CAS  Google Scholar 

  • Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren I, Joniau S, Van Poppel H, Baert L, Goossens K, Heyns W, Verhoeven G (2000b) Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer 88: 176–179.

    Article  CAS  Google Scholar 

  • Swinnen JV, Roskams T, Joniau S, Van Poppel H, Oyen R, Baert L, Heyns W, Verhoeven G (2002) Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 98: 19–22.

    Article  PubMed  CAS  Google Scholar 

  • Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F, Van de Sande T, Heemers H, Heyns W, Verhoeven G (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302: 898–903.

    Article  PubMed  CAS  Google Scholar 

  • Swinnen JV, Brusselmans K, Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9: 358–365.

    Article  PubMed  CAS  Google Scholar 

  • Szutowicz A, Kwiatkowski J, Angielski S (1979) Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. Br J Cancer 39: 681–687.

    Article  PubMed  CAS  Google Scholar 

  • Thupari JN, Pinn ML, Kuhajda FP (2001) Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem Biophys Res Commun 285: 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Turyn J, Schlichtholz B, Dettlaff-Pokora A, Presler M, Goyke E, Matuszewski M, Kmiec Z, Krajka K, Swierczynski J (2003) Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer. Horm Metab Res 35: 565–569.

    Article  PubMed  CAS  Google Scholar 

  • Van de Sande T, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV (2002) Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Res 62: 642–646.

    PubMed  CAS  Google Scholar 

  • Van de Sande T, Roskams T, Lerut E, Joniau S, Van Poppel H, Verhoeven G, Swinnen JV (2005) High-level expression of fatty acid synthase in human prostate cancer tissues is linked to activation and nuclear localization of Akt/PKB. J Pathol 206: 214–219.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tian W (2001) Green tea epigallocatechin gallate: a natural inhibitor of fatty-acid synthase. Biochem Biophys Res Commun 288: 1200–1206.

    Article  PubMed  CAS  Google Scholar 

  • Wang HQ, Altomare DA, Skele KL, Poulikakos PI, Kuhajda FP, Di Cristofano A, Testa JR (2005) Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 24: 3574–3582.

    Article  PubMed  CAS  Google Scholar 

  • Yahagi N, Shimano H, Hasegawa K, Ohashi K, Matsuzaka T, Najima Y, Sekiya M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Nagai R, Ishibashi S, Kadowaki T, Makuuchi M, Ohnishi S, Osuga J, Yamada N (2005) Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur J Cancer 41: 1316–1322.

    Article  PubMed  CAS  Google Scholar 

  • Yeh CW, Chen WJ, Chiang CT, Lin-Shiau SY, Lin JK (2003) Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols: a possible mechanism for their hypolipidemic effects. Pharmacogenomics J 3: 267–276.

    PubMed  CAS  Google Scholar 

  • Yoon S, Lee MY, Park SW, Moon JS, Koh YK, Ahn YH, Park BW, Kim KS (2007) Up-regulation of acetyl-CoA carboxylase {alpha} and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J Biol Chem 282: 26122–26131.

    Article  PubMed  CAS  Google Scholar 

  • Zhong WB, Wang CY, Chang TC, Lee WS (2003) Lovastatin induces apoptosis of anaplastic thyroid cancer cells via inhibition of protein geranylgeranylation and de novo protein synthesis. Endocrinology 144: 3852–3859.

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Han W, Landree LE, Thupari JN, Pinn ML, Bililign T, Kim EK, Vadlamudi A, Medghalchi SM, El Meskini R, Ronnett GV, Townsend CA, Kuhajda FP (2007) Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells. Cancer Res 67: 2964–2971.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by a grant “Concerted Research Action” by the K.U. Leuven and by research grants from the Research Foundation-Flanders (FWO) (Belgium). K. Brusselmans is a postdoctoral fellow of the Research Foundation-Flanders (FWO) (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes V. Swinnen .

Editor information

James Mohler Donald Tindall

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Swinnen, J.V., Brusselmans, K., Heemers, H.V., Verhoeven, G. (2009). Androgens and the Lipogenic Switch in Prostate Cancer. In: Mohler, J., Tindall, D. (eds) Androgen Action in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69179-4_31

Download citation

Publish with us

Policies and ethics