Skip to main content

Differential Roles of Androgen Receptor in Prostate Development and Cancer Progression

  • Chapter
  • First Online:

Abstract

The androgen depletion therapy (ADT) has become the major treatment for the cancer patients through the use of chemical castration and/or antiandrogens, yet the therapy eventually fails and cancers progress to more advanced stages. The mutation, amplification, overexpression of AR, and cross-talk between AR, AR co-regulators, and other growth factor pathways have provided potential explanations for the failure of androgen ablation therapies in some cases. However, whether the differential AR roles in different types of prostate cells could contribute to the failure of ADT remains unclear and will be the focus of this review.

AR expresses in both stromal and epithelial compartments of prostate. It has been shown that there are three basic types of prostatic epithelial cells: (i) cytokeratin 8 (CK8)-positive, CK5-negative luminal cells, (ii) CK5/CK8-double positive intermediate cells, and (iii) CK8-negative, CK5-positive basal cells. In addition to prostatic stromal cells, AR expression could be detected in some basal cells, some intermediate cells, and all luminal cells in prostate. By Cre-LoxP strategy, the prostate epithelium-specific AR knockout (pes-ARKO) and inducible-cre ARKO mice were recently established and have allowed the field to address the differential and distinct AR roles in different types of prostatic cells. These ARKO mice were bred with TRAMP prostate cancer model, and results from these models suggest that (i) prostatic epithelial AR plays dual roles as a suppressor of basal cell proliferation and as a survival factor for luminal cells, and (ii) the stromal AR plays a proliferator role to support the epithelial cell survival and proliferation. Using microarray analysis of primary tumor cells isolated from the prostate tumors of pes-ARKO-TRAMP mice, it was found that a series of metastatic genes were altered and responsible for the higher invasiveness and metastatic rates.

These recent ARKO animal studies not only advance our understanding of the differential roles of AR in different type of prostatic cells, but also closely reflect the pathological changes for the patients undergoing the ADT. Together, these findings provide new evidences to support the potential beneficial effects of intermittent ADT therapy, and they also urge the development of cell type and stage selective anti-AR therapies for the prostate cancer patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aalinkeel, R., Nair, M.P., Sufrin, G., Mahajan, S.D., Chadha, K.C., Chawda, R.P. and Schwartz, S.A. (2004) Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res, 64, 5311–5321.

    PubMed  CAS  Google Scholar 

  • Akakura, K., Bruchovsky, N., Goldenberg, S.L., Rennie, P.S., Buckley, A.R. and Sullivan, L.D. (1993) Effects of intermittent androgen suppression on androgen-dependent tumors. Apoptosis and serum prostate-specific antigen. Cancer, 71, 2782–2790.

    PubMed  CAS  Google Scholar 

  • Alvarado, C., Beitel, L.K., Sircar, K., Aprikian, A., Trifiro, M. and Gottlieb, B. (2005) Somatic mosaicism and cancer: a micro-genetic examination into the role of the androgen receptor gene in prostate cancer. Cancer Res, 65, 8514–8518.

    PubMed  CAS  Google Scholar 

  • Attiga, F.A., Fernandez, P.M., Weeraratna, A.T., Manyak, M.J. and Patierno, S.R. (2000) Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res, 60, 4629–4637.

    PubMed  CAS  Google Scholar 

  • Baldassarre, G., Belletti, B., Nicoloso, M.S., Schiappacassi, M., Vecchione, A., Spessotto, P., Morrione, A., Canzonieri, V. and Colombatti, A. (2005) p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell, 7, 51–63.

    PubMed  CAS  Google Scholar 

  • Belletti, B., Nicoloso, M.S., Schiappacassi, M., Chimienti, E., Berton, S., Lovat, F., Colombatti, A. and Baldassarre, G. (2005) p27(kip1) functional regulation in human cancer: a potential target for therapeutic designs. Curr Med Chem, 12, 1589–1605.

    PubMed  CAS  Google Scholar 

  • Bentel, J.M. and Tilley, W.D. (1996) Androgen receptors in prostate cancer. J Endocrinol, 151, 1–11.

    PubMed  CAS  Google Scholar 

  • Bhowmick, N.A. and Moses, H.L. (2005) Tumor–stroma interactions. Curr Opin Genet Dev, 15, 97–101.

    PubMed  CAS  Google Scholar 

  • Bouzin, C. and Feron, O. (2007) Targeting tumor stroma and exploiting mature tumor vasculature to improve anti-cancer drug delivery. Drug Resist Updat, 10, 109–120.

    PubMed  CAS  Google Scholar 

  • Buchanan, G., Greenberg, N.M., Scher, H.I., Harris, J.M., Marshall, V.R. and Tilley, W.D. (2001a) Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res, 7, 1273–1281.

    CAS  Google Scholar 

  • Buchanan, G., Irvine, R.A., Coetzee, G.A. and Tilley, W.D. (2001b) Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev, 20, 207–223.

    CAS  Google Scholar 

  • Buchanan, G., Yang, M., Harris, J.M., Nahm, H.S., Han, G., Moore, N., Bentel, J.M., Matusik, R.J., Horsfall, D.J., Marshall, V.R., Greenberg, N.M. and Tilley, W.D. (2001c) Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol Endocrinol, 15, 46–56.

    CAS  Google Scholar 

  • Chen, G., Wang, X., Zhang, S., Lu, Y., Sun, Y., Zhang, J., Li, Z. and Lu, J. (2005) Androgen receptor mutants detected in recurrent prostate cancer exhibit diverse functional characteristics. Prostate, 63, 395–406.

    PubMed  CAS  Google Scholar 

  • Chodak, G.W., Kranc, D.M., Puy, L.A., Takeda, H., Johnson, K. and Chang, C. (1992) Nuclear localization of androgen receptor in heterogeneous samples of normal, hyperplastic and neoplastic human prostate. J Urol, 147, 798–803.

    PubMed  CAS  Google Scholar 

  • Condon, M.S. (2005) The role of the stromal microenvironment in prostate cancer. Semin Cancer Biol, 15, 132–137.

    PubMed  Google Scholar 

  • Corey, E., Quinn, J.E., Bladou, F., Brown, L.G., Roudier, M.P., Brown, J.M., Buhler, K.R. and Vessella, R.L. (2002) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate, 52, 20–33.

    PubMed  Google Scholar 

  • Crook, J.M., Szumacher, E., Malone, S., Huan, S. and Segal, R. (1999) Intermittent androgen suppression in the management of prostate cancer. Urology, 53, 530–534.

    PubMed  CAS  Google Scholar 

  • Culig, Z. and Bartsch, G. (2006) Androgen axis in prostate cancer. J Cell Biochem, 99, 373–381.

    PubMed  CAS  Google Scholar 

  • Cunha, G.R. and Lung, B. (1978) The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool, 205, 181–193.

    PubMed  CAS  Google Scholar 

  • Cunha, G.R. and Young, P. (1991) Inability of Tfm (testicular feminization) epithelial cells to express androgen-dependent seminal vesicle secretory proteins in chimeric tissue recombinants. Endocrinology, 128, 3293–3298.

    PubMed  CAS  Google Scholar 

  • Cunha, G.R., Donjacour, A.A., Cooke, P.S., Mee, S., Bigsby, R.M., Higgins, S.J. and Sugimura, Y. (1987) The endocrinology and developmental biology of the prostate. Endocr Rev, 8, 338–362.

    PubMed  CAS  Google Scholar 

  • Cunha, G.R., Battle, E., Young, P., Brody, J., Donjacour, A., Hayashi, N. and Kinbara, H. (1992) Role of epithelial–mesenchymal interactions in the differentiation and spatial organization of visceral smooth muscle. Epithelial Cell Biol, 1, 76–83.

