Advertisement

The Role of Foxa Proteins in the Regulation of Androgen Receptor Activity

  • David J. DeGraff
  • Xiuping Yu
  • Qian Sun
  • Janni Mirosevich
  • Ren Jie Jin
  • Yongqing Wang
  • Aparna Gupta
  • Srinivas Nandana
  • Thomas Case
  • Manik Paul
  • Hong-Ying Huang
  • Ellen Shapiro
  • Susan Logan
  • Kichiya Suzuki
  • Marie-Claire Orgebin-Crist
  • Robert J. Matusik
Chapter

Abstract

Activation of the androgen receptor is required for normal prostate physiology and in controlling the growth prostate cancer. However, the fact that multiple target organs express androgen receptor and are exposed to circulating androgens, yet fail to express prostate-specific markers and fail to develop androgen-dependent cancers, indicates that androgen receptor alone is not sufficient to dictate normal function and progression to cancer. Therefore, androgen action can be restricted in a given tissue by transcription factors that serve as co-regulators of androgen receptor. How androgen signaling acts in concert with other transcription factors, resulting in tissue-specific gene expression needs to be understood. The establishment of unique transcription factor regulatory networks is responsible, at least in part, to control androgen receptor action (1) in tissue-specific gene expression; (2) organ determination; and (3) cell differentiation. The identification of TF networks involved in these disparate events will allow researchers to elucidate the mechanisms that control prostate development, function, and pathology. Experimental evidence generated by our laboratory and others indicates that members of the Foxa subfamily of transcription factors play an important role in (1) normal prostate development; (2) the determination of prostatic cell fate; and (3) specific types of prostate pathology. This chapter reviews evidence generated by our laboratory and others regarding the important role of the Foxa transcription factors in the regulation of prostate-specific gene regulatory networks.

Keywords

Androgen Receptor LNCaP Cell Androgen Receptor Expression Foxa2 Expression Foxa Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by National Institute of Health (NIH) grants to Robert J Matusik (R01-CA76142, R01-DK55748, and R01-AG023490) and Frances Williams Preston Laboratories of the T.J. Martell Foundation; and by an NIH grant to Marie-Claire Orgebin-Crist (R01-HD36900). Janni Mirosevich is a recipient of the Department of Defense (DOD) Postdoctoral David J. DeGraff was supported by the VUMC Multidisciplinary Training Grant in Molecular Endocrinology (5 T32 DK007563-21). Traineeship Award (W81XWH-04-1-0050), Qian Sun is the recipient of a DOD Predoctoral Traineeship Award (W81XWH-07-1-0042) and Srinivas Nandana is the recipient of a DOD Predoctoral Traineeship Award (W81XWH-07-1-0155). The authors wish to acknowledge the assistance of Sherri Tomlinson in the preparation of this manuscript.

References

  1. Agoulnik IU, Weigel NL. 2006. Androgen receptor action in hormone-dependent and recurrent prostate cancer. J Cell Biochem 99(2):362–372.PubMedCrossRefGoogle Scholar
  2. Agoulnik IU, Vaid A, Bingman WE, III, Erdeme H, Frolov A, Smith CL, Ayala G, Ittmann MM, Weigel NL. 2005. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res 65(17):7959–7967.PubMedGoogle Scholar
  3. Agoulnik IU, Vaid A, Nakka M, Alvarado M, Bingman WE, III, Erdem H, Frolov A, Smith CL, Ayala GE, Ittmann MM, Weigel NL. 2006. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res 66(21):10594–10602.PubMedCrossRefGoogle Scholar
  4. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS. 1997. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277(5328):965–968.PubMedCrossRefGoogle Scholar
  5. Brivanlou AH, Darnell JE, Jr. 2002. Signal transduction and the control of gene expression. Science 295(5556):813–818.PubMedCrossRefGoogle Scholar
  6. Carey M. 1998. The enhanceosome and transcriptional synergy. Cell 92(1):5–8.PubMedCrossRefGoogle Scholar
  7. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown M. 2005. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122(1):33–43.PubMedCrossRefGoogle Scholar
  8. Chang CY, McDonnell DP. 2005. Androgen receptor-cofactor interactions as targets for new drug discovery. Trends Pharmacol Sci 26(5):225–228.PubMedCrossRefGoogle Scholar
  9. Chiaverotti T, Couto SS, Donjacour A, Mao JH, Nagase H, Cardiff RD, Cunha GR, Balmain A. 2008. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol 172(1):236–246.PubMedCrossRefGoogle Scholar
  10. Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. 2007. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 120(4):719–733.PubMedCrossRefGoogle Scholar
  11. Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS. 2002. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 9(2):279–289.PubMedCrossRefGoogle Scholar
  12. Costa RH, Grayson DR, Darnell JE, Jr. 1989. Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and alpha 1-antitrypsin genes. Mol Cell Biol 9(4):1415–1425.PubMedGoogle Scholar
  13. Cunha GR, Donjacour AA. 1989. Mesenchymal-epithelial interactions in the growth and development of the prostate. Cancer Treat Res 46:159–175.PubMedCrossRefGoogle Scholar
  14. Cunha GR, Lung B. 1978. The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool 205(2):181–193.PubMedCrossRefGoogle Scholar
  15. Cunha GR, Lung B, Reese B. 1980. Glandular epithelial induction by embryonic mesenchyme in adult bladder epithelium of BALB/c mice. Invest Urol 17(4):302–304.PubMedGoogle Scholar
  16. Cunha GR, Sekkingstad M, Meloy BA. 1983. Heterospecific induction of prostatic development in tissue recombinants prepared with mouse, rat, rabbit and human tissues. Differentiation 24(2):174–180.PubMedCrossRefGoogle Scholar
  17. Cunha GR, Cooke PS, Kurita T. 2004. Role of stromal-epithelial interactions in hormonal responses. Arch Histol Cytol 67(5):417–434.PubMedCrossRefGoogle Scholar
  18. Donjacour AA, Cunha GR. 1993. Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology 132(6):2342–2350.PubMedCrossRefGoogle Scholar
  19. Espinas ML, Roux J, Pictet R, Grange T. 1995. Glucocorticoids and protein kinase A coordinately modulate transcription factor recruitment at a glucocorticoid-responsive unit. Mol Cell Biol 15(10):5346–5354.PubMedGoogle Scholar
  20. Fong CJ, Sherwood ER, Sutkowski DM, Abu-Jawdeh GM, Yokoo H, Bauer KD, Kozlowski JM, Lee C. 1991. Reconstituted basement membrane promotes morphological and functional differentiation of primary human prostatic epithelial cells. Prostate 19(3):221–235.PubMedCrossRefGoogle Scholar
  21. Fry CJ, Peterson CL. 2002. Transcription. Unlocking the gates to gene expression. Science 295(5561):1847–1848.PubMedCrossRefGoogle Scholar
  22. Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y, Jin R, Gupta A, Rennie PS, Matusik RJ. 2003. The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 17(8):1484–1507.PubMedCrossRefGoogle Scholar
  23. Gao N, Ishii K, Mirosevich J, Kuwajima S, Oppenheimer SR, Roberts RL, Jiang M, Yu X, Shappell SB, Caprioli RM, Stoffel M, Hayward SW, Matusik RJ. 2005. Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development 132(15):3431–3443.PubMedCrossRefGoogle Scholar
  24. Gierer A. 1974. Molecular models and combinatorial principles in cell differentiation and morphogenesis. Cold Spring Harb Symp Quant Biol 38:951–961.PubMedCrossRefGoogle Scholar
  25. Gupta A, Wang Y, Browne C, Kim S, Case T, Paul M, Wills ML, Matusik RJ. 2008. Neuroendocrine differentiation in the 12T-10 transgenic prostate mouse model mimics endocrine differentiation of pancreatic beta cells. Prostate 68(1):50–60.PubMedCrossRefGoogle Scholar
  26. Heinlein CA, Chang C. 2002. Androgen receptor (AR) coregulators: an overview. Endocr Rev 23(2):175–200.PubMedCrossRefGoogle Scholar
  27. Heinlein CA, Chang C. 2004. Androgen receptor in prostate cancer. Endocr Rev 25(2):276–308.PubMedCrossRefGoogle Scholar
  28. Lai E, Prezioso VR, Tao WF, Chen WS, Darnell JE, Jr. 1991. Hepatocyte nuclear factor 3 alpha belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev 5(3):416–427.PubMedCrossRefGoogle Scholar
  29. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M. 2008. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132(6):958–970.PubMedCrossRefGoogle Scholar
  30. Matusik RJ, Jin RJ, Sun Q, Wang YQ, Gupta A, Nandana S, Case TC, Paul M, Mirsevich J, Oottamasathien S, Thomas J. 2008. Prostate epithelial cell fate. Differentiation 76(6):682–698.PubMedCrossRefGoogle Scholar
  31. Mirosevich J, Gao N, Matusik RJ. 2005. Expression of Foxa transcription factors in the developing and adult murine prostate. Prostate 62(4):339–352.PubMedCrossRefGoogle Scholar
  32. Mirosevich J, Gao N, Gupta A, Shappell SB, Jove R, Matusik RJ. 2006. Expression and role of Foxa proteins in prostate cancer. Prostate 66(10):1013–1028.PubMedCrossRefGoogle Scholar
  33. Miyamoto H, Yeh S, Wilding G, Chang C. 1998. Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proc Natl Acad Sci USA 95(13):7379–7384.PubMedCrossRefGoogle Scholar
  34. Myatt SS, Lam EW. 2007. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7(11):847–859.PubMedCrossRefGoogle Scholar
  35. Nunez E, Kwon YS, Hutt KR, Hu Q, Cardamone MD, Ohgi KA, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG, Fu XD. 2008. Nuclear receptor-enhanced transcription requires motor- and LSD1-dependent gene networking in interchromatin granules. Cell 132(6):996–1010.PubMedCrossRefGoogle Scholar
  36. Okita K, Ichisaka T, Yamanaka S. 2007. Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317.PubMedCrossRefGoogle Scholar
  37. Pani L, Overdier DG, Porcella A, Qian X, Lai E, Costa RH. 1992. Hepatocyte nuclear factor 3 beta contains two transcriptional activation domains, one of which is novel and conserved with the Drosophila fork head protein. Mol Cell Biol 12(9):3723–3732.PubMedGoogle Scholar
  38. Rapa I, Ceppi P, Bollito E, Rosas R, Cappia S, Bacillo E, Porpiglia F, Berruti A, Papotti M, Volante M. 2008. Human ASH1 expression in prostate cancer with neuroendocrine differentiation. Mod Pathol 21:700–707.PubMedCrossRefGoogle Scholar
  39. Robyr D, Gegonne A, Wolffe AP, Wahli W. 2000. Determinants of vitellogenin B1 promoter architecture. HNF3 and estrogen responsive transcription within chromatin. J Biol Chem 275(36):28291–28300.PubMedGoogle Scholar
  40. Saporita AJ, Ai J, Wang Z. 2007. The Hsp90 inhibitor, 17-AAG, prevents the ligand-independent nuclear localization of androgen receptor in refractory prostate cancer cells. Prostate 67(5):509–520.PubMedCrossRefGoogle Scholar
