Differential Roles of Androgen Receptor in Prostate Development and Cancer Progression

  • Shuyuan Yeh
  • Yuanjie Niu
  • Hiroshi Miyamoto
  • Tamin Chang
  • Chawnshang Chang


The androgen depletion therapy (ADT) has become the major treatment for the cancer patients through the use of chemical castration and/or antiandrogens, yet the therapy eventually fails and cancers progress to more advanced stages. The mutation, amplification, overexpression of AR, and cross-talk between AR, AR co-regulators, and other growth factor pathways have provided potential explanations for the failure of androgen ablation therapies in some cases. However, whether the differential AR roles in different types of prostate cells could contribute to the failure of ADT remains unclear and will be the focus of this review.

AR expresses in both stromal and epithelial compartments of prostate. It has been shown that there are three basic types of prostatic epithelial cells: (i) cytokeratin 8 (CK8)-positive, CK5-negative luminal cells, (ii) CK5/CK8-double positive intermediate cells, and (iii) CK8-negative, CK5-positive basal cells. In addition to prostatic stromal cells, AR expression could be detected in some basal cells, some intermediate cells, and all luminal cells in prostate. By Cre-LoxP strategy, the prostate epithelium-specific AR knockout (pes-ARKO) and inducible-cre ARKO mice were recently established and have allowed the field to address the differential and distinct AR roles in different types of prostatic cells. These ARKO mice were bred with TRAMP prostate cancer model, and results from these models suggest that (i) prostatic epithelial AR plays dual roles as a suppressor of basal cell proliferation and as a survival factor for luminal cells, and (ii) the stromal AR plays a proliferator role to support the epithelial cell survival and proliferation. Using microarray analysis of primary tumor cells isolated from the prostate tumors of pes-ARKO-TRAMP mice, it was found that a series of metastatic genes were altered and responsible for the higher invasiveness and metastatic rates.

These recent ARKO animal studies not only advance our understanding of the differential roles of AR in different type of prostatic cells, but also closely reflect the pathological changes for the patients undergoing the ADT. Together, these findings provide new evidences to support the potential beneficial effects of intermittent ADT therapy, and they also urge the development of cell type and stage selective anti-AR therapies for the prostate cancer patients.


Prostate Cancer Androgen Receptor Androgen Receptor Expression Androgen Receptor Gene Prostate Cancer Progression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aalinkeel, R., Nair, M.P., Sufrin, G., Mahajan, S.D., Chadha, K.C., Chawda, R.P. and Schwartz, S.A. (2004) Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res, 64, 5311–5321.PubMedGoogle Scholar
  2. Akakura, K., Bruchovsky, N., Goldenberg, S.L., Rennie, P.S., Buckley, A.R. and Sullivan, L.D. (1993) Effects of intermittent androgen suppression on androgen-dependent tumors. Apoptosis and serum prostate-specific antigen. Cancer, 71, 2782–2790.PubMedGoogle Scholar
  3. Alvarado, C., Beitel, L.K., Sircar, K., Aprikian, A., Trifiro, M. and Gottlieb, B. (2005) Somatic mosaicism and cancer: a micro-genetic examination into the role of the androgen receptor gene in prostate cancer. Cancer Res, 65, 8514–8518.PubMedGoogle Scholar
  4. Attiga, F.A., Fernandez, P.M., Weeraratna, A.T., Manyak, M.J. and Patierno, S.R. (2000) Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res, 60, 4629–4637.PubMedGoogle Scholar
  5. Baldassarre, G., Belletti, B., Nicoloso, M.S., Schiappacassi, M., Vecchione, A., Spessotto, P., Morrione, A., Canzonieri, V. and Colombatti, A. (2005) p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell, 7, 51–63.PubMedGoogle Scholar
  6. Belletti, B., Nicoloso, M.S., Schiappacassi, M., Chimienti, E., Berton, S., Lovat, F., Colombatti, A. and Baldassarre, G. (2005) p27(kip1) functional regulation in human cancer: a potential target for therapeutic designs. Curr Med Chem, 12, 1589–1605.PubMedGoogle Scholar
  7. Bentel, J.M. and Tilley, W.D. (1996) Androgen receptors in prostate cancer. J Endocrinol, 151, 1–11.PubMedGoogle Scholar
  8. Bhowmick, N.A. and Moses, H.L. (2005) Tumor–stroma interactions. Curr Opin Genet Dev, 15, 97–101.PubMedGoogle Scholar
  9. Bouzin, C. and Feron, O. (2007) Targeting tumor stroma and exploiting mature tumor vasculature to improve anti-cancer drug delivery. Drug Resist Updat, 10, 109–120.PubMedGoogle Scholar
  10. Buchanan, G., Greenberg, N.M., Scher, H.I., Harris, J.M., Marshall, V.R. and Tilley, W.D. (2001a) Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res, 7, 1273–1281.Google Scholar
  11. Buchanan, G., Irvine, R.A., Coetzee, G.A. and Tilley, W.D. (2001b) Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev, 20, 207–223.Google Scholar
  12. Buchanan, G., Yang, M., Harris, J.M., Nahm, H.S., Han, G., Moore, N., Bentel, J.M., Matusik, R.J., Horsfall, D.J., Marshall, V.R., Greenberg, N.M. and Tilley, W.D. (2001c) Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol Endocrinol, 15, 46–56.Google Scholar
  13. Chen, G., Wang, X., Zhang, S., Lu, Y., Sun, Y., Zhang, J., Li, Z. and Lu, J. (2005) Androgen receptor mutants detected in recurrent prostate cancer exhibit diverse functional characteristics. Prostate, 63, 395–406.PubMedGoogle Scholar
  14. Chodak, G.W., Kranc, D.M., Puy, L.A., Takeda, H., Johnson, K. and Chang, C. (1992) Nuclear localization of androgen receptor in heterogeneous samples of normal, hyperplastic and neoplastic human prostate. J Urol, 147, 798–803.PubMedGoogle Scholar
  15. Condon, M.S. (2005) The role of the stromal microenvironment in prostate cancer. Semin Cancer Biol, 15, 132–137.PubMedGoogle Scholar
  16. Corey, E., Quinn, J.E., Bladou, F., Brown, L.G., Roudier, M.P., Brown, J.M., Buhler, K.R. and Vessella, R.L. (2002) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate, 52, 20–33.PubMedGoogle Scholar
  17. Crook, J.M., Szumacher, E., Malone, S., Huan, S. and Segal, R. (1999) Intermittent androgen suppression in the management of prostate cancer. Urology, 53, 530–534.PubMedGoogle Scholar
  18. Culig, Z. and Bartsch, G. (2006) Androgen axis in prostate cancer. J Cell Biochem, 99, 373–381.PubMedGoogle Scholar
  19. Cunha, G.R. and Lung, B. (1978) The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool, 205, 181–193.PubMedGoogle Scholar
  20. Cunha, G.R. and Young, P. (1991) Inability of Tfm (testicular feminization) epithelial cells to express androgen-dependent seminal vesicle secretory proteins in chimeric tissue recombinants. Endocrinology, 128, 3293–3298.PubMedGoogle Scholar
  21. Cunha, G.R., Donjacour, A.A., Cooke, P.S., Mee, S., Bigsby, R.M., Higgins, S.J. and Sugimura, Y. (1987) The endocrinology and developmental biology of the prostate. Endocr Rev, 8, 338–362.PubMedGoogle Scholar
  22. Cunha, G.R., Battle, E., Young, P., Brody, J., Donjacour, A., Hayashi, N. and Kinbara, H. (1992) Role of epithelial–mesenchymal interactions in the differentiation and spatial organization of visceral smooth muscle. Epithelial Cell Biol, 1, 76–83.PubMedGoogle Scholar
  23. Cunha, G.R., Ricke, W., Thomson, A., Marker, P.C., Risbridger, G., Hayward, S.W., Wang, Y.Z., Donjacour, A.A. and Kurita, T. (2004) Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J Steroid Biochem Mol Biol, 92, 221–236.PubMedGoogle Scholar
  24. Donjacour, A.A. and Cunha, G.R. (1988) The effect of androgen deprivation on branching morphogenesis in the mouse prostate. Dev Biol, 128, 1–14.PubMedGoogle Scholar
  25. Donjacour, A.A. and Cunha, G.R. (1993) Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology, 132, 2342–2350.PubMedGoogle Scholar
  26. Duff, J. and McEwan, I.J. (2005) Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol Endocrinol, 19, 2943–2954.PubMedGoogle Scholar
  27. Egawa, S., Takashima, R., Matsumoto, K., Mizoguchi, H., Kuwao, S. and Baba, S. (2000) A pilot study of intermittent androgen ablation in advanced prostate cancer in Japanese men. Jpn J Clin Oncol, 30, 21–26.PubMedGoogle Scholar
  28. Feltquate, D., Nordquist, L., Eicher, C., Morris, M., Smaletz, O., Slovin, S., Curley, T., Wilton, A., Fleisher, M., Heller, G. and Scher, H.I. (2006) Rapid androgen cycling as treatment for patients with prostate cancer. Clin Cancer Res, 12, 7414–7421.PubMedGoogle Scholar
  29. Fenton, M.A., Shuster, T.D., Fertig, A.M., Taplin, M.E., Kolvenbag, G., Bubley, G.J. and Balk, S.P. (1997) Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin Cancer Res, 3, 1383–1388.PubMedGoogle Scholar
  30. Fujimoto, N., Miyamoto, H., Mizokami, A., Harada, S., Nomura, M., Ueta, Y., Sasaguri, T. and Matsumoto, T. (2007) Prostate cancer cells increase androgen sensitivity by increase in nuclear androgen receptor and androgen receptor coactivators; a possible mechanism of hormone-resistance of prostate cancer cells. Cancer Invest, 25, 32–37.PubMedGoogle Scholar
  31. Gingrich, J.R., Barrios, R.J., Kattan, M.W., Nahm, H.S., Finegold, M.J. and Greenberg, N.M. (1997) Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res, 57, 4687–4691.PubMedGoogle Scholar
  32. Gottlieb, B., Beitel, L.K., Wu, J.H. and Trifiro, M. (2004) The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat, 23, 527–533.PubMedGoogle Scholar
  33. Hammacher, A., Thompson, E.W. and Williams, E.D. (2005) Interleukin-6 is a potent inducer of S100P, which is up-regulated in androgen-refractory and metastatic prostate cancer. Int J Biochem Cell Biol, 37, 442–450.PubMedGoogle Scholar
  34. Han, G., Foster, B.A., Mistry, S., Buchanan, G., Harris, J.M., Tilley, W.D. and Greenberg, N.M. (2001) Hormone status selects for spontaneous somatic androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer. J Biol Chem, 276, 11204–11213.PubMedGoogle Scholar
  35. Han, G., Buchanan, G., Ittmann, M., Harris, J.M., Yu, X., Demayo, F.J., Tilley, W. and Greenberg, N.M. (2005) Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc Natl Acad Sci USA, 102, 1151–1156.PubMedGoogle Scholar
  36. Hayward, S.W., Baskin, L.S., Haughney, P.C., Foster, B.A., Cunha, A.R., Dahiya, R., Prins, G.S. and Cunha, G.R. (1996a) Stromal development in the ventral prostate, anterior prostate and seminal vesicle of the rat. Acta Anat, 155, 94–103.Google Scholar
  37. Hayward, S.W., Cunha, G.R. and Dahiya, R. (1996b) Normal development and carcinogenesis of the prostate. A unifying hypothesis. Ann N Y Acad Sci, 784, 50–62.Google Scholar
  38. Hayward, S.W., Rosen, M.A. and Cunha, G.R. (1997) Stromal–epithelial interactions in the normal and neoplastic prostate. Br J Urol, 79 Suppl 2, 18–26.PubMedGoogle Scholar
  39. Hayward, S.W., Haughney, P.C., Rosen, M.A., Greulich, K.M., Weier, H.U., Dahiya, R. and Cunha, G.R. (1998) Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation, 63, 131–140.PubMedGoogle Scholar
  40. Heemers, H.V. and Tindall, D.J. (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev, 28, 778–808.PubMedGoogle Scholar
