Chromatin Remodeling and Androgen Receptor-Mediated Transcription

  • Li Jia
  • Omar Khalid
  • Baruch Frenkel
  • Gerhard A. Coetzee


It has become apparent that the expression of human genes in chromatin is regulated by post-translational structural changes in histones, which form the major protein component of nucleosomes in chromatin. The process is generally referred to as chromatin epigenetics. Recently, it was demonstrated that histone amino-terminal tails, which extend from the core of nucleosomes out of chromatin, are methylated or acetylated at lysine residues with profound effects on gene structure and function. Since some of these changes are inherited from cells to daughter cells, lineages are established with stable histone modifications. In this way the regulation of androgen receptor-mediated transcription of target genes and the phenotype of androgen receptor-mediated prostate cancer progression are affected. The detail of this novel level of regulation is being pursued by many investigators and is summarized in this chapter.


Androgen Receptor Histone Modification Androgen Receptor Gene Androgen Receptor Signaling Androgen Receptor Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Yankel Gabet for critically reviewing the manuscript. We acknowledge the following grant support: W81XWH-04-1-0823 and W81XWH-07-1-0067 to GAC, and W81XWH-05-1-0025 to BF from the US Department of Defense; CA109147 to GAC and DK071122 to BF from the National Institutes of Health; IRG-58-007-48 to LJ from the American Cancer Society; Awards from the Prostate Cancer Foundation to GAC; The J. Harold and Edna L. LaBriola Chair in Genetic Orthopaedic Research, held by BF.


  1. Alen, P., Claessens, F., Verhoeven, G., Rombauts, W., and Peeters, B.(1999). The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol. Cell. Biol.19:6085–6097.PubMedGoogle Scholar
  2. Allis, C. D., Berger, S. L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., Reinberg, D., Shi, Y., Shiekhatter, R., Shilatifard, A., Workman, J., and Zhang, Y.(2007). New nomenclature for chromatin-modifying enzymes. Cell131:633–636.PubMedCrossRefGoogle Scholar
  3. Balk, S.(2002). Androgen receptor as a target in androgen-independent prostate cancer. Urology60:132–138.PubMedCrossRefGoogle Scholar
  4. Bannister, A. J., Schneider, R., Myers, F. A., Thorne, A. W., Crane-Robinson, C., and Kouzarides, T.(2005). Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem.280:17732–17736.PubMedCrossRefGoogle Scholar
  5. Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K.(2007). High-resolution profiling of histone methylations in the human genome. Cell129:823–837.PubMedCrossRefGoogle Scholar
  6. Berger, S. L.(2007). The complex language of chromatin regulation during transcription. Nature447:407–412.PubMedCrossRefGoogle Scholar
  7. Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., McMahon, S., Karlsson, E. K., Kulbokas, E. J., III, Gingeras, T. R., Schreiber, S. L., and Lander, E. S.(2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell120:169–181.PubMedCrossRefGoogle Scholar
  8. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L., and Lander, E. S.(2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125:315–326.PubMedCrossRefGoogle Scholar
  9. Bernstein, B. E., Meissner, A., and Lander, E. S.(2007). The mammalian epigenome. Cell128:669–681.PubMedCrossRefGoogle Scholar
  10. Bolton, E. C., So, A. Y., Chaivorapol, C., Haqq, C. M., Li, H., and Yamamoto, K. R.(2007). Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev.21:2005–2017.PubMedCrossRefGoogle Scholar
  11. Bubendorf, L., Kononen, J., Koivisto, P., Schraml, P., Moch, H., Gasser, T. C., Willi, N., Mihatsch, M. J., Sauter, G., and Kallioniemi, O. P.(1999). Survey of gene amplifications during prostate cancer progression by high-throughput fluorescence in situ hybridization on tissue microarrays. Cancer Res.59:803–806.PubMedGoogle Scholar
  12. Buchanan, G., Irvine, R. A., Coetzee, G. A., and Tilley, W. D.(2001). Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev.20:207–223.PubMedCrossRefGoogle Scholar
  13. Buchanan, G., Yang, M., Cheong, A., Harris, J. M., Irvine, R. A., Lambert, P. F., Moore, N. L., Raynor, M., Neufing, P. J., Coetzee, G. A., and Tilley, W. D.(2004). Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum. Mol. Genet.13:1677–1692.PubMedCrossRefGoogle Scholar
  14. Buchanan, G., Ricciardelli, C., Harris, J. M., Prescott, J., Yu, Z. C., Jia, L., Butler, L. M., Marshall, V. R., Scher, H. I., Gerald, W. L., Coetzee, G. A., and Tilley, W. D.(2007). Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha. Cancer Res.67:1008710096.Google Scholar
  15. Carroll, J. S., Meyer, C. A., Song, J., Li, W., Geistlinger, T. R., Eeckhoute, J., Brodsky, A. S., Keeton, E. K., Fertuck, K. C., Hall, G. F., Wang, Q., Bekiranov, S., Sementchenko, V., Fox, E. A., Silver, P. A., Gingeras, T. R., Liu, X. S., and Brown, M.(2006). Genome-wide analysis of estrogen receptor binding sites. Nat. Genet.38:1289–1297.PubMedCrossRefGoogle Scholar
  16. Catz, S. D., and Johnson, J. L.(2003). BCL-2 in prostate cancer: a minireview. Apoptosis8:29–37.PubMedCrossRefGoogle Scholar
  17. Cawley, S., Bekiranov, S., Ng, H. H., Kapranov, P., Sekinger, E. A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A. J., Wheeler, R., Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, K., and Gingeras, T. R.(2004). Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell116:499–509.PubMedCrossRefGoogle Scholar
  18. Chen, C. D., Welsbie, D. S., Tran, C., Baek, S. H., Chen, R., Vessella, R., Rosenfeld, M. G., and Sawyers, C. L.(2004). Molecular determinants of resistance to antiandrogen therapy. Nat. Med.10:33–39.PubMedCrossRefGoogle Scholar
  19. Couture, J. F., and Trievel, R. C.(2006). Histone-modifying enzymes: encrypting an enigmatic epigenetic code. Curr. Opin. Struct. Biol.16:753–760.PubMedCrossRefGoogle Scholar
  20. Darzacq, X., Shav-Tal, Y., de Turris, V., Brody, Y., Shenoy, S. M., Phair, R. D., and Singer, R. H.(2007). In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol.14:796–806.PubMedCrossRefGoogle Scholar
  21. Debes, J. D., and Tindall, D. J.(2004). Mechanisms of androgen-refractory prostate cancer. N. Engl. J. Med.351:1488–1490.PubMedCrossRefGoogle Scholar
  22. Ergun, A., Lawrence, C. A., Kohanski, M. A., Brennan, T. A., and Collins, J. J.(2007). A network biology approach to prostate cancer. Mol. Syst. Biol.3:82.PubMedCrossRefGoogle Scholar
  23. Euskirchen, G., Royce, T. E., Bertone, P., Martone, R., Rinn, J. L., Nelson, F. K., Sayward, F., Luscombe, N. M., Miller, P., Gerstein, M., Weissman, S., and Snyder, M.(2004). CREB binds to multiple loci on human chromosome 22. Mol. Cell. Biol.24:3804–3814.PubMedCrossRefGoogle Scholar
  24. Feinberg, A. P.(2007a). An epigenetic approach to cancer etiology. Cancer J.13:70–74.CrossRefGoogle Scholar
  25. Feinberg, A. P.(2007b). Phenotypic plasticity and the epigenetics of human disease. Nature447:433–440.CrossRefGoogle Scholar
  26. Feldman, B. J., and Feldman, D.(2001). The development of androgen-independent prostate cancer. Nat. Rev. Cancer1:34–45.PubMedCrossRefGoogle Scholar
  27. Gaston, K. E., Kim, D., Singh, S., Ford, O. H., III, and Mohler, J. L.(2003). Racial differences in androgen receptor protein expression in men with clinically localized prostate cancer. J. Urol.170:990–993.PubMedCrossRefGoogle Scholar
  28. Gregory, C. W., Johnson, R. T., Jr., Mohler, J. L., French, F. S., and Wilson, E. M.(2001). Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res.61:2892–2898.PubMedGoogle Scholar
  29. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R., and Young, R. A.(2007). A chromatin landmark and transcription initiation at most promoters in human cells. Cell130:77–88.PubMedCrossRefGoogle Scholar
  30. Han, G., Buchanan, G., Ittmann, M., Harris, J. M., Yu, X., Demayo, F. J., Tilley, W., and Greenberg, N. M.(2005). Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc. Natl Acad. Sci. U. S. A.102:1151–1156.PubMedCrossRefGoogle Scholar
  31. He, B., Kemppainen, J. A., Voegel, J. J., Gronemeyer, H., and Wilson, E. M.(1999). Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J. Biol. Chem.274:37219–37225.PubMedCrossRefGoogle Scholar
  32. Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S., Qu, C., Ching, K. A., Wang, W., Weng, Z., Green, R. D., Crawford, G. E., and Ren, B.(2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet.39:311–318.PubMedCrossRefGoogle Scholar
  33. Holbert, M. A., and Marmorstein, R.(2005). Structure and activity of enzymes that remove histone modifications. Curr. Opin. Struct. Biol.15:673–680.PubMedCrossRefGoogle Scholar
  34. Holzbeierlein, J., Lal, P., LaTulippe, E., Smith, A., Satagopan, J., Zhang, L., Ryan, C., Smith, S., Scher, H., Scardino, P., Reuter, V., and Gerald, W. L.(2004). Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am. J. Pathol.164:217–227.PubMedCrossRefGoogle Scholar
  35. Irvine, R. A., Yu, M. C., Ross, R. K., and Coetzee, G. A.(1995). The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res.55:1937–1940.PubMedGoogle Scholar
  36. Irvine, R. A., Ma, H., Yu, M. C., Ross, R. K., Stallcup, M. R., and Coetzee, G. A.(2000). Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum. Mol. Genet.9:267–274.PubMedCrossRefGoogle Scholar
  37. Jenster, G.(1999). The role of the androgen receptor in the development and progression of prostate cancer. Semin. Oncol.26:407–421.PubMedGoogle Scholar
  38. Jia, L., Shen, H. C., Wantroba, M., Khalid, O., Liang, G., Wang, Q., Gentzschein, E., Pinski, J. K., Stanczyk, F. Z., Jones, P. A., and Coetzee, G. A.(2006). Locus-wide chromatin remodeling and enhanced androgen receptor-mediated transcription in recurrent prostate tumor cells. Mol. Cell. Biol.26:7331–7341.PubMedCrossRefGoogle Scholar
  39. Jones, P. A., and Baylin, S. B.(2007). The epigenomics of cancer. Cell128:683–692.PubMedCrossRefGoogle Scholar
  40. Kahl, P., Gullotti, L., Heukamp, L. C., Wolf, S., Friedrichs, N., Vorreuther, R., Solleder, G., Bastian, P. J., Ellinger, J., Metzger, E., Schule, R., and Buettner, R.(2006). Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res.66:11341–11347.PubMedCrossRefGoogle Scholar
  41. Kim, T. H., Abdullaev, Z. K., Smith, A. D., Ching, K. A., Loukinov, D. I., Green, R. D., Zhang, M. Q., Lobanenkov, V. V., and Ren, B.(2007). Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell128:1231–1245.PubMedCrossRefGoogle Scholar