    PubMed  CAS  Google Scholar 

  • Cunha, G.R., Ricke, W., Thomson, A., Marker, P.C., Risbridger, G., Hayward, S.W., Wang, Y.Z., Donjacour, A.A. and Kurita, T. (2004) Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J Steroid Biochem Mol Biol, 92, 221–236.

    PubMed  CAS  Google Scholar 

  • Donjacour, A.A. and Cunha, G.R. (1988) The effect of androgen deprivation on branching morphogenesis in the mouse prostate. Dev Biol, 128, 1–14.

    PubMed  CAS  Google Scholar 

  • Donjacour, A.A. and Cunha, G.R. (1993) Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology, 132, 2342–2350.

    PubMed  CAS  Google Scholar 

  • Duff, J. and McEwan, I.J. (2005) Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol Endocrinol, 19, 2943–2954.

    PubMed  CAS  Google Scholar 

  • Egawa, S., Takashima, R., Matsumoto, K., Mizoguchi, H., Kuwao, S. and Baba, S. (2000) A pilot study of intermittent androgen ablation in advanced prostate cancer in Japanese men. Jpn J Clin Oncol, 30, 21–26.

    PubMed  CAS  Google Scholar 

  • Feltquate, D., Nordquist, L., Eicher, C., Morris, M., Smaletz, O., Slovin, S., Curley, T., Wilton, A., Fleisher, M., Heller, G. and Scher, H.I. (2006) Rapid androgen cycling as treatment for patients with prostate cancer. Clin Cancer Res, 12, 7414–7421.

    PubMed  CAS  Google Scholar 

  • Fenton, M.A., Shuster, T.D., Fertig, A.M., Taplin, M.E., Kolvenbag, G., Bubley, G.J. and Balk, S.P. (1997) Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin Cancer Res, 3, 1383–1388.

    PubMed  CAS  Google Scholar 

  • Fujimoto, N., Miyamoto, H., Mizokami, A., Harada, S., Nomura, M., Ueta, Y., Sasaguri, T. and Matsumoto, T. (2007) Prostate cancer cells increase androgen sensitivity by increase in nuclear androgen receptor and androgen receptor coactivators; a possible mechanism of hormone-resistance of prostate cancer cells. Cancer Invest, 25, 32–37.

    PubMed  CAS  Google Scholar 

  • Gingrich, J.R., Barrios, R.J., Kattan, M.W., Nahm, H.S., Finegold, M.J. and Greenberg, N.M. (1997) Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res, 57, 4687–4691.

    PubMed  CAS  Google Scholar 

  • Gottlieb, B., Beitel, L.K., Wu, J.H. and Trifiro, M. (2004) The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat, 23, 527–533.

    PubMed  CAS  Google Scholar 

  • Hammacher, A., Thompson, E.W. and Williams, E.D. (2005) Interleukin-6 is a potent inducer of S100P, which is up-regulated in androgen-refractory and metastatic prostate cancer. Int J Biochem Cell Biol, 37, 442–450.

    PubMed  CAS  Google Scholar 

  • Han, G., Foster, B.A., Mistry, S., Buchanan, G., Harris, J.M., Tilley, W.D. and Greenberg, N.M. (2001) Hormone status selects for spontaneous somatic androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer. J Biol Chem, 276, 11204–11213.

    PubMed  CAS  Google Scholar 

  • Han, G., Buchanan, G., Ittmann, M., Harris, J.M., Yu, X., Demayo, F.J., Tilley, W. and Greenberg, N.M. (2005) Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc Natl Acad Sci USA, 102, 1151–1156.

    PubMed  CAS  Google Scholar 

  • Hayward, S.W., Baskin, L.S., Haughney, P.C., Foster, B.A., Cunha, A.R., Dahiya, R., Prins, G.S. and Cunha, G.R. (1996a) Stromal development in the ventral prostate, anterior prostate and seminal vesicle of the rat. Acta Anat, 155, 94–103.

    CAS  Google Scholar 

  • Hayward, S.W., Cunha, G.R. and Dahiya, R. (1996b) Normal development and carcinogenesis of the prostate. A unifying hypothesis. Ann N Y Acad Sci, 784, 50–62.

    CAS  Google Scholar 

  • Hayward, S.W., Rosen, M.A. and Cunha, G.R. (1997) Stromal–epithelial interactions in the normal and neoplastic prostate. Br J Urol, 79 Suppl 2, 18–26.

    PubMed  Google Scholar 

  • Hayward, S.W., Haughney, P.C., Rosen, M.A., Greulich, K.M., Weier, H.U., Dahiya, R. and Cunha, G.R. (1998) Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation, 63, 131–140.

    PubMed  CAS  Google Scholar 

  • Heemers, H.V. and Tindall, D.J. (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev, 28, 778–808.

    PubMed  CAS  Google Scholar 

  • Heinlein, C.A. and Chang, C. (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev, 23, 175–200.

    PubMed  CAS  Google Scholar 

  • Heinlein, C.A. and Chang, C. (2004) Androgen receptor in prostate cancer. Endocr Rev, 25, 276–308.

    PubMed  CAS  Google Scholar 

  • Heitzer, M.D. and DeFranco, D.B. (2006) Hic-5/ARA55, a LIM domain-containing nuclear receptor coactivator expressed in prostate stromal cells. Cancer Res, 66, 7326–7333.

    PubMed  CAS  Google Scholar 

  • Higano, C.S., Ellis, W., Russell, K. and Lange, P.H. (1996) Intermittent androgen suppression with leuprolide and flutamide for prostate cancer: a pilot study. Urology, 48, 800–804.

    PubMed  CAS  Google Scholar 

  • Hobisch, A., Culig, Z., Radmayr, C., Bartsch, G., Klocker, H. and Hittmair, A. (1996) Androgen receptor status of lymph node metastases from prostate cancer. Prostate, 28, 129–135.

    PubMed  CAS  Google Scholar 

  • Hofmeister, V., Schrama, D. and Becker, J.C. (2008) Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother, 57, 1–17.

    PubMed  CAS  Google Scholar 

  • Hu, Y.C., Yeh, S., Yeh, S.D., Sampson, E.R., Huang, J., Li, P., Hsu, C.L., Ting, H.J., Lin, H.K., Wang, L., Kim, E., Ni, J. and Chang, C. (2004) Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. J Biol Chem, 279, 33438–33446.

    PubMed  CAS  Google Scholar 

  • Huggins, C. and Hodges, C.V. (1972) Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin, 22, 232–240.

    PubMed  CAS  Google Scholar 

  • Hurtado-Coll, A., Goldenberg, S.L., Gleave, M.E. and Klotz, L. (2002) Intermittent androgen suppression in prostate cancer: the Canadian experience. Urology, 60, 52–56; discussion 56.

    PubMed  Google Scholar 

  • Isaacs, J.T. (1984) Antagonistic effect of androgen on prostatic cell death. Prostate, 5, 545–557.

    PubMed  CAS  Google Scholar 

  • Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T. and Thun, M.J. (2008) Cancer statistics, 2008. CA Cancer J Clin, 58, 71–96.

    PubMed  Google Scholar 

  • Johnson, M.A., Iversen, P., Schwier, P., Corn, A.L., Sandusky, G., Graff, J. and Neubauer, B.L. (2005) Castration triggers growth of previously static androgen-independent lesions in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Prostate, 62, 322–338.

    PubMed  Google Scholar 

  • Kahl, P., Gullotti, L., Heukamp, L.C., Wolf, S., Friedrichs, N., Vorreuther, R., Solleder, G., Bastian, P.J., Ellinger, J., Metzger, E., Schule, R. and Buettner, R. (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res, 66, 11341–11347.

    PubMed  CAS  Google Scholar 

  • Kinbara, H. and Cunha, G.R. (1996) Ductal heterogeneity in rat dorsal-lateral prostate. Prostate, 28, 58–64.

    PubMed  CAS  Google Scholar 

  • Kuhn, R., Schwenk, F., Aguet, M. and Rajewsky, K. (1995) Inducible gene targeting in mice. Science, 269, 1427–1429.

    PubMed  CAS  Google Scholar 

  • Kurita, T., Wang, Y.Z., Donjacour, A.A., Zhao, C., Lydon, J.P., O'Malley, B.W., Isaacs, J.T., Dahiya, R. and Cunha, G.R. (2001) Paracrine regulation of apoptosis by steroid hormones in the male and female reproductive system. Cell Death Differ, 8, 192–200.

    PubMed  CAS  Google Scholar 

  • Kyprianou, N. and Isaacs, J.T. (1988) Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology, 122, 552–562.

    PubMed  CAS  Google Scholar 

  • Lakso, M., Sauer, B., Mosinger, B., Jr., Lee, E.J., Manning, R.W., Yu, S.H., Mulder, K.L. and Westphal, H. (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA, 89, 6232–6236.

    PubMed  CAS  Google Scholar 

  • Lapouge, G., Erdmann, E., Marcias, G., Jagla, M., Monge, A., Kessler, P., Serra, S., Lang, H., Jacqmin, D., Bergerat, J.P. and Ceraline, J. (2007) Unexpected paracrine action of prostate cancer cells harboring a new class of androgen receptor mutation – a new paradigm for cooperation among prostate tumor cells. Int J Cancer, 121, 1238–1244.

    PubMed  CAS  Google Scholar 

  • Li, W., Cavasotto, C.N., Cardozo, T., Ha, S., Dang, T., Taneja, S.S., Logan, S.K. and Garabedian, M.J. (2005) Androgen receptor mutations identified in prostate cancer and androgen insensitivity syndrome display aberrant ART-27 coactivator function. Mol Endocrinol, 19, 2273–2282.

    PubMed  CAS  Google Scholar 

  • Linja, M.J. and Visakorpi, T. (2004) Alterations of androgen receptor in prostate cancer. J Steroid Biochem Mol Biol, 92, 255–264.

    PubMed  CAS  Google Scholar 

  • Litvinov, I.V., De Marzo, A.M. and Isaacs, J.T. (2003) Is the Achilles' heel for prostate cancer therapy a gain of function in androgen receptor signaling? J Clin Endocrinol Metab, 88, 2972–2982.

    PubMed  CAS  Google Scholar 

  • Liu, A.Y., Roudier, M.P. and True, L.D. (2004) Heterogeneity in primary and metastatic prostate cancer as defined by cell surface CD profile. Am J Pathol, 165, 1543–1556.

    PubMed  Google Scholar 

  • Marcelli, M., Ittmann, M., Mariani, S., Sutherland, R., Nigam, R., Murthy, L., Zhao, Y., DiConcini, D., Puxeddu, E., Esen, A., Eastham, J., Weigel, N.L. and Lamb, D.J. (2000) Androgen receptor mutations in prostate cancer. Cancer Res, 60, 944–949.

    PubMed  CAS  Google Scholar 

  • Michalaki, V., Syrigos, K., Charles, P. and Waxman, J. (2004) Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer, 90, 2312–2316.

    PubMed  CAS  Google Scholar 

  • Mirosevich, J., Bentel, J.M., Zeps, N., Redmond, S.L., D'Antuono, M.F. and Dawkins, H.J. (1999) Androgen receptor expression of proliferating basal and luminal cells in adult murine ventral prostate. J Endocrinol, 162, 341–350.

    PubMed  CAS  Google Scholar 

  • Miyamoto, H., Altuwaijri, S., Cai, Y., Messing, E.M. and Chang, C. (2005) Inhibition of the Akt, cyclooxygenase-2, and matrix metalloproteinase-9 pathways in combination with androgen deprivation therapy: potential therapeutic approaches for prostate cancer. Mol Carcinog, 44, 1–10.

    PubMed  CAS  Google Scholar 

  • Mohler, J.L., Chen, Y., Hamil, K., Hall, S.H., Cidlowski, J.A., Wilson, E.M., French, F.S. and Sar, M. (1996) Androgen and glucocorticoid receptors in the stroma and epithelium of prostatic hyperplasia and carcinoma. Clin Cancer Res, 2, 889–895.

    PubMed  CAS  Google Scholar 

  • Monge, A., Jagla, M., Lapouge, G., Sasorith, S., Cruchant, M., Wurtz, J.M., Jacqmin, D., Bergerat, J.P. and Ceraline, J. (2006) Unfaithfulness and promiscuity of a mutant androgen receptor in a hormone-refractory prostate cancer. Cell Mol Life Sci, 63, 487–497.

    PubMed  CAS  Google Scholar 

  • Nagabhushan, M., Miller, C.M., Pretlow, T.P., Giaconia, J.M., Edgehouse, N.L., Schwartz, S., Kung, H.J., de Vere White, R.W., Gumerlock, P.H., Resnick, M.I., Amini, S.B. and Pretlow, T.G. (1996) CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res, 56, 3042–3046.

    PubMed  CAS  Google Scholar 

  • Nagy, A. (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis, 26, 99–109.

    PubMed  CAS  Google Scholar 

  • Nelius, T., Filleur, S., Yemelyanov, A., Budunova, I., Shroff, E., Mirochnik, Y., Aurora, A., Veliceasa, D., Xiao, W., Wang, Z. and Volpert, O.V. (2007) Androgen receptor targets NFkappaB and TSP1 to suppress prostate tumor growth in vivo. Int J Cancer, 121, 999–1008.

    PubMed  CAS  Google Scholar 

  • Nelson, J.B. and Carducci, M.A. (2000) Small bioactive peptides and cell surface peptidases in androgen-independent prostate cancer. Cancer Invest, 18, 87–96.

    PubMed  CAS  Google Scholar 

  • Nishimura, K., Ting, H.J., Harada, Y., Tokizane, T., Nonomura, N., Kang, H.Y., Chang, H.C., Yeh, S., Miyamoto, H., Shin, M., Aozasa, K., Okuyama, A. and Chang, C. (2003) Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator. Cancer Res, 63, 4888–4894.

    PubMed  CAS  Google Scholar 

  • Niu, Y., Altuwaijr, S., Lai, K.-P., Wu, C.-T., Ricke, W.A., Messing, E.M., Yao, J., Yeh, S. and Chang, C. (2008a) Androgen receptor is a tumor suppressor and stimulator in prostate cancer metastasis. Proc Natl Acad Sci USA, 105, 12182–12187.

    CAS  Google Scholar 

  • Niu, Y., Altuwaijri, S., Yeh, S., Lai, K.-P., Yu, S., Chuang, K.-H., Huang, S.-P., Lardy, H. and Chang, C. (2008b) Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proc Natl Acad Sci USA, 105, 12188–12193.

    CAS  Google Scholar 

  • Papandreou, C.N., Usmani, B., Geng, Y., Bogenrieder, T., Freeman, R., Wilk, S., Finstad, C.L., Reuter, V.E., Powell, C.T., Scheinberg, D., Magill, C., Scher, H.I., Albino, A.P. and Nanus, D.M. (1998) Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat Med, 4, 50–57.

    PubMed  CAS  Google Scholar 

  • Patrawala, L., Calhoun, T., Schneider-Broussard, R., Li, H., Bhatia, B., Tang, S., Reilly, J.G., Chandra, D., Zhou, J., Claypool, K., Coghlan, L. and Tang, D.G. (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25, 1696–1708.

    PubMed  CAS  Google Scholar 

  • Pilatus, U., Ackerstaff, E., Artemov, D., Mori, N., Gillies, R.J. and Bhujwalla, Z.M. (2000) Imaging prostate cancer invasion with multi-nuclear magnetic resonance methods: the metabolic Boyden chamber. Neoplasia, 2, 273–279.

    PubMed  CAS  Google Scholar 

  • Pinkas, J. and Teicher, B.A. (2006) TGF-beta in cancer and as a therapeutic target. Biochem Pharmacol, 72, 523–529.

    PubMed  CAS  Google Scholar 

  • Prins, G.S. and Putz, O. (2008) Molecular signaling pathways that regulate prostate gland development. Differentiation, 76, 641–659.

    PubMed  CAS  Google Scholar 

  • Rahman, M., Miyamoto, H. and Chang, C. (2004) Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin Cancer Res, 10, 2208–2219.

    PubMed  CAS  Google Scholar 

  • Roy, A.K., Lavrovsky, Y., Song, C.S., Chen, S., Jung, M.H., Velu, N.K., Bi, B.Y. and Chatterjee, B. (1999) Regulation of androgen action. Vitam Horm, 55, 309–352.

    PubMed  CAS  Google Scholar 

  • Sadi, M.V., Walsh, P.C. and Barrack, E.R. (1991) Immunohistochemical study of androgen receptors in metastatic prostate cancer. Comparison of receptor content and response to hormonal therapy. Cancer, 67, 3057–3064.

    PubMed  CAS  Google Scholar 

  • Saleem, M., Kweon, M.H., Johnson, J.J., Adhami, V.M., Elcheva, I., Khan, N., Bin Hafeez, B., Bhat, K.M., Sarfaraz, S., Reagan-Shaw, S., Spiegelman, V.S., Suri, V. and Mukhtar, H. (2006) S100A4 accelerates tumorigenesis and invasion of human prostate cancer through the transcriptional regulation of matrix metalloproteinase 9. Proc Natl Acad Sci USA, 103, 14825–14830.

    PubMed  CAS  Google Scholar 

  • Sharifi, N., Dahut, W.L. and Figg, W.D. (2008) Secondary hormonal therapy for prostate cancer: what lies on the horizon? BJU Int, 101, 271–274.

    PubMed  CAS  Google Scholar 

  • Shi, X.B., Ma, A.H., Xia, L., Kung, H.J. and de Vere White, R.W. (2002) Functional analysis of 44 mutant androgen receptors from human prostate cancer. Cancer Res, 62, 1496–1502.

    PubMed  CAS  Google Scholar 

  • Sugimura, Y., Cunha, G.R. and Donjacour, A.A. (1986a) Morphogenesis of ductal networks in the mouse prostate. Biol Reprod, 34, 961–971.

    CAS  Google Scholar 

  • Sugimura, Y., Cunha, G.R. and Donjacour, A.A. (1986b) Morphological and histological study of castration-induced degeneration and androgen-induced regeneration in the mouse prostate. Biol Reprod, 34, 973–983.

    CAS  Google Scholar 

  • Tanimura, Y., Kokuryo, T., Tsunoda, N., Yamazaki, Y., Oda, K., Nimura, Y., Naing Mon, N., Huang, P., Nakanuma, Y., Chen, M.F., Jan, Y.Y., Yeh, T.S., Chiu, C.T., Hsieh, L.L. and Hamaguchi, M. (2005) Tumor necrosis factor alpha promotes invasiveness of cholangiocarcinoma cells via its receptor, TNFR2. Cancer Lett, 219, 205–213.

    PubMed  CAS  Google Scholar 

  • Taplin, M.E., Bubley, G.J., Shuster, T.D., Frantz, M.E., Spooner, A.E., Ogata, G.K., Keer, H.N. and Balk, S.P. (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med, 332, 1393–1398.

    PubMed  CAS  Google Scholar 

  • Tilley, W.D., Buchanan, G., Hickey, T.E. and Bentel, J.M. (1996) Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res, 2, 277–285.

    PubMed  CAS  Google Scholar 

  • van der Kwast, T.H., Schalken, J., Ruizeveld de Winter, J.A., van Vroonhoven, C.C., Mulder, E., Boersma, W. and Trapman, J. (1991) Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer, 48, 189–193.

    PubMed  CAS  Google Scholar 

  • van Leenders, G.J. and Schalken, J.A. (2003) Epithelial cell differentiation in the human prostate epithelium: implications for the pathogenesis and therapy of prostate cancer. Crit Rev Oncol Hematol, 46 Suppl, S3–S10.

    PubMed  Google Scholar 

  • van Leenders, G.J., Aalders, T.W., Hulsbergen-van de Kaa, C.A., Ruiter, D.J. and Schalken, J.A. (2001) Expression of basal cell keratins in human prostate cancer metastases and cell lines. J Pathol, 195, 563–570.

    PubMed  CAS  Google Scholar 

  • Webber, M.M., Trakul, N., Thraves, P.S., Bello-DeOcampo, D., Chu, W.W., Storto, P.D., Huard, T.K., Rhim, J.S. and Williams, D.E. (1999) A human prostatic stromal myofibroblast cell line WPMY-1: a model for stromal–epithelial interactions in prostatic neoplasia. Carcinogenesis, 20, 1185–1192.

    PubMed  CAS  Google Scholar 

  • Wu, C.T., Altuwaijri, S., Ricke, W.A., Huang, S.P., Yeh, S., Zhang, C., Niu, Y., Tsai, M.Y. and Chang, C. (2007) Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc Natl Acad Sci USA, 104, 12679–12684.

    PubMed  CAS  Google Scholar 

  • Wu, X., Wu, J., Huang, J., Powell, W.C., Zhang, J., Matusik, R.J., Sangiorgi, F.O., Maxson, R.E., Sucov, H.M. and Roy-Burman, P. (2001) Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev, 101, 61–69.

    PubMed  CAS  Google Scholar 

  • Yang, Z., Chang, Y.J., Miyamoto, H., Ni, J., Niu, Y., Chen, Z., Chen, Y.L., Yao, J.L., di Sant'Agnese, P.A. and Chang, C. (2007a) Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol, 21, 343–358.

    CAS  Google Scholar 

  • Yang, Z., Chang, Y.J., Miyamoto, H., Yeh, S., Yao, J.L., di Sant'Agnese, P.A., Tsai, M.Y. and Chang, C. (2007b) Suppression of androgen receptor transactivation and prostate cancer cell growth by heterogeneous nuclear ribonucleoprotein A1 via interaction with androgen receptor coregulator ARA54. Endocrinology, 148, 1340–1349.

    CAS  Google Scholar 

  • Yeh, S., Miyamoto, H. and Chang, C. (1997) Hydroxyflutamide may not always be a pure antiandrogen. Lancet, 349, 852–853.

    PubMed  CAS  Google Scholar 

  • Yeh, S., Miyamoto, H., Shima, H. and Chang, C. (1998) From estrogen to androgen receptor: new pathway for sex hormones in prostate. Proc Natl Acad Sci USA, 95, 5527–5532.

    PubMed  CAS  Google Scholar 

  • Yeh, S., Tsai, M.Y., Xu, Q., Mu, X.M., Lardy, H., Huang, K.E., Lin, H., Yeh, S.D., Altuwaijri, S., Zhou, X., Xing, L., Boyce, B.F., Hung, M.C., Zhang, S., Gan, L. and Chang, C. (2002) Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci USA, 99, 13498–13503.

    PubMed  CAS  Google Scholar 

  • Yeh, S., Hu, Y.C., Wang, P.H., Xie, C., Xu, Q., Tsai, M.Y., Dong, Z., Wang, R.S., Lee, T.H. and Chang, C. (2003) Abnormal mammary gland development and growth retardation in female mice and MCF7 breast cancer cells lacking androgen receptor. J Exp Med, 198, 1899–1908.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chawnshang Chang .

Editor information

James Mohler Donald Tindall

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yeh, S., Niu, Y., Miyamoto, H., Chang, T., Chang, C. (2009). Differential Roles of Androgen Receptor in Prostate Development and Cancer Progression. In: Mohler, J., Tindall, D. (eds) Androgen Action in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69179-4_3

Download citation

Publish with us

Policies and ethics