  41. Heinlein, C.A. and Chang, C. (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev, 23, 175–200.PubMedGoogle Scholar
  42. Heinlein, C.A. and Chang, C. (2004) Androgen receptor in prostate cancer. Endocr Rev, 25, 276–308.PubMedGoogle Scholar
  43. Heitzer, M.D. and DeFranco, D.B. (2006) Hic-5/ARA55, a LIM domain-containing nuclear receptor coactivator expressed in prostate stromal cells. Cancer Res, 66, 7326–7333.PubMedGoogle Scholar
  44. Higano, C.S., Ellis, W., Russell, K. and Lange, P.H. (1996) Intermittent androgen suppression with leuprolide and flutamide for prostate cancer: a pilot study. Urology, 48, 800–804.PubMedGoogle Scholar
  45. Hobisch, A., Culig, Z., Radmayr, C., Bartsch, G., Klocker, H. and Hittmair, A. (1996) Androgen receptor status of lymph node metastases from prostate cancer. Prostate, 28, 129–135.PubMedGoogle Scholar
  46. Hofmeister, V., Schrama, D. and Becker, J.C. (2008) Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother, 57, 1–17.PubMedGoogle Scholar
  47. Hu, Y.C., Yeh, S., Yeh, S.D., Sampson, E.R., Huang, J., Li, P., Hsu, C.L., Ting, H.J., Lin, H.K., Wang, L., Kim, E., Ni, J. and Chang, C. (2004) Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. J Biol Chem, 279, 33438–33446.PubMedGoogle Scholar
  48. Huggins, C. and Hodges, C.V. (1972) Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin, 22, 232–240.PubMedGoogle Scholar
  49. Hurtado-Coll, A., Goldenberg, S.L., Gleave, M.E. and Klotz, L. (2002) Intermittent androgen suppression in prostate cancer: the Canadian experience. Urology, 60, 52–56; discussion 56.PubMedGoogle Scholar
  50. Isaacs, J.T. (1984) Antagonistic effect of androgen on prostatic cell death. Prostate, 5, 545–557.PubMedGoogle Scholar
  51. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T. and Thun, M.J. (2008) Cancer statistics, 2008. CA Cancer J Clin, 58, 71–96.PubMedGoogle Scholar
  52. Johnson, M.A., Iversen, P., Schwier, P., Corn, A.L., Sandusky, G., Graff, J. and Neubauer, B.L. (2005) Castration triggers growth of previously static androgen-independent lesions in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Prostate, 62, 322–338.PubMedGoogle Scholar
  53. Kahl, P., Gullotti, L., Heukamp, L.C., Wolf, S., Friedrichs, N., Vorreuther, R., Solleder, G., Bastian, P.J., Ellinger, J., Metzger, E., Schule, R. and Buettner, R. (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res, 66, 11341–11347.PubMedGoogle Scholar
  54. Kinbara, H. and Cunha, G.R. (1996) Ductal heterogeneity in rat dorsal-lateral prostate. Prostate, 28, 58–64.PubMedGoogle Scholar
  55. Kuhn, R., Schwenk, F., Aguet, M. and Rajewsky, K. (1995) Inducible gene targeting in mice. Science, 269, 1427–1429.PubMedGoogle Scholar
  56. Kurita, T., Wang, Y.Z., Donjacour, A.A., Zhao, C., Lydon, J.P., O'Malley, B.W., Isaacs, J.T., Dahiya, R. and Cunha, G.R. (2001) Paracrine regulation of apoptosis by steroid hormones in the male and female reproductive system. Cell Death Differ, 8, 192–200.PubMedGoogle Scholar
  57. Kyprianou, N. and Isaacs, J.T. (1988) Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology, 122, 552–562.PubMedGoogle Scholar
  58. Lakso, M., Sauer, B., Mosinger, B., Jr., Lee, E.J., Manning, R.W., Yu, S.H., Mulder, K.L. and Westphal, H. (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA, 89, 6232–6236.PubMedGoogle Scholar
  59. Lapouge, G., Erdmann, E., Marcias, G., Jagla, M., Monge, A., Kessler, P., Serra, S., Lang, H., Jacqmin, D., Bergerat, J.P. and Ceraline, J. (2007) Unexpected paracrine action of prostate cancer cells harboring a new class of androgen receptor mutation – a new paradigm for cooperation among prostate tumor cells. Int J Cancer, 121, 1238–1244.PubMedGoogle Scholar
  60. Li, W., Cavasotto, C.N., Cardozo, T., Ha, S., Dang, T., Taneja, S.S., Logan, S.K. and Garabedian, M.J. (2005) Androgen receptor mutations identified in prostate cancer and androgen insensitivity syndrome display aberrant ART-27 coactivator function. Mol Endocrinol, 19, 2273–2282.PubMedGoogle Scholar
  61. Linja, M.J. and Visakorpi, T. (2004) Alterations of androgen receptor in prostate cancer. J Steroid Biochem Mol Biol, 92, 255–264.PubMedGoogle Scholar
  62. Litvinov, I.V., De Marzo, A.M. and Isaacs, J.T. (2003) Is the Achilles' heel for prostate cancer therapy a gain of function in androgen receptor signaling? J Clin Endocrinol Metab, 88, 2972–2982.PubMedGoogle Scholar
  63. Liu, A.Y., Roudier, M.P. and True, L.D. (2004) Heterogeneity in primary and metastatic prostate cancer as defined by cell surface CD profile. Am J Pathol, 165, 1543–1556.PubMedGoogle Scholar
  64. Marcelli, M., Ittmann, M., Mariani, S., Sutherland, R., Nigam, R., Murthy, L., Zhao, Y., DiConcini, D., Puxeddu, E., Esen, A., Eastham, J., Weigel, N.L. and Lamb, D.J. (2000) Androgen receptor mutations in prostate cancer. Cancer Res, 60, 944–949.PubMedGoogle Scholar
  65. Michalaki, V., Syrigos, K., Charles, P. and Waxman, J. (2004) Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer, 90, 2312–2316.PubMedGoogle Scholar
  66. Mirosevich, J., Bentel, J.M., Zeps, N., Redmond, S.L., D'Antuono, M.F. and Dawkins, H.J. (1999) Androgen receptor expression of proliferating basal and luminal cells in adult murine ventral prostate. J Endocrinol, 162, 341–350.PubMedGoogle Scholar
  67. Miyamoto, H., Altuwaijri, S., Cai, Y., Messing, E.M. and Chang, C. (2005) Inhibition of the Akt, cyclooxygenase-2, and matrix metalloproteinase-9 pathways in combination with androgen deprivation therapy: potential therapeutic approaches for prostate cancer. Mol Carcinog, 44, 1–10.PubMedGoogle Scholar
  68. Mohler, J.L., Chen, Y., Hamil, K., Hall, S.H., Cidlowski, J.A., Wilson, E.M., French, F.S. and Sar, M. (1996) Androgen and glucocorticoid receptors in the stroma and epithelium of prostatic hyperplasia and carcinoma. Clin Cancer Res, 2, 889–895.PubMedGoogle Scholar
  69. Monge, A., Jagla, M., Lapouge, G., Sasorith, S., Cruchant, M., Wurtz, J.M., Jacqmin, D., Bergerat, J.P. and Ceraline, J. (2006) Unfaithfulness and promiscuity of a mutant androgen receptor in a hormone-refractory prostate cancer. Cell Mol Life Sci, 63, 487–497.PubMedGoogle Scholar
  70. Nagabhushan, M., Miller, C.M., Pretlow, T.P., Giaconia, J.M., Edgehouse, N.L., Schwartz, S., Kung, H.J., de Vere White, R.W., Gumerlock, P.H., Resnick, M.I., Amini, S.B. and Pretlow, T.G. (1996) CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res, 56, 3042–3046.PubMedGoogle Scholar
  71. Nagy, A. (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis, 26, 99–109.PubMedGoogle Scholar
  72. Nelius, T., Filleur, S., Yemelyanov, A., Budunova, I., Shroff, E., Mirochnik, Y., Aurora, A., Veliceasa, D., Xiao, W., Wang, Z. and Volpert, O.V. (2007) Androgen receptor targets NFkappaB and TSP1 to suppress prostate tumor growth in vivo. Int J Cancer, 121, 999–1008.PubMedGoogle Scholar
  73. Nelson, J.B. and Carducci, M.A. (2000) Small bioactive peptides and cell surface peptidases in androgen-independent prostate cancer. Cancer Invest, 18, 87–96.PubMedGoogle Scholar
  74. Nishimura, K., Ting, H.J., Harada, Y., Tokizane, T., Nonomura, N., Kang, H.Y., Chang, H.C., Yeh, S., Miyamoto, H., Shin, M., Aozasa, K., Okuyama, A. and Chang, C. (2003) Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator. Cancer Res, 63, 4888–4894.PubMedGoogle Scholar