  42. Klokk, T. I., Kurys, P., Elbi, C., Nagaich, A. K., Hendarwanto, A., Slagsvold, T., Chang, C. Y., Hager, G. L., and Saatcioglu, F.(2007). Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol. Cell. Biol.27:1823–1843.PubMedCrossRefGoogle Scholar
  43. Koivisto, P. A., and Helin, H. J.(1999). Androgen receptor gene amplification increases tissue PSA protein expression in hormone-refractory prostate carcinoma. J. Pathol.189:219–223.PubMedCrossRefGoogle Scholar
  44. Koivisto, P., Kononen, J., Palmberg, C., Tammela, T., Hyytinen, E., Isola, J., Trapman, J., Cleutjens, K., Noordzij, A., Visakorpi, T., and Kallioniemi, O. P.(1997). Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res.57:314–319.PubMedGoogle Scholar
  45. Kosak, S. T., and Groudine, M.(2004). Form follows function: the genomic organization of cellular differentiation. Genes Dev.18:1371–1384.PubMedCrossRefGoogle Scholar
  46. Kouzarides, T.(2007). SnapShot: histone-modifying enzymes. Cell131:822.PubMedCrossRefGoogle Scholar
  47. Kozlowski, J. M., Ellis, W. J., and Grayhack, J. T.(1991). Advanced prostatic carcinoma. Early versus late endocrine therapy. Urol. Clin. North Am.18:15–24.PubMedGoogle Scholar
  48. Kumar, R., and Thompson, E. B.(2003). Transactivation functions of the N-terminal domains of nuclear hormone receptors: protein folding and coactivator interactions. Mol. Endocrinol.17:1–10.PubMedCrossRefGoogle Scholar
  49. Li, B., Carey, M., and Workman, J. L.(2007). The role of chromatin during transcription. Cell128:707–719.PubMedCrossRefGoogle Scholar
  50. Li, J., Zhang, D., Fu, J., Huang, Z., and Wong, J. (2009). Structural and functional analysis of androgen receptor in chromatin. Mol. Endocrinol. [Epub ahead of print, doi:10.1210/me.2006-0221]Google Scholar
  51. Liang, G., Lin, J. C., Wei, V., Yoo, C., Cheng, J. C., Nguyen, C. T., Weisenberger, D. J., Egger,G., Takai, D., Gonzales, F. A., and Jones, P. A.(2004). Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl Acad. Sci. U. S. A.101:7357–7362.PubMedCrossRefGoogle Scholar
  52. Ling, M. T., Chan, K. W., and Choo, C. K.(2001). Androgen induces differentiation of a human papillomavirus 16 E6/E7 immortalized prostate epithelial cell line. J. Endocrinol.170:287–296.PubMedCrossRefGoogle Scholar
  53. Linja, M. J., Savinainen, K. J., Saramaki, O. R., Tammela, T. L., Vessella, R. L., and Visakorpi, T.(2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res.61:3550–3555.PubMedGoogle Scholar
  54. Ma, H., Hong, H., Huang, S. M., Irvine, R. A., Webb, P., Kushner, P. J., Coetzee, G. A., and Stallcup, M. R.(1999). Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol. Cell. Biol.19:6164–6173.PubMedGoogle Scholar
  55. Marshall, T. W., Link, K. A., Petre-Draviam, C. E., and Knudsen, K. E.(2003). Differential requirement of SWI/SNF for androgen receptor activity. J. Biol. Chem.278:30605–30613.PubMedCrossRefGoogle Scholar
  56. Martone, R., Euskirchen, G., Bertone, P., Hartman, S., Royce, T. E., Luscombe, N. M., Rinn, J. L., Nelson, F. K., Miller, P., Gerstein, M., Weissman, S., and Snyder, M.(2003). Distribution of NF-kappaB-binding sites across human chromosome 22. Proc. Natl Acad. Sci. U. S. A.100:12247–12252.PubMedCrossRefGoogle Scholar
  57. Massie, C. E., Adryan, B., Barbosa-Morais, N. L., Lynch, A. G., Tran, M. G., Neal, D. E., and Mills, I. G.(2007). New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep.8:871–878.PubMedCrossRefGoogle Scholar
  58. Metzger, E., Wissmann, M., and Schule, R.(2006). Histone demethylation and androgen-dependent transcription. Curr. Opin. Genet. Dev.16:513–517.PubMedCrossRefGoogle Scholar
  59. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S., and Bernstein, B. E.(2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature448:553–560.PubMedCrossRefGoogle Scholar
  60. Murtha, P., Tindall, D. J., and Young, C. Y.(1993). Androgen induction of a human prostate-specific kallikrein, hKLK2: characterization of an androgen response element in the 5′ promoter region of the gene. Biochemistry32:6459–6464.PubMedCrossRefGoogle Scholar
  61. Muse, G. W., Gilchrist, D. A., Nechaev, S., Shah, R., Parker, J. S., Grissom, S. F., Zeitlinger, J., and Adelman, K.(2007). RNA polymerase is poised for activation across the genome. Nat. Genet.39:1507–1511.PubMedCrossRefGoogle Scholar
  62. Pratt, W. B., and Toft, D. O.(1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev.18:306–360.PubMedCrossRefGoogle Scholar
  63. Remenyi, A., Scholer, H. R., and Wilmanns, M.(2004). Combinatorial control of gene expression. Nat. Struct. Mol. Biol.11:812–815.PubMedCrossRefGoogle Scholar
  64. Ricciardelli, C., Choong, C. S., Buchanan, G., Vivekanandan, S., Neufing, P., Stahl, J., Marshall, V. R., Horsfall, D. J., and Tilley, W. D.(2005). Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate63:1928.CrossRefGoogle Scholar
  65. Rivenbark, A. G., and Strahl, B. D.(2007). Molecular biology. Unlocking cell fate. Science318:403–404.PubMedCrossRefGoogle Scholar
  66. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O. L., He, A., Marra, M., Snyder, M., and Jones, S.(2007). Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods4:651–657.PubMedCrossRefGoogle Scholar
  67. Rosenfeld, M. G., and Glass, C. K.(2001). Coregulator codes of transcriptional regulation by nuclear receptors. J. Biol. Chem.276:36865–36868.PubMedCrossRefGoogle Scholar
  68. Savarese, F., and Grosschedl, R.(2006). Blurring cis and trans in gene regulation. Cell126:248–250.PubMedCrossRefGoogle Scholar
  69. Scher, H. I., Buchanan, G., Gerald, W., Butler, L. M., and Tilley, W. D.(2004). Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr. Relat. Cancer11:459–476.PubMedCrossRefGoogle Scholar
  70. Schuurmans, A. L., Bolt, J., Veldscholte, J., and Mulder, E.(1991). Regulation of growth of LNCaP human prostate tumor cells by growth factors and steroid hormones. J. Steroid Biochem. Mol. Biol.40:193–197.PubMedCrossRefGoogle Scholar
  71. Sellers, W. R., and Loda, M.(2002). The EZH2 polycomb transcriptional repressor – a marker or mover of metastatic prostate cancer? Cancer Cell2:349–350.PubMedCrossRefGoogle Scholar
  72. Seo, S., and Kroll, K. L.(2006). Geminin's double life: chromatin connections that regulate transcription at the transition from proliferation to differentiation. Cell Cycle5:374–379.PubMedCrossRefGoogle Scholar
  73. Shen, H. C., Buchanan, G., Butler, L. M., Prescott, J., Henderson, M., Tilley, W. D., and Coetzee, G. A.(2005). GRIP1 mediates the interaction between the amino- and carboxyl-termini of the androgen receptor. Biol. Chem.386:69–74.PubMedCrossRefGoogle Scholar
  74. Shi, Y.(2007). Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet.8:829–833.PubMedCrossRefGoogle Scholar
  75. Strahl, B. D., and Allis, C. D.(2000). The language of covalent histone modifications. Nature403:41–45.PubMedCrossRefGoogle Scholar
  76. Swigut, T., and Wysocka, J.(2007). H3K27 demethylases, at long last. Cell131:29–32.PubMedCrossRefGoogle Scholar
  77. Tanner, T., Claessens, F., and Haelens, A.(2004). The hinge region of the androgen receptor plays a role in proteasome-mediated transcriptional activation. Ann. N. Y. Acad. Sci.1030:587–592.PubMedCrossRefGoogle Scholar
  78. Trojer, P., and Reinberg, D.(2007). Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell28:1–13.PubMedCrossRefGoogle Scholar
  79. Tyagi, R. K., Lavrovsky, Y., Ahn, S. C., Song, C. S., Chatterjee, B., and Roy, A. K.(2000). Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol. Endocrinol.14:1162–1174.PubMedCrossRefGoogle Scholar
  80. Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G., Otte, A. P., Rubin, M. A., and Chinnaiyan, A. M.(2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419:624–629.PubMedCrossRefGoogle Scholar
  81. Vermeulen, M., Mulder, K. W., Denissov, S., Pijnappel, W. W., van Schaik, F. M., Varier, R. A., Baltissen, M. P., Stunnenberg, H. G., Mann, M., and Timmers, H. T.(2007). Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell131:58–69.PubMedCrossRefGoogle Scholar
  82. Villa, R., Pasini, D., Gutierrez, A., Morey, L., Occhionorelli, M., Vire, E., Nomdedeu, J. F., Jenuwein, T., Pelicci, P. G., Minucci, S., Fuks, F., Helin, K., and Di Croce, L.(2007). Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell11:513–525.PubMedCrossRefGoogle Scholar
  83. Wang, Q., Li, W., Liu, X. S., Carroll, J. S., Janne, O. A., Keeton, E. K., Chinnaiyan, A. M., Pienta, K. J., and Brown, M.(2007). A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell27:380–392.PubMedCrossRefGoogle Scholar
  84. Wei, C. L., Wu, Q., Vega, V. B., Chiu, K. P., Ng, P., Zhang, T., Shahab, A., Yong, H. C., Fu, Y., Weng, Z., Liu, J., Zhao, X. D., Chew, J. L., Lee, Y. L., Kuznetsov, V. A., Sung, W. K., Miller, L. D., Lim, B., Liu, E. T., Yu, Q., Ng, H. H., and Ruan, Y.(2006). A global map of p53 transcription-factor binding sites in the human genome. Cell124:207–219.PubMedCrossRefGoogle Scholar
  85. Xie, X., Mikkelsen, T. S., Gnirke, A., Lindblad-Toh, K., Kellis, M., and Lander, E. S.(2007). Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc. Natl Acad. Sci. U. S. A.104:7145–7150.PubMedCrossRefGoogle Scholar
  86. Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y.(2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell125:483–495.PubMedCrossRefGoogle Scholar
  87. Yu, X., Gupta, A., Wang, Y., Suzuki, K., Mirosevich, J., Orgebin-Crist, M. C., and Matusik, R. J.(2005). Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann. N. Y. Acad. Sci.1061:77–93.PubMedCrossRefGoogle Scholar
  88. Zhu, P., Zhou, W., Wang, J., Puc, J., Ohgi, K. A., Erdjument-Bromage, H., Tempst, P., Glass, C. K., and Rosenfeld, M. G.(2007). A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol. Cell27:609–621.PubMedCrossRefGoogle Scholar
  89. Zoubeidi, A., Zardan, A., Beraldi, E., Fazli, L., Sowery, R., Rennie, P., Nelson, C., and Gleave, M.(2007). Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res.67:10455–10465.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Li Jia
  • Omar Khalid
  • Baruch Frenkel
  • Gerhard A. Coetzee
    • 1
  1. 1.Departments of Preventive Medicine & Urology and Norris Cancer CenterKeck School of Medicine, University of Southern CaliforniaLos AngelesUSA

Personalised recommendations