Advertisement

Ligand-Independent Androgen Receptor Activity

  • Scott M. Dehm
  • Donald J. Tindall
Chapter

Abstract

The androgen receptor (AR) is important for the growth and survival of normal and malignant prostate cells. As such, androgen-deprivation therapy is the current mainstay of systemic prostate cancer therapy. Invariably, prostate cancer will develop resistance to androgen deprivation and recur with a “castration-recurrent” phenotype. The surprising finding that castration-recurrent prostate cancer is still reliant on AR activity indicates that novel means of targeting the AR could be developed to treat this stage of the disease. Several mechanisms, including ligand-independent activation, have been described as means by which the AR can achieve a critical level of activity in castration-recurrent prostate cancer. This chapter will explore the mechanisms of ligand-independent AR activation and highlight some recent findings generated in the Tindall laboratory.

Keywords

Prostate Cancer Androgen Receptor LNCaP Cell Androgen Receptor Expression Androgen Receptor Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT, Thompson TC(1999). Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol 161: 182–7PubMedCrossRefGoogle Scholar
  2. Alen P, Claessens F, Verhoeven G, Rombauts W, Peeters B(1999). The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 19: 6085–97PubMedGoogle Scholar
  3. Baek SH, Ohgi KA, Nelson CA, Welsbie D, Chen C, Sawyers CLet al.(2006). Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells. Proc Natl Acad Sci U S A 103: 3100–5PubMedCrossRefGoogle Scholar
  4. Bai S, He B, Wilson EM(2005). Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol Cell Biol 25: 1238–57PubMedCrossRefGoogle Scholar
  5. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT (2006). Nuclear receptor structure: implications for function. Annu Rev Physiol 69 Google Scholar
  6. Bentel JM, Tilley WD(1996). Androgen receptors in prostate cancer. J Endocrinol 151: 1–11PubMedCrossRefGoogle Scholar
  7. Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG(1999). The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 19: 8383–92PubMedGoogle Scholar
  8. Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TCet al.(1999). Survey of gene amplifications during prostate cancer progression by high-throughput fluorescence in situ hybridization on tissue microarrays. Cancer Res 59: 803–6PubMedGoogle Scholar
  9. Buchanan G, Greenberg NM, Scher HI, Harris JM, Marshall VR, Tilley WD(2001a). Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res 7: 1273–81Google Scholar
  10. Buchanan G, Irvine RA, Coetzee GA, Tilley WD(2001b). Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev 20: 207–23CrossRefGoogle Scholar
  11. Buchanan G, Yang M, Harris JM, Nahm HS, Han G, Moore Net al.(2001c). Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol Endocrinol 15: 46–56CrossRefGoogle Scholar
  12. Callewaert L, Van Tilborgh N, Claessens F(2006). Interplay between two hormone-independent activation domains in the androgen receptor. Cancer Res 66: 543–53PubMedCrossRefGoogle Scholar
  13. Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon Het al.(1996). Role of CBP/P300 in nuclear receptor signalling. Nature 383: 99–103PubMedCrossRefGoogle Scholar
  14. Chamberlain NL, Whitacre DC, Miesfeld RL(1996). Delineation of two distinct type 1 activation functions in the androgen receptor amino-terminal domain. J Biol Chem 271: 26772–8PubMedCrossRefGoogle Scholar
  15. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella Ret al.(2004). Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: 33–9(Epub 2003 Dec 21)PubMedCrossRefGoogle Scholar
  16. Christiaens V, Bevan CL, Callewaert L, Haelens A, Verrijdt G, Rombauts Wet al.(2002). Characterization of the two coactivator-interacting surfaces of the androgen receptor and their relative role in transcriptional control. J Biol Chem 277: 49230–7(Epub 2002 Oct 4)PubMedCrossRefGoogle Scholar
  17. Craft N, Shostak Y, Carey M, Sawyers CL(1999). A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5: 280–5PubMedCrossRefGoogle Scholar
  18. Culig Z, Hobisch A, Cronauer MV, Cato AC, Hittmair A, Radmayr Cet al.(1993). Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 7: 1541–50PubMedCrossRefGoogle Scholar
  19. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair Aet al.(1994). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–8PubMedGoogle Scholar
  20. Culig Z, Stober J, Gast A, Peterziel H, Hobisch A, Radmayr Cet al.(1996). Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone. Cancer Detect Prev 20: 68–75PubMedGoogle Scholar
  21. Dai JL, Burnstein KL(1996). Two androgen response elements in the androgen receptor coding region are required for cell-specific up-regulation of receptor messenger RNA. Mol Endocrinol 10: 1582–94PubMedCrossRefGoogle Scholar
  22. Debes JD, Schmidt LJ, Huang H, Tindall DJ(2002). p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62: 5632–6PubMedGoogle Scholar
  23. Debes JD, Sebo TJ, Lohse CM, Murphy LM, Haugen de AL, Tindall DJ(2003). p300 in prostate cancer proliferation and progression. Cancer Res 63: 7638–40PubMedGoogle Scholar
  24. Dehm SM, Tindall DJ(2006a). Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J Biol Chem 281: 27882–93CrossRefGoogle Scholar
  25. Dehm SM, Tindall DJ(2006b). Molecular regulation of androgen action in prostate cancer. J Cell Biochem 99: 333–44CrossRefGoogle Scholar
  26. Dehm SM, Regan KM, Schmidt LJ, Tindall DJ(2007). Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res 67: 10067–77PubMedCrossRefGoogle Scholar
  27. Drachenberg DE, Elgamal AA, Rowbotham R, Peterson M, Murphy GP(1999). Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate 41: 127–33PubMedCrossRefGoogle Scholar
  28. Eder IE, Culig Z, Ramoner R, Thurnher M, Putz T, Nessler-Menardi Cet al.(2000). Inhibition of LncaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Ther 7: 997–1007PubMedCrossRefGoogle Scholar
  29. Edwards J, Krishna NS, Grigor KM, Bartlett JM(2003). Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 89: 552–6PubMedCrossRefGoogle Scholar
  30. Estebanez-Perpina E, Moore JM, Mar E, Delgado-Rodrigues E, Nguyen P, Baxter JDet al.(2005). The molecular mechanisms of coactivator utilization in ligand-dependent transactivation by the androgen receptor. J Biol Chem 280: 8060–8(Epub 2004 Nov 24)PubMedCrossRefGoogle Scholar
  31. Ford OH, 3rd, Gregory CW, Kim D, Smitherman AB, Mohler JL(2003). Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J Urol 170: 1817–21PubMedCrossRefGoogle Scholar
  32. Fu M, Wang C, Reutens AT, Wang J, Angeletti RH, Siconolfi-Baez Let al.(2000). p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J Biol Chem 275: 20853–60PubMedCrossRefGoogle Scholar
  33. Gaughan L, Logan IR, Cook S, Neal DE, Robson CN(2002). Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 277: 25904–13(Epub 2002 May 6)PubMedCrossRefGoogle Scholar
  34. Gottlieb B, Beitel LK, Wu JH, Trifiro M(2004). The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat 23: 527–33PubMedCrossRefGoogle Scholar
  35. Grossmann ME, Huang H, Tindall DJ(2001). Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 93: 1687–97PubMedCrossRefGoogle Scholar
  36. Haag P, Bektic J, Bartsch G, Klocker H, Eder IE(2005). Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol 24: 24Google Scholar
  37. Hammond GL, Avvakumov GV, Muller YA(2003). Structure/function analyses of human sex hormone-binding globulin: effects of zinc on steroid-binding specificity. J Steroid Biochem Mol Biol 85: 195–200PubMedCrossRefGoogle Scholar
  38. He B, Kemppainen JA, Voegel JJ, Gronemeyer H, Wilson EM(1999). Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J Biol Chem 274: 37219–25PubMedCrossRefGoogle Scholar
  39. He B, Kemppainen JA, Wilson EM(2000). FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 275: 22986–94PubMedCrossRefGoogle Scholar
  40. He B, Gampe RT, Jr, Kole AJ, Hnat AT, Stanley TB, An Get al.(2004). Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell 16: 425–38PubMedCrossRefGoogle Scholar
  41. Heemers HV, Sebo TJ, Debes JD, Regan KM, Raclaw KA, Murphy LMet al.(2007). Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res 67: 3422–30PubMedCrossRefGoogle Scholar
  42. Heinlein CA, Chang C(2004). Androgen receptor in prostate cancer. Endocr Rev 25: 276–308PubMedCrossRefGoogle Scholar
  43. Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker Het al.(1998). Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 58: 4640–5PubMedGoogle Scholar
  44. Hur E, Pfaff SJ, Payne ES, Gron H, Buehrer BM, Fletterick RJ(2004). Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol 2: E274PubMedCrossRefGoogle Scholar
  45. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ(2003). Cancer statistics, 2003. CA Cancer J Clin 53: 5–26PubMedCrossRefGoogle Scholar
  46. Jenster G, van der Korput HA, Trapman J, Brinkmann AO(1995). Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J Biol Chem 270: 7341–6PubMedCrossRefGoogle Scholar
  47. Klokk TI, Kurys P, Elbi C, Nagaich AK, Hendarwanto A, Slagsvold Tet al.(2006). Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol Cell Biol 27: 1823–43PubMedCrossRefGoogle Scholar
  48. Lamb DJ, Weigel NL, Marcelli M(2001). Androgen receptors and their biology. Vitam Horm 62: 199–230PubMedCrossRefGoogle Scholar
  49. Latil A, Bieche I, Vidaud D, Lidereau R, Berthon P, Cussenot Oet al.(2001). Evaluation of androgen, estrogen (ER alpha and ER beta), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays. Cancer Res 61: 1919–26PubMedGoogle Scholar
  50. Lavery DN, McEwan IJ(2005). Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 391: 449–64PubMedCrossRefGoogle Scholar
  51. Lavery DN, McEwan IJ(2006). The human androgen receptor AF1 transactivation domain: interactions with transcription factor IIF and molten-globule-like structural characteristics. Biochem Soc Trans 34: 1054–7PubMedCrossRefGoogle Scholar