  75. Niu, Y., Altuwaijr, S., Lai, K.-P., Wu, C.-T., Ricke, W.A., Messing, E.M., Yao, J., Yeh, S. and Chang, C. (2008a) Androgen receptor is a tumor suppressor and stimulator in prostate cancer metastasis. Proc Natl Acad Sci USA, 105, 12182–12187.Google Scholar
  76. Niu, Y., Altuwaijri, S., Yeh, S., Lai, K.-P., Yu, S., Chuang, K.-H., Huang, S.-P., Lardy, H. and Chang, C. (2008b) Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proc Natl Acad Sci USA, 105, 12188–12193.Google Scholar
  77. Papandreou, C.N., Usmani, B., Geng, Y., Bogenrieder, T., Freeman, R., Wilk, S., Finstad, C.L., Reuter, V.E., Powell, C.T., Scheinberg, D., Magill, C., Scher, H.I., Albino, A.P. and Nanus, D.M. (1998) Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat Med, 4, 50–57.PubMedGoogle Scholar
  78. Patrawala, L., Calhoun, T., Schneider-Broussard, R., Li, H., Bhatia, B., Tang, S., Reilly, J.G., Chandra, D., Zhou, J., Claypool, K., Coghlan, L. and Tang, D.G. (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25, 1696–1708.PubMedGoogle Scholar
  79. Pilatus, U., Ackerstaff, E., Artemov, D., Mori, N., Gillies, R.J. and Bhujwalla, Z.M. (2000) Imaging prostate cancer invasion with multi-nuclear magnetic resonance methods: the metabolic Boyden chamber. Neoplasia, 2, 273–279.PubMedGoogle Scholar
  80. Pinkas, J. and Teicher, B.A. (2006) TGF-beta in cancer and as a therapeutic target. Biochem Pharmacol, 72, 523–529.PubMedGoogle Scholar
  81. Prins, G.S. and Putz, O. (2008) Molecular signaling pathways that regulate prostate gland development. Differentiation, 76, 641–659.PubMedGoogle Scholar
  82. Rahman, M., Miyamoto, H. and Chang, C. (2004) Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin Cancer Res, 10, 2208–2219.PubMedGoogle Scholar
  83. Roy, A.K., Lavrovsky, Y., Song, C.S., Chen, S., Jung, M.H., Velu, N.K., Bi, B.Y. and Chatterjee, B. (1999) Regulation of androgen action. Vitam Horm, 55, 309–352.PubMedGoogle Scholar
  84. Sadi, M.V., Walsh, P.C. and Barrack, E.R. (1991) Immunohistochemical study of androgen receptors in metastatic prostate cancer. Comparison of receptor content and response to hormonal therapy. Cancer, 67, 3057–3064.PubMedGoogle Scholar
  85. Saleem, M., Kweon, M.H., Johnson, J.J., Adhami, V.M., Elcheva, I., Khan, N., Bin Hafeez, B., Bhat, K.M., Sarfaraz, S., Reagan-Shaw, S., Spiegelman, V.S., Suri, V. and Mukhtar, H. (2006) S100A4 accelerates tumorigenesis and invasion of human prostate cancer through the transcriptional regulation of matrix metalloproteinase 9. Proc Natl Acad Sci USA, 103, 14825–14830.PubMedGoogle Scholar
  86. Sharifi, N., Dahut, W.L. and Figg, W.D. (2008) Secondary hormonal therapy for prostate cancer: what lies on the horizon? BJU Int, 101, 271–274.PubMedGoogle Scholar
  87. Shi, X.B., Ma, A.H., Xia, L., Kung, H.J. and de Vere White, R.W. (2002) Functional analysis of 44 mutant androgen receptors from human prostate cancer. Cancer Res, 62, 1496–1502.PubMedGoogle Scholar
  88. Sugimura, Y., Cunha, G.R. and Donjacour, A.A. (1986a) Morphogenesis of ductal networks in the mouse prostate. Biol Reprod, 34, 961–971.Google Scholar
  89. Sugimura, Y., Cunha, G.R. and Donjacour, A.A. (1986b) Morphological and histological study of castration-induced degeneration and androgen-induced regeneration in the mouse prostate. Biol Reprod, 34, 973–983.Google Scholar
  90. Tanimura, Y., Kokuryo, T., Tsunoda, N., Yamazaki, Y., Oda, K., Nimura, Y., Naing Mon, N., Huang, P., Nakanuma, Y., Chen, M.F., Jan, Y.Y., Yeh, T.S., Chiu, C.T., Hsieh, L.L. and Hamaguchi, M. (2005) Tumor necrosis factor alpha promotes invasiveness of cholangiocarcinoma cells via its receptor, TNFR2. Cancer Lett, 219, 205–213.PubMedGoogle Scholar
