Multitasking and Interplay Between the Androgen Receptor Domains

  • F. Claessens
  • T. Tanner
  • A. Haelens


The androgen receptor, like the other nuclear receptors, consists of three canonical domains: the aminoterminal domain (NTD), the DNA-binding domain (DBD) and the ligand-binding domain (LBD). The flexible hinge between the DBD and LBD can also be considered as a separate entity. Each of these domains has multiple functions. The NTD harbors two interdependent transactivation functions Tau-1 and Tau-5, two SUMOylation sites that seem to control cooperativity of the AR, and an 23FQNLF27 motif that interacts with high affinity with the ligand-binding domain. The DBD is involved in the correct interactions of the AR with its response elements, but it also contains a nuclear export signal as well as a nuclear translocation signal. The hinge region controls the interactions of the AR with selective AREs. It harbors an acetylation and a phosphorylation acceptor site, overlaps with the nuclear translocation signal, and seems involved in the control of the steady state of the AR. The LBD binds its natural agonists with high affinity; it interacts with heat-shock protein complexes when unbound and with a series of coregulators when bound by agonists. Many of these coregulators harbor motifs that resemble the 23FQNLF27-motif of the NTD.

Clearly, the domains of the AR do not function independently, but rather act in concert with each other and with other proteins during androgen activation of transcription. The overall activity of the AR as a transcription factor is codetermined by such communications, and also by the nature of the response element or enhancer it is binding to.


Androgen Receptor Hinge Region Nuclear Export Signal Androgen Receptor Gene Androgen Receptor Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the members of the Molecular Endocrinology Laboratory of Leuven for helpful discussions. This laboratory has been supported by the “Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO),” by a U.S. Army Prostate Cancer Research Program grant, by a “Geconcerteerde Onderzoeksactie K.U. Leuven,” and by a grant of the Association for International Cancer Research (AICR).