  52. Lee SO, Lou W, Hou M, de Miguel F, Gerber L, Gao AC(2003a). Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res 9: 370–6Google Scholar
  53. Lee SO, Lou W, Hou M, Onate SA, Gao AC(2003b). Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene 22: 7981–8CrossRefGoogle Scholar
  54. Li Y, Lambert MH, Xu HE(2003). Activation of nuclear receptors: a perspective from structural genomics. Structure 11: 741–6PubMedCrossRefGoogle Scholar
  55. Li J, Fu J, Toumazou C, Yoon HG, Wong J(2006). A role of the amino-terminal (N) and carboxyl-terminal (C) interaction in binding of androgen receptor to chromatin. Mol Endocrinol 20: 776–85PubMedCrossRefGoogle Scholar
  56. Liao X, Tang S, Thrasher JB, Griebling TL, Li B(2005). Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol Cancer Ther 4: 505–15PubMedCrossRefGoogle Scholar
  57. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T(2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61: 3550–5PubMedGoogle Scholar
  58. Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C, Macedo Set al.(2000). Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem 275: 26164–71PubMedCrossRefGoogle Scholar
  59. McEwan IJ(2004). Molecular mechanisms of androgen receptor-mediated gene regulation: structure-function analysis of the AF-1 domain. Endocr Relat Cancer 11: 281–93PubMedCrossRefGoogle Scholar
  60. Metzger E, Muller JM, Ferrari S, Buettner R, Schule R(2003). A novel inducible transactivation domain in the androgen receptor: implications for PRK in prostate cancer. Embo J 22: 270–80PubMedCrossRefGoogle Scholar
  61. Mohler JL, Gregory CW, Ford OH, 3rd, Kim D, Weaver CM, Petrusz Pet al.(2004). The androgen axis in recurrent prostate cancer. Clin Cancer Res 10: 440–8PubMedCrossRefGoogle Scholar
  62. Quayle SN, Mawji NR, Wang J, Sadar MD(2007). Androgen receptor decoy molecules block the growth of prostate cancer. Proc Natl Acad Sci U S A 104: 1331–6PubMedCrossRefGoogle Scholar
  63. Sack JS, Kish KF, Wang C, Attar RM, Kiefer SE, An Yet al.(2001). Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci U S A 98: 4904–9PubMedCrossRefGoogle Scholar
  64. Scherr D, Swindle PW, Scardino PT(2003). National Comprehensive Cancer Network guidelines for the management of prostate cancer. Urology 61: 14–24PubMedCrossRefGoogle Scholar
  65. Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT(2004). Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci U S A 101: 4758–63PubMedCrossRefGoogle Scholar
  66. Sung SY, Chung LW(2002). Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation 70: 506–21PubMedCrossRefGoogle Scholar
  67. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus Jet al.(2003). Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol 21: 2673–8PubMedCrossRefGoogle Scholar
  68. Ueda T, Bruchovsky N, Sadar MD(2002). Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277: 7076–85(Epub 2001 Dec 19)PubMedCrossRefGoogle Scholar
  69. van Royen ME, Cunha SM, Brink MC, Mattern KA, Nigg AL, Dubbink HJet al.(2007). Compartmentalization of androgen receptor protein-protein interactions in living cells. J Cell Biol 177: 63–72PubMedCrossRefGoogle Scholar
  70. Verrijdt G, Haelens A, Claessens F(2003). Selective DNA recognition by the androgen receptor as a mechanism for hormone-specific regulation of gene expression. Mol Genet Metab 78: 175–85PubMedCrossRefGoogle Scholar
  71. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg Cet al.(1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9: 401–6PubMedCrossRefGoogle Scholar
  72. Wang LG, Ossowski L, Ferrari AC(2004). Androgen receptor level controlled by a suppressor complex lost in an androgen-independent prostate cancer cell line. Oncogene 23: 5175–84PubMedCrossRefGoogle Scholar
  73. Wise GJ, Marella VK, Talluri G, Shirazian D(2000). Cytokine variations in patients with hormone treated prostate cancer. J Urol 164: 722–5PubMedCrossRefGoogle Scholar
  74. Wu HC, Hsieh JT, Gleave ME, Brown NM, Pathak S, Chung LW(1994). Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer 57: 406–12PubMedCrossRefGoogle Scholar
  75. Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DMet al.(2000). Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 6: 703–6PubMedCrossRefGoogle Scholar
  76. Zhou ZX, Sar M, Simental JA, Lane MV, Wilson EM(1994). A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J Biol Chem 269: 13115–23PubMedGoogle Scholar
  77. Zhou ZX, Lane MV, Kemppainen JA, French FS, Wilson EM(1995). Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol Endocrinol 9: 208–18PubMedCrossRefGoogle Scholar
  78. Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo Het al.(2006). Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 124: 615–29PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departments of Urology and Biochemistry & Molecular BiologyMayo Clinic College of MedicineRochesterUSA

Personalised recommendations