  91. Taplin, M.E., Bubley, G.J., Shuster, T.D., Frantz, M.E., Spooner, A.E., Ogata, G.K., Keer, H.N. and Balk, S.P. (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med, 332, 1393–1398.PubMedGoogle Scholar
  92. Tilley, W.D., Buchanan, G., Hickey, T.E. and Bentel, J.M. (1996) Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res, 2, 277–285.PubMedGoogle Scholar
  93. van der Kwast, T.H., Schalken, J., Ruizeveld de Winter, J.A., van Vroonhoven, C.C., Mulder, E., Boersma, W. and Trapman, J. (1991) Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer, 48, 189–193.PubMedGoogle Scholar
  94. van Leenders, G.J. and Schalken, J.A. (2003) Epithelial cell differentiation in the human prostate epithelium: implications for the pathogenesis and therapy of prostate cancer. Crit Rev Oncol Hematol, 46 Suppl, S3–S10.PubMedGoogle Scholar
  95. van Leenders, G.J., Aalders, T.W., Hulsbergen-van de Kaa, C.A., Ruiter, D.J. and Schalken, J.A. (2001) Expression of basal cell keratins in human prostate cancer metastases and cell lines. J Pathol, 195, 563–570.PubMedGoogle Scholar
  96. Webber, M.M., Trakul, N., Thraves, P.S., Bello-DeOcampo, D., Chu, W.W., Storto, P.D., Huard, T.K., Rhim, J.S. and Williams, D.E. (1999) A human prostatic stromal myofibroblast cell line WPMY-1: a model for stromal–epithelial interactions in prostatic neoplasia. Carcinogenesis, 20, 1185–1192.PubMedGoogle Scholar
  97. Wu, C.T., Altuwaijri, S., Ricke, W.A., Huang, S.P., Yeh, S., Zhang, C., Niu, Y., Tsai, M.Y. and Chang, C. (2007) Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc Natl Acad Sci USA, 104, 12679–12684.PubMedGoogle Scholar
  98. Wu, X., Wu, J., Huang, J., Powell, W.C., Zhang, J., Matusik, R.J., Sangiorgi, F.O., Maxson, R.E., Sucov, H.M. and Roy-Burman, P. (2001) Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev, 101, 61–69.PubMedGoogle Scholar
  99. Yang, Z., Chang, Y.J., Miyamoto, H., Ni, J., Niu, Y., Chen, Z., Chen, Y.L., Yao, J.L., di Sant'Agnese, P.A. and Chang, C. (2007a) Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol, 21, 343–358.Google Scholar
  100. Yang, Z., Chang, Y.J., Miyamoto, H., Yeh, S., Yao, J.L., di Sant'Agnese, P.A., Tsai, M.Y. and Chang, C. (2007b) Suppression of androgen receptor transactivation and prostate cancer cell growth by heterogeneous nuclear ribonucleoprotein A1 via interaction with androgen receptor coregulator ARA54. Endocrinology, 148, 1340–1349.Google Scholar
  101. Yeh, S., Miyamoto, H. and Chang, C. (1997) Hydroxyflutamide may not always be a pure antiandrogen. Lancet, 349, 852–853.PubMedGoogle Scholar
  102. Yeh, S., Miyamoto, H., Shima, H. and Chang, C. (1998) From estrogen to androgen receptor: new pathway for sex hormones in prostate. Proc Natl Acad Sci USA, 95, 5527–5532.PubMedGoogle Scholar
  103. Yeh, S., Tsai, M.Y., Xu, Q., Mu, X.M., Lardy, H., Huang, K.E., Lin, H., Yeh, S.D., Altuwaijri, S., Zhou, X., Xing, L., Boyce, B.F., Hung, M.C., Zhang, S., Gan, L. and Chang, C. (2002) Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci USA, 99, 13498–13503.PubMedGoogle Scholar
  104. Yeh, S., Hu, Y.C., Wang, P.H., Xie, C., Xu, Q., Tsai, M.Y., Dong, Z., Wang, R.S., Lee, T.H. and Chang, C. (2003) Abnormal mammary gland development and growth retardation in female mice and MCF7 breast cancer cells lacking androgen receptor. J Exp Med, 198, 1899–1908.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shuyuan Yeh
    • 1
  • Yuanjie Niu
    • 1
  • Hiroshi Miyamoto
    • 1
  • Tamin Chang
    • 1
  • Chawnshang Chang
    • 1
  1. 1.George Whipple Lab for Cancer ResearchDepartments of Pathology and Urology, University of Rochester Medical CenterUSA

Personalised recommendations