  1. Alen, P., Claessens, F., Verhoeven, G., Rombauts, W. and Peeters, B.1999. The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol. Cell. Biol. 19:6085–6097.PubMedGoogle Scholar
  2. Avila, D.M., Zoppi, S. and McPhaul, M.J.2001. The androgen receptor (AR) in syndromes of androgen insensitivity and in prostate cancer. J. Steroid Biochem. Mol. Biol. 76:135–142.PubMedCrossRefGoogle Scholar
  3. BaiS., He, B. and Wilson, E.M.2005Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol. Cell Biol.25:12380–1257.Google Scholar
  4. Barbulescu, K., Geserick, C., Schüttke, I., Schleuning, W. and Haendler, B.2001. New androgen response elements in the murine pem promoter mediate selective transactivation. Mol. Endocrinol. 15:1803–1816.PubMedCrossRefGoogle Scholar
  5. Berrevoets, C.A., Doesburg, P., Steketee, K., Trapman, J. and Brinkmann, A.O.1998. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2). Mol. Endocrinol. 12:1172–1183.PubMedCrossRefGoogle Scholar
  6. Bevan, C.L., Hoare, S., Claessens, F., Heery, D.M. and Parker, M.G.1999. The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol. Cell. Biol. 19:8383–8392.PubMedGoogle Scholar
  7. Black, B.E., Holaska, J.M., Rastinejad, F. and Paschal, B.M.2001. DNA binding domains of diverse nuclear receptors function as nuclear export signals. Curr. Biol. 11:1749–1758.PubMedCrossRefGoogle Scholar
  8. Blok, L.J., de Ruiter, P.E. and Brinkmann, A.O.1996. Androgen receptor phosphorylation. Endocr. Res. 22:197–219.PubMedCrossRefGoogle Scholar
  9. Buchanan, G., Yang, M., Cheong, A., Harris, J.M., Irvine, R.A., Lambert, P.F., Moore, N.L., Raynor, M., Neufling, P.J., Coetzee, G.A. and Tilley, W.D.2004. Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum. Mol. Genet.13:1677–1692.PubMedCrossRefGoogle Scholar
  10. Buchanan, G., Ricciardelli, C., Harris, J.M., Prescott, J., Yu, Z.C., Jia, L., Butler, L.M., Marshall, V.R., Scher, H.I., Gerald, W.L., Coetzee, G.A. and Tilley, W.D.2007. Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine-rich tetratricopeptide repeat containing proteinα. Cancer Res. 67:1–10.CrossRefGoogle Scholar
  11. Burd, C.J., Petre, C.E., Moghadam, H., Wilson, E.M. and Knudsen, K.E.2005. Cyclin D1 binding to the androgen receptor NH2-terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression. Mol. Endocrinol. 19:607–620.PubMedCrossRefGoogle Scholar
  12. Callewaert, L., Christiaens, V., Haelens, A., Verrijdt, G., Verhoeven, G. and Claessens, F.2003. Implications of a polyglutamine tract in the function of the human androgen receptor. Biochem. Biophys. Res. Commun. 306:46–52.PubMedCrossRefGoogle Scholar
  13. Callewaert, L., Verrijdt, G., Haelens, A. and Claessens, F.2004. Differential effect of small ubiquitin-like modifier (SUMO)-ylation of the androgen receptor in the control of cooperativity on selective versus canonical response elements. Mol. Endocrinol. 18:1438–1449.PubMedCrossRefGoogle Scholar
  14. Callewaert, L., Van Tilborgh, N. and Claessens, F.2006. Interplay between two hormone-independent activation domains in the androgen receptor. Cancer Res. 66:543–553.PubMedCrossRefGoogle Scholar
  15. Cato, A.C., Henderson, D. and Ponta, H.1987. The hormone response element of the mouse mammary tumour virus DNA mediates the progestin and androgen induction of transcription in the proviral long terminal repeat region. EMBO J. 6:363–368.PubMedGoogle Scholar
  16. Celis, L., Claessens, F., Peeters, B., Heyns, W., Verhoeven, G. and Rombauts, W.1993. Proteins interacting with an androgen-responsive unit in the C3(1) gene intron. Mol. Cell. Endocrinol. 94:165–172.PubMedCrossRefGoogle Scholar
  17. Chamberlain, N.L., Whitacre, D.C. and Miesfeld, R.L.1996. Delineation of two distinct type 1 activation functions in the androgen receptor amino-terminal domain. J. Biol. Chem. 271:26772–26778.PubMedCrossRefGoogle Scholar
  18. Christiaens, V., Bevan, C.L., Callewaert, L., Haelens, A., Verrijdt, G., Rombauts, W. and Claessens, F.2002. Characterization of two co-activator interacting surfaces of the androgen receptor and their relative role in transcriptional control. J. Biol. Chem. 277:49230–49237.PubMedCrossRefGoogle Scholar
  19. Claessens, F. and Gewirth, D.2004. DNA recognition by nuclear receptors. Essays Biochem. 40:59–72.PubMedGoogle Scholar
  20. Claessens, F., Celis, L., Peeters, B., Heyns, W., Verhoeven, G. and Rombauts, W.1989. Functional characterization of an androgen response element in the first intron of the C3(1) gene of prostatic binding protein. Biochem. Biophys. Res. Commun. 164:833–840.PubMedCrossRefGoogle Scholar
  21. Claessens, F., Rushmere, N.K., Davies, P., Celis, L., Peeters, B. and Rombauts, W.A.1990. Sequence-specific binding of androgen-receptor complexes to prostatic binding protein genes. Mol. Cell. Endocrinol. 74:203–212.PubMedCrossRefGoogle Scholar
  22. Claessens, F., Alen, P., Devos, A., Peeters, B., Verhoeven, G. and Rombauts, W.1996. The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. J. Biol. Chem. 271:19013–19016.PubMedCrossRefGoogle Scholar
  23. Dedhar, S., Rennie, P.S., Shago, M., Hagesteijn, C.Y., Yang, H., Filmus, J., Hawley, R.G., Bruchovsky, N., Cheng, H., Matusik, R.J. and Giguére, V.1994. Inhibition of nuclear hormone receptor activity by calreticulin. Nature367:480–483.PubMedCrossRefGoogle Scholar
  24. Dehm, S.M. and Tindall, D.J.2007. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol. Endocrinol.21:2855–2863.PubMedCrossRefGoogle Scholar
  25. Dehm, S.M., Regan, K.M., Schmidt, L.J. and Tindall, D.J.2007. Selective role of an NH2terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res.67:10067–10077.PubMedCrossRefGoogle Scholar
  26. Denison, S.H., Sands, A. and Tindall, D.J.1989. A tyrosine aminotransferase glucocorticoid response element also mediates androgen enhancement of gene expression. Endocrinology124:1091–1093.PubMedCrossRefGoogle Scholar
  27. Doesburg, P., Kuil, C.W., Berrevoets, C.A., Steketee, K., Faber, P.W., Mulder, E., Brinkmann, A.O. and Trapman, J.1997. Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor. Biochemistry36:1052–1064.PubMedCrossRefGoogle Scholar
  28. Fang, Y., Fliss, A.E., Robins, D.M. and Caplan, A.J.1996. Hsp90 regulates androgen receptor hormone binding affinity in vivo. J. Biol. Chem. 271:28697–28702.PubMedCrossRefGoogle Scholar
  29. Faus, H. and Haendler, B.2007. Post-translational modifications of steroid receptors. Biomed. Pharmacother. 60:520–528.Google Scholar
  30. Freiman, R.N. and Tjian, R.2003. Regulating the regulators: lysine modifