Advertisement

Androgen-Regulated Genes in the Prostate

  • Nigel Clegg
  • Peter S. Nelson
Chapter

Abstract

The androgen receptor (AR) and attendant signaling program regulates key components of prostate organogenesis, contributes to normal physiological functions, and influences organ-specific pathologies that include benign prostate hypertrophy and carcinoma. AR signaling regulates genetic programs in both epithelium and in cells comprising the stromal compartment of the prostate. Given that multiple cellular and tissue effects are attributable to AR signaling, increased knowledge of the AR-regulated gene expression network is central to an understanding of prostate function in health and disease. Androgen-responsive gene expression can be regulated at the level of transcription, RNA processing, RNA stability, protein translation, or protein stability. The products of these genes form part of a network of biochemical interactions leading to physiological consequences for prostate development and pathology. This review focuses on recent advances in the identification of genes regulated by androgens and the AR and provides context for their potential influence on normal prostate physiology and mechanisms of disease.

Keywords

Androgen Receptor LNCaP Cell Ventral Prostate Androgen Receptor Signaling Androgen Receptor Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abate-Shen, C., Banach-Petrosky, W.A., Sun, X., Economides, K.D., Desai, N., Gregg, J.P., Borowsky, A.D., Cardiff, R.D., and Shen, M.M. (2003). Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Research 63, 3886–3890PubMedGoogle Scholar
  2. Abbott, D.E., Pritchard, C., Clegg, N.J., Ferguson, C., Dumpit, R., Sikes, R.A., and Nelson, P.S. (2003). Expressed sequence tag profiling identifies developmental and anatomic partitioning of gene expression in the mouse prostate. Genome Biology 4, R79PubMedGoogle Scholar
  3. Abdulkadir, S.A., Magee, J.A., Peters, T.J., Kaleem, Z., Naughton, C.K., Humphrey, P.A., and Milbrandt, J. (2002). Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Molecular and Cellular Biology 22, 1495–1503PubMedGoogle Scholar
  4. Adams, M.D., Kelley, J.M., Gocayne, J.D., Dunnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., et al. (1991). Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome  Project. Science 252, 1651–1656PubMedGoogle Scholar
  5. Agoulnik, I.U., and Weigel, N.L. (2006). Androgen receptor action in hormone-dependent and recurrent prostate cancer. Journal of Cellular Biochemistry 99, 362–372PubMedGoogle Scholar
  6. Amler, L.C., Agus, D.B., LeDuc, C., Sapinoso, M.L., Fox, W.D., Kern, S., Lee, D., Wang, V., Leysens, M., Higgins, B., et al. (2000). Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Research 60, 6134–6141PubMedGoogle Scholar
  7. Anderson, L., and Seilhamer, J. (1997). A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533–537PubMedGoogle Scholar
  8. Arnold, J.T., Le, H., McFann, K.K., and Blackman, M.R. (2005). Comparative effects of DHEA vs. testosterone, dihydrotestosterone, and estradiol on proliferation and gene expression in human LNCaP prostate cancer cells. American Journal of Physiology 288, E573–584PubMedGoogle Scholar
  9. Asirvatham, A.J., Schmidt, M., Gao, B., and Chaudhary, J. (2006). Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells. Endocrinology 147, 257–271PubMedGoogle Scholar
  10. Barent, R.L., Nair, S.C., Carr, D.C., Ruan, Y., Rimerman, R.A., Fulton, J., Zhang, Y., and Smith, D.F. (1998). Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes. Molecular Endocrinology (Baltimore, Md) 12, 342–354PubMedGoogle Scholar
  11. Bebermeier, J.H., Brooks, J.D., DePrimo, S.E., Werner, R., Deppe, U., Demeter, J., Hiort, O., and Holterhus, P.M. (2006). Cell-line and tissue-specific signatures of androgen receptor-coregulator transcription. Journal of Molecular Medicine 84, 919–931PubMedGoogle Scholar
  12. Ben Aicha, S., Lessard, J., Pelletier, M., Fournier, A., Calvo, E., and Labrie, C. (2007). Transcriptional profiling of genes that are regulated by the endoplasmic reticulum-bound transcription factor AIbZIP/CREB3L4 in prostate cells. Physiological Genomics 31, 295–305PubMedGoogle Scholar
  13. Bhatia-Gaur, R., Donjacour, A.A., Sciavolino, P.J., Kim, M., Desai, N., Young, P., Norton, C.R., Gridley, T., Cardiff, R.D., Cunha, G.R., et al. (1999). Roles for Nkx3.1 in prostate development and cancer. Genes & Development 13, 966–977Google Scholar
  14. Bolton, E.C., So, A.Y., Chaivorapol, C., Haqq, C.M., Li, H., and Yamamoto, K.R. (2007). Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes & Development 21, 2005–2017Google Scholar
  15. Bourdeau, V., Deschenes, J., Metivier, R., Nagai, Y., Nguyen, D., Bretschneider, N., Gannon, F., White, J.H., and Mader, S. (2004). Genome-wide identification of high-affinity estrogen response elements in human and mouse. Molecular Endocrinology (Baltimore, Md) 18, 1411–1427PubMedGoogle Scholar
  16. Bova, G.S., Carter, B.S., Bussemakers, M.J., Emi, M., Fujiwara, Y., Kyprianou, N., Jacobs, S.C., Robinson, J.C., Epstein, J.I., Walsh, P.C., et al. (1993). Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Research 53, 3869–3873PubMedGoogle Scholar
  17. Cai, C., Chen, S.Y., Zheng, Z., Omwancha, J., Lin, M.F., Balk, S.P., and Shemshedini, L. (2007a). Androgen regulation of soluble guanylyl cyclasealpha1 mediates prostate cancer cell proliferation. Oncogene 26, 1606–1615Google Scholar
  18. Cai, C., Hsieh, C.L., Omwancha, J., Zheng, Z., Chen, S.Y., Baert, J.L., and Shemshedini, L. (2007b). ETV1 is a novel androgen receptor-regulated gene that mediates prostate cancer cell invasion. Molecular Endocrinology (Baltimore, Md) 21, 1835–1846Google Scholar
  19. Carroll, J.S., Liu, X.S., Brodsky, A.S., Li, W., Meyer, C.A., Szary, A.J., Eeckhoute, J., Shao, W., Hestermann, E.V., Geistlinger, T.R., et al. (2005). Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43PubMedGoogle Scholar
  20. Carroll, J.S., Meyer, C.A., Song, J., Li, W., Geistlinger, T.R., Eeckhoute, J., Brodsky, A.S., Keeton, E.K., Fertuck, K.C., Hall, G.F., et al. (2006). Genome-wide analysis of estrogen receptor binding sites. Nature Genetics 38, 1289–1297PubMedGoogle Scholar
  21. Ci, M., Mayumi, Y., Andre, B., Pascal, B., Lin, G., Yasukazu, T., Fernand, L., and St-Amand, J. (2008). Prostate-specific genes and their regulation by dihydrotestosterone. Prostate 68, 241–254PubMedGoogle Scholar
  22. Claessens, F., Alen, P., Devos, A., Peeters, B., Verhoeven, G., and Rombauts, W. (1996). The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. The Journal of biological chemistry 271, 19013–19016PubMedGoogle Scholar
  23. Clegg, N., Eroglu, B., Ferguson, C., Arnold, H., Moorman, A., and Nelson, P.S. (2002). Digital expression profiles of the prostate androgen-response program. The Journal of Steroid Biochemistry and Molecular Biology 80, 13–23PubMedGoogle Scholar
  24. Cleutjens, K.B., van der Korput, H.A., van Eekelen, C.C., van Rooij, H.C., Faber, P.W., and Trapman, J. (1997). An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Molecular Endocrinology (Baltimore, Md) 11, 148–161PubMedGoogle Scholar
  25. Cleutjens, K.B., van Eekelen, C.C., van der Korput, H.A., Brinkmann, A.O., and Trapman, J. (1996). Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. The Journal of Biological Chemistry 271, 6379–6388PubMedGoogle Scholar
  26. Corey, E., Quinn, J.E., Buhler, K.R., Nelson, P.S., Macoska, J.A., True, L.D., and Vessella, R.L. (2003). LuCaP 35: a new model of prostate cancer progression to androgen independence. Prostate 55, 239–246PubMedGoogle Scholar
  27. Coutinho-Camillo, C.M., Salaorni, S., Sarkis, A.S., and Nagai, M.A. (2006). Differentially expressed genes in the prostate cancer cell line LNCaP after exposure to androgen and anti-androgen. Cancer Genetics and Cytogenetics 166, 130–138PubMedGoogle Scholar
  28. Cunha, G.R., Ricke, W., Thomson, A., Marker, P.C., Risbridger, G., Hayward, S.W., Wang, Y.Z., Donjacour, A.A., and Kurita, T. (2004). Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. The Journal of Steroid Biochemistry and Molecular Biology 92, 221–236PubMedGoogle Scholar
  29. Dai, J.L., and Burnstein, K.L. (1996). Two androgen response elements in the androgen receptor coding region are required for cell-specific up-regulation of receptor messenger RNA. Molecular Endocrinology (Baltimore, Md) 10, 1582–1594Google Scholar
  30. Davies, T.H., Ning, Y.M., and Sanchez, E.R. (2002). A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. The Journal of Biological Chemistry 277, 4597–4600PubMedGoogle Scholar
  31. de Launoit, Y., Veilleux, R., Dufour, M., Simard, J., and Labrie, F. (1991). Characteristics of the biphasic action of androgens and of the potent antiproliferative effects of the new pure antiestrogen EM-139 on cell cycle kinetic parameters in LNCaP human prostatic cancer cells. Cancer Research 51, 5165–5170PubMedGoogle Scholar
  32. de Wildt, S.N., Kearns, G.L., Leeder, J.S., and van den Anker, J.N. (1999). Cytochrome P450 3A: ontogeny and drug disposition. Clinical Pharmacokinetics 37, 485–505PubMedGoogle Scholar
  33. Dehm, S.M., and Tindall, D.J. (2006). Molecular regulation of androgen action in prostate cancer. Journal of Cellular Biochemistry 99, 333–344PubMedGoogle Scholar
  34. DePrimo, S.E., Diehn, M., Nelson, J.B., Reiter, R.E., Matese, J., Fero, M., Tibshirani, R., Brown, P.O., and Brooks, J.D. (2002). Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biology 3, RESEARCH0032Google Scholar
  35. Desai, K.V., Michalowska, A.M., Kondaiah, P., Ward, J.M., Shih, J.H., and Green, J.E. (2004) Gene expression profiling identifies a unique androgen-mediated inflammatory/immune signature and a PTEN (phosphatase and tensin homolog deleted on chromosome 10)-mediated apoptotic response specific to the rat ventral prostate. Molecular Endocrinology (Baltimore, Md) 18, 2895–2907Google Scholar
  36. Eder, I.E., Haag, P., Basik, M., Mousses, S., Bektic, J., Bartsch, G., and Klocker, H. (2003). Gene expression changes following androgen receptor elimination in LNCaP prostate cancer cells. Molecular Carcinogenesis 37, 181–191PubMedGoogle Scholar
  37. Evans, G.S., and Chandler, J.A. (1987). Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. The Prostate 11, 339–351PubMedGoogle Scholar
  38. Febbo, P.G., Lowenberg, M., Thorner, A.R., Brown, M., Loda, M., and Golub, T.R. (2005). Androgen mediated regulation and functional implications of fkbp51 expression in prostate cancer. The Journal of Urology 173, 1772–1777PubMedGoogle Scholar
  39. Feldman, B.J., and Feldman, D. (2001). The development of androgen-independent prostate cancer. Nature Reviews 1, 34–45PubMedGoogle Scholar
  40. Firth, S.M., and Baxter, R.C. (2002). Cellular actions of the insulin-like growth factor binding proteins. Endocrine Reviews 23, 824–854PubMedGoogle Scholar
  41. Geck, P., Szelei, J., Jimenez, J., Lin, T.M., Sonnenschein, C., and Soto, A.M. (1997). Expression of novel genes linked to the androgen-induced, proliferative shutoff in prostate cancer cells. The Journal of steroid biochemistry and molecular Biology 63, 211–218PubMedGoogle Scholar
  42. Goossens, K., Esquenet, M., Swinnen, J.V., Manin, M., Rombauts, W., and Verhoeven, G. (1999). Androgens decrease and retinoids increase the expression of insulin-like growth factor-binding protein-3 in LNcaP prostatic adenocarcinoma cells. Molecular and Cellular Endocrinology 155, 9–18PubMedGoogle Scholar
  43. Grad, J.M., Lyons, L.S., Robins, D.M., and Burnstein, K.L. (2001). The androgen receptor (AR) amino-terminus imposes androgen-specific regulation of AR gene expression via an exonic enhancer. Endocrinology 142, 1107–1116PubMedGoogle Scholar
  44. Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology 17, 994–999PubMedGoogle Scholar
  45. Haynes, P.A., Gygi, S.P., Figeys, D., and Aebersold, R. (1998). Proteome analysis: biological assay or data archive? Electrophoresis 19, 1862–1871PubMedGoogle Scholar
  46. He, W.W., Sciavolino, P.J., Wing, J., Augustus, M., Hudson, P., Meissner, P.S., Curtis, R.T., Shell, B.K., Bostwick, D.G., Tindall, D.J., et al. (1997). A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43, 69–77PubMedGoogle Scholar
  47. Heemers, H.V., Verhoeven, G., and Swinnen, J.V. (2006). Androgen activation of the sterol regulatory element-binding protein pathway: current insights. Molecular Endocrinology (Baltimore, Md) 20, 2265–2277PubMedGoogle Scholar
  48. Horie-Inoue, K., Bono, H., Okazaki, Y., and Inoue, S. (2004). Identification and functional analysis of consensus androgen response elements in human prostate cancer cells. Biochemical and Biophysical Research Communications 325, 1312–1317PubMedGoogle Scholar
  49. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P. (1983). LNCaP model of human prostatic carcinoma. Cancer Research 43, 1809–1818PubMedGoogle Scholar
  50. Hsu, T., Trojanowska, M., and Watson, D.K. (2004). Ets proteins in biological control and cancer. Journal of Cellular Biochemistry 91, 896–903PubMedGoogle Scholar
  51. Isaacs, J.T., Lundmo, P.I., Berges, R., Martikainen, P., Kyprianou, N., and English, H.F. (1992). Androgen regulation of programmed death of normal and malignant prostatic cells. Journal of Andrology 13, 457–464PubMedGoogle Scholar
  52. Jariwala, U., Prescott, J., Jia, L., Barski, A., Pregizer, S., Cogan, J.P., Arasheben, A., Tilley, W.D., Scher, H.I., Gerald, W.L., et al. (2007). Identification of novel androgen receptor target genes in prostate cancer. Molecular Cancer 6, 39PubMedGoogle Scholar
  53. Jiang, F., and Wang, Z. (2003). Identification of androgen-responsive genes in the rat ventral prostate by complementary deoxyribonucleic acid subtraction and microarray. Endocrinology 144, 1257–1265PubMedGoogle Scholar
  54. Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science (New York, NY) 316, 1497–1502PubMedGoogle Scholar
  55. Kasper, S. (2005). Survey of genetically engineered mouse models for prostate cancer: analyzing the molecular basis of prostate cancer development, progression, and metastasis. Journal of Cellular Biochemistry 94, 279–297PubMedGoogle Scholar
  56. Kim, K.H., Dobi, A., Shaheduzzaman, S., Gao, C.L., Masuda, K., Li, H., Drukier, A., Gu, Y., Srikantan, V., Rhim, J.S., et al. (2007). Characterization of the androgen receptor in a benign prostate tissue-derived human prostate epithelial cell line: RC-165N/human telomerase reverse transcriptase. Prostate Cancer and Prostatic Diseases 10, 30–38PubMedGoogle Scholar
  57. Kim, M.J., Bhatia-Gaur, R., Banach-Petrosky, W.A., Desai, N., Wang, Y., Hayward, S.W., Cunha, G.R., Cardiff, R.D., Shen, M.M., and Abate-Shen, C. (2002). Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Research 62, 2999–3004PubMedGoogle Scholar
  58. Klein, K.A., Reiter, R.E., Redula, J., Moradi, H., Zhu, X.L., Brothman, A.R., Lamb, D.J., Marcelli, M., Belldegrun, A., Witte, O.N., et al. (1997). Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nature Medicine 3, 402–408PubMedGoogle Scholar
  59. Kojima, S., Mulholland, D.J., Ettinger, S., Fazli, L., Nelson, C.C., and Gleave, M.E. (2006). Differential regulation of IGFBP-3 by the androgen receptor in the lineage-related androgen-dependent LNCaP and androgen-independent C4-2 prostate cancer models. The Prostate 66, 971–986PubMedGoogle Scholar
  60. Kousteni, S., Bellido, T., Plotkin, L.I., O'Brien, C.A., Bodenner, D.L., Han, L., Han, K., DiGregorio, G.B., Katzenellenbogen, J.A., Katzenellenbogen, B.S., et al. (2001). Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730PubMedGoogle Scholar
  61. Kulik, G., and Weber, M.J. (1998). Akt-dependent and -independent survival signaling pathways utilized by insulin-like growth factor I. Molecular and cellular biology 18, 6711–6718.PubMedGoogle Scholar
  62. Kyprianou, N., and Isaacs, J.T. (1988). Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 122, 552–562PubMedGoogle Scholar
  63. Lefstin, J.A., and Yamamoto, K.R. (1998). Allosteric effects of DNA on transcriptional regulators. Nature 392, 885–888PubMedGoogle Scholar
  64. Lexander, H., Franzen, B., Hirschberg, D., Becker, S., Hellstrom, M., Bergman, T., Jornvall, H., Auer, G., and Egevad, L. (2005). Differential protein expression in anatomical zones of the prostate. Proteomics 5, 2570–2576PubMedGoogle Scholar
  65. Li, B.Y., Liao, X.B., Fujito, A., Thrasher, J.B., Shen, F.Y., and Xu, P.Y. (2007). Dual androgen-response elements mediate androgen regulation of MMP-2 expression in prostate cancer cells. Asian Journal of Andrology 9, 41–50PubMedGoogle Scholar
  66. Louro, R., Nakaya, H.I., Amaral, P.P., Festa, F., Sogayar, M.C., da Silva, A.M., Verjovski-Almeida, S., and Reis, E.M. (2007). Androgen responsive intronic non-coding RNAs. BMC Biology 5, 4PubMedGoogle Scholar
  67. Macoska, J.A., Trybus, T.M., Benson, P.D., Sakr, W.A., Grignon, D.J., Wojno, K.D., Pietruk, T., and Powell, I.J. (1995). Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Research 55, 5390–5395PubMedGoogle Scholar
  68. Magee, J.A., Abdulkadir, S.A., and Milbrandt, J. (2003). Haploinsufficiency at the Nkx3.1 locus. A paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell 3, 273–283PubMedGoogle Scholar
  69. Magee, J.A., Chang, L.W., Stormo, G.D., and Milbrandt, J. (2006). Direct, androgen receptor-mediated regulation of the FKBP5 gene via a distal enhancer element. Endocrinology 147, 590–598PubMedGoogle Scholar
  70. Marker, P.C., Donjacour, A.A., Dahiya, R., and Cunha, G.R. (2003). Hormonal, cellular, and molecular control of prostatic development. Developmental Biology 253, 165–174PubMedGoogle Scholar
  71. Martin, D.B., Gifford, D.R., Wright, M.E., Keller, A., Yi, E., Goodlett, D.R., Aebersold, R., and Nelson, P.S. (2004). Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium. Cancer Research 64, 347–355PubMedGoogle Scholar
  72. Martin, J.L., and Pattison, S.L. (2000). Insulin-like growth factor binding protein-3 is regulated by dihydrotestosterone and stimulates deoxyribonucleic acid synthesis and cell proliferation in LNCaP prostate carcinoma cells. Endocrinology 141, 2401–2409PubMedGoogle Scholar
  73. Massie, C.E., Adryan, B., Barbosa-Morais, N.L., Lynch, A.G., Tran, M.G., Neal, D.E., and Mills, I.G. (2007). New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Reports 8, 871–878PubMedGoogle Scholar
  74. Masuda, K., Werner, T., Maheshwari, S., Frisch, M., Oh, S., Petrovics, G., May, K., Srikantan, V., Srivastava, S., and Dobi, A. (2005). Androgen receptor binding sites identified by a GREF_GATA model. Journal of Molecular Biology 353, 763–771PubMedGoogle Scholar
  75. McNeal, J.E. (1981a). Normal and pathologic anatomy of prostate. Urology 17, 11–16Google Scholar
  76. McNeal, J.E. (1981b). The zonal anatomy of the prostate. The Prostate 2, 35–49Google Scholar
  77. Meehan, K.L., and Sadar, M.D. (2004). Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics 4, 1116–1134PubMedGoogle Scholar
  78. Migliaccio, A., Castoria, G., Di Domenico, M., de Falco, A., Bilancio, A., Lombardi, M., Barone, M.V., Ametrano, D., Zannini, M.S., Abbondanza, C., et al. (2000). Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. The EMBO Journal 19, 5406–5417PubMedGoogle Scholar
  79. Mitchell, S.H., Murtha, P.E., Zhang, S., Zhu, W., and Young, C.Y. (2000). An androgen response element mediates LNCaP cell dependent androgen induction of the hK2 gene. Molecular and Cellular Endocrinology 168, 89–99PubMedGoogle Scholar
  80. Moilanen, A.M., Hakkola, J., Vaarala, M.H., Kauppila, S., Hirvikoski, P., Vuoristo, J.T., Edwards, R.J., and Paavonen, T.K. (2007). Characterization of androgen-regulated expression of CYP3A5 in human prostate. Carcinogenesis 28, 916–921PubMedGoogle Scholar
  81. Mostaghel, E.A., Page, S.T., Lin, D.W., Fazli, L., Coleman, I.M., True, L.D., Knudsen, B., Hess, D.L., Nelson, C.C., Matsumoto, A.M., et al. (2007). Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 67, 5033–5041PubMedGoogle Scholar
  82. Mousses, S., Wagner, U., Chen, Y., Kim, J.W., Bubendorf, L., Bittner, M., Pretlow, T., Elkahloun, A.G., Trepel, J.B., and Kallioniemi, O.P. (2001). Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling. Oncogene 20, 6718–6723PubMedGoogle Scholar
  83. Murtha, P.E., Zhu, W., Zhang, J., Zhang, S., and Young, C.Y. (1997). Effects of Ca++ mobilization on expression of androgen-regulated genes: interference with androgen receptor-mediated transactivation by AP-I proteins. The Prostate 33, 264–270PubMedGoogle Scholar
  84. Nagaraj, S.H., Gasser, R.B., and Ranganathan, S. (2007). A hitchhiker's guide to expressed sequence tag (EST) analysis. Briefings in Bioinformatics 8, 6–21PubMedGoogle Scholar
  85. Nantermet, P.V., Xu, J., Yu, Y., Hodor, P., Holder, D., Adamski, S., Gentile, M.A., Kimmel, D.B., Harada, S., Gerhold, D., et al. (2004). Identification of genetic pathways activated by the androgen receptor during the induction of proliferation in the ventral prostate gland. The Journal of Biological Chemistry 279, 1310–1322PubMedGoogle Scholar
  86. Nelson, P.S., Clegg, N., Arnold, H., Ferguson, C., Bonham, M., White, J., Hood, L., and Lin, B. (2002). The program of androgen-responsive genes in neoplastic prostate epithelium. Proceedings of the National Academy of Sciences of the United States of America 99, 11890–11895Google Scholar
  87. Ness, S.A. (2007). Microarray analysis: basic strategies for successful experiments. Molecular biotechnology 36, 205–219PubMedGoogle Scholar
  88. Nickerson, T., Pollak, M., and Huynh, H. (1998). Castration-induced apoptosis in the rat ventral prostate is associated with increased expression of genes encoding insulin-like growth factor binding proteins 2,3,4 and 5. Endocrinology 139, 807–810PubMedGoogle Scholar
  89. Nickols, N.G., and Dervan, P.B. (2007). Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide. Proceedings of the National Academy of Sciences of the United States of America 104, 10418-10424Google Scholar
  90. Oosterhoff, J.K., Grootegoed, J.A., and Blok, L.J. (2005). Expression profiling of androgen-dependent and -independent LNCaP cells: EGF versus androgen signalling. Endocrine-related Cancer 12, 135–148PubMedGoogle Scholar
  91. Pang, S.T., Dillner, K., Wu, X., Pousette, A., Norstedt, G., and Flores-Morales, A. (2002). Gene expression profiling of androgen deficiency predicts a pathway of prostate apoptosis that involves genes related to oxidative stress. Endocrinology 143, 4897–4906PubMedGoogle Scholar
  92. Peng, L., Malloy, P.J., Wang, J., and Feldman, D. (2006). Growth inhibitory concentrations of androgens up-regulate insulin-like growth factor binding protein-3 expression via an androgen response element in LNCaP human prostate cancer cells. Endocrinology 147, 4599–4607PubMedGoogle Scholar
  93. Pfundt, R., Smit, F., Jansen, C., Aalders, T., Straatman, H., van der Vliet, W., Isaacs, J., van Kessel, A.G., and Schalken, J. (2005). Identification of androgen-responsive genes that are alternatively regulated in androgen-dependent and androgen-independent rat prostate tumors. Genes, Chromosomes & Cancer 43, 273–283Google Scholar
  94. Pinthus, J.H., Bryskin, I., Trachtenberg, J., Lu, J.P., Singh, G., Fridman, E., and Wilson, B.C. (2007). Androgen induces adaptation to oxidative stress in prostate cancer: implications for treatment with radiation therapy. Neoplasia (New York, NY) 9, 68–80PubMedGoogle Scholar
  95. Porter, D., Yao, J., and Polyak, K. (2006). SAGE and related approaches for cancer target identification. Drug Discovery Today 11, 110–118PubMedGoogle Scholar
  96. Qi, H., Fillion, C., Labrie, Y., Grenier, J., Fournier, A., Berger, L., El-Alfy, M., and Labrie, C. (2002). AIbZIP, a novel bZIP gene located on chromosome 1q21.3 that is highly expressed in prostate tumors and of which the expression is up-regulated by androgens in LNCaP human prostate cancer cells. Cancer Research 62, 721–733PubMedGoogle Scholar
  97. Rae, J.M., Johnson, M.D., Cordero, K.E., Scheys, J.O., Larios, J.M., Gottardis, M.M., Pienta, K.J., and Lippman, M.E. (2006). GREB1 is a novel androgen-regulated gene required for prostate cancer growth. The Prostate 66, 886–894PubMedGoogle Scholar
  98. Rhee, H.J., Kim, E.J., and Lee, J.K. (2007). Physiological polyamines: simple primordial stress molecules. Journal of Cellular and Molecular Medicine 11, 685–703PubMedGoogle Scholar
  99. Riegman, P.H., Vlietstra, R.J., van der Korput, J.A., Brinkmann, A.O., and Trapman, J. (1991). The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Molecular Endocrinology (Baltimore, Md) 5, 1921–1930PubMedGoogle Scholar
  100. Ripple, M.O., Henry, W.F., Rago, R.P., and Wilding, G. (1997). Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. Journal of the National Cancer Institute 89, 40–48PubMedGoogle Scholar
  101. Rowland, J.G., Robson, J.L., Simon, W.J., Leung, H.Y., and Slabas, A.R. (2007). Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics 7, 47–63Google Scholar
  102. Sato, N., Sadar, M.D., Bruchovsky, N., Saatcioglu, F., Rennie, P.S., Sato, S., Lange, P.H., and Gleave, M.E. (1997). Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. The Journal of Biological Chemistry 272, 17485–17494PubMedGoogle Scholar
  103. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science 270, 467–470PubMedGoogle Scholar
  104. Schoenmakers, E., Alen, P., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W., and Claessens, F. (1999). Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains. The Biochemical Journal 341 ( Pt 3), 515–521PubMedGoogle Scholar
  105. Segawa, T., Nau, M.E., Xu, L.L., Chilukuri, R.N., Makarem, M., Zhang, W., Petrovics, G., Sesterhenn, I.A., McLeod, D.G., Moul, J.W., et al. (2002). Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells. Oncogene 21, 8749–8758PubMedGoogle Scholar
  106. Shi, X.B., Ma, A.H., Tepper, C.G., Xia, L., Gregg, J.P., Gandour-Edwards, R., Mack, P.C., Kung, H-J., and deVere White, R.W. (2004). Molecular alterations associated with LNCaP cell progression to androgen independence. Prostate 60, 257–271PubMedGoogle Scholar
  107. Shi, X.B., Xue, L., Yang, J., Ma, A.H., Zhao, J., Xu, M., Tepper, C.G., Evans, C.P., Kung, H.J., and deVere White, R.W. (2007). An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America 104, 19983–19988Google Scholar
  108. Shou, J., Ross, S., Koeppen, H., de Sauvage, F.J., and Gao, W.Q. (2001). Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer research 61, 7291–7297PubMedGoogle Scholar