  41. Sasaki H, Hui C, Nakafuku M, Kondoh, H. 1997. Development. 124(7):1313–1322.Google Scholar
  42. Stafford JM, Wilkinson JC, Beechem JM, Granner DK. 2001. Accessory factors facilitate the binding of glucocorticoid receptor to the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 276(43):39885–39891.PubMedCrossRefGoogle Scholar
  43. Stearns ME, McGarvey T. 1992. Prostate cancer: therapeutic, diagnostic, and basic studies. Lab Invest 67(5):540–552.PubMedGoogle Scholar
  44. Sugimura Y, Cunha GR, Bigsby RM. 1986. Androgenic induction of DNA synthesis in prostatic glands induced in the urothelium of testicular feminized (Tfm/Y) mice. Prostate 9(3):217–225.PubMedCrossRefGoogle Scholar
  45. Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676.PubMedCrossRefGoogle Scholar
  46. Tan J, Sharief Y, Hamil KG, Gregory CW, Zang DY, Sar M, Gumerlock PH, deVere White RW, Pretlow TG, Harris SE, Wilson EM, Mohler JL, French FS. 1997. Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endocrinol 11(4):450–459.PubMedCrossRefGoogle Scholar
  47. Truica CI, Byers S, Gelmann EP. 2000. Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60(17):4709–4713.PubMedGoogle Scholar
  48. Voeller HJ, Truica CI, Gelmann EP. 1998. Beta-catenin mutations in human prostate cancer. Cancer Res 58(12):2520–2523.PubMedGoogle Scholar
  49. Wang W, Epstein JI. 2008. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 32(1):65–71.PubMedCrossRefGoogle Scholar
  50. Wang JC, Stromstedt PE, O'Brien RM, Granner DK. 1996. Hepatic nuclear factor 3 is an accessory factor required for the stimulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Mol Endocrinol 10(7):794–800.PubMedCrossRefGoogle Scholar
  51. Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, Chinnaiyan AM, Pienta KJ, Brown M. 2007. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27(3):380–392.PubMedCrossRefGoogle Scholar
  52. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R. 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324.PubMedCrossRefGoogle Scholar
  53. Wolf I, Bose S, Williamson EA, Miller CW, Karlan BY, Koeffler HP. 2007. FOXA1: growth inhibitor and a favorable prognostic factor in human breast cancer. Int J Cancer 120(5):1013–1022.PubMedCrossRefGoogle Scholar
  54. Young CY, Andrews PE, Tindall DJ. 1995. Expression and androgenic regulation of human prostate-specific kallikreins. J Androl 16(2):97–99.PubMedGoogle Scholar
  55. Yu X, Gupta A, Wang Y, Suzuki K, Mirosevich J, Orgebin-Crist MC, Matusik RJ. 2005. Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann NY Acad Sci 1061:77–93.PubMedCrossRefGoogle Scholar
  56. Yu X, Suzuki K, Wang Y, Gupta A, Jin R, Orgebin-Crist MC, Matusik R. 2006. The role of forkhead box A2 to restrict androgen-regulated gene expression of lipocalin 5 in the mouse epididymis. Mol Endocrinol 20(10):2418–2431.PubMedCrossRefGoogle Scholar
  57. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920.PubMedCrossRefGoogle Scholar
  58. Zhang J, Thomas TZ, Kasper S, Matusik RJ. 2000. A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology 141(12):4698–4710.PubMedCrossRefGoogle Scholar
  59. Zhu Y, Qi C, Jain S, Le Beau MM, Espinosa R, III, Atkins GB, Lazar MA, Yeldandi AV, Rao MS, Reddy JK. 1999. Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc Natl Acad Sci USA 96(19):10848–10853.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David J. DeGraff
  • Xiuping Yu
  • Qian Sun
  • Janni Mirosevich
  • Ren Jie Jin
  • Yongqing Wang
  • Aparna Gupta
  • Srinivas Nandana
  • Thomas Case
  • Manik Paul
  • Hong-Ying Huang
  • Ellen Shapiro
  • Susan Logan
  • Kichiya Suzuki
  • Marie-Claire Orgebin-Crist
  • Robert J. Matusik
    • 1
  1. 1.Department of Urologic SurgeryVanderbilt University Medical Center, A-1302, Medical Center NorthNastivilleUSA

Personalised recommendations