  109. Sun, C., Shi, Y., Xu, L.L., Nageswararao, C., Davis, L.D., Segawa, T., Dobi, A., McLeod, D.G., and Srivastava, S. (2006). Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene 25, 3905–3913PubMedGoogle Scholar
  110. Takayama, K., Kaneshiro, K., Tsutsumi, S., Horie-Inoue, K., Ikeda, K., Urano, T., Ijichi, N., Ouchi, Y., Shirahige, K., Aburatani, H., et al. (2007). Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene 26, 4453–4463PubMedGoogle Scholar
  111. Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., Pognan, F., Hawkins, E., Currie, I., and Davison, M. (2001). Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1, 377–396PubMedGoogle Scholar
  112. Trevino, V., Falciani, F., and Barrera-Saldana, H.A. (2007). DNA microarrays: a powerful genomic tool for biomedical and clinical research. Molecular Medicine (Cambridge, Mass) 13, 527–541PubMedGoogle Scholar
  113. van der Heul-Nieuwenhuijsen, L., Hendriksen, P.J., van der Kwast, T.H., and Jenster, G. (2006). Gene expression profiling of the human prostate zones. BJU International 98, 886–897PubMedGoogle Scholar
  114. Velasco, A.M., Gillis, K.A., Li, Y., Brown, E.L., Sadler, T.M., Achilleos, M., Greenberger, L.M., Frost, P., Bai, W., and Zhang, Y. (2004). Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology 145, 3913–3924PubMedGoogle Scholar
  115. Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. (1995). Serial analysis of gene expression. Science 270, 384–387Google Scholar
  116. Waghray, A., Feroze, F., Schober, M.S., Yao, F., Wood, C., Puravs, E., Krause, M., Hanash, S., and Chen, Y.Q. (2001). Identification of androgen-regulated genes in the prostate cancer cell line LNCaP by serial analysis of gene expression and proteomic analysis. Proteomics 1, 1327–1338PubMedGoogle Scholar
  117. Wang, Q., Li, W., Liu, X.S., Carroll, J.S., Janne, O.A., Keeton, E.K., Chinnaiyan, A.M., Pienta, K.J., and Brown, M. (2007a). A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Molecular Cell 27, 380–392Google Scholar
  118. Wang, X.D., Wang, B.E., Soriano, R., Zha, J., Zhang, Z., Modrusan, Z., Cunha, G.R., and Gao, W.Q. (2007b). Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Differentiation; Research in Biological Diversity 75, 219–234Google Scholar
  119. Whitaker, H.C., Stanbury, D.P., Brinham, C., Girling, J., Hanrahan, S., Totty, N., and Neal, D.E. (2007). Labeling and identification of LNCaP cell surface proteins: a pilot study. Prostate 67, 943–954PubMedGoogle Scholar
  120. Wright, M.E., Eng, J., Sherman, J., Hockenbery, D.M., Nelson, P.S., Galitski, T., and Aebersold, R. (2003). Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome Biology 5, R4PubMedGoogle Scholar
  121. Wu, J., Smith, L.T., Plass, C., and Huang, T.H. (2006). ChIP-chip comes of age for genome-wide functional analysis. Cancer Research 66, 6899–6902PubMedGoogle Scholar
  122. Wu, Y., Zhao, W., Zhao, J., Pan, J., Wu, Q., Zhang, Y., Bauman, W.A., and Cardozo, C.P. (2007). Identification of androgen response elements in the insulin-like growth factor I upstream promoter. Endocrinology 148, 2984–2993PubMedGoogle Scholar
  123. Xu, L.L., Su, Y.P., Labiche, R., Segawa, T., Shanmugam, N., McLeod, D.G., Moul, J.W., and Srivastava, S. (2001). Quantitative expression profile of androgen-regulated genes in prostate cancer cells and identification of prostate-specific genes. International Journal of Cancer 92, 322–328Google Scholar
  124. Yuan, X.J., and Whang, Y.E. (2002). PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene 21, 319–327PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Fred Hutchinson Cancer Research CenterDivision of Human BiologySeattle, WA 91809-1024USA

Personalised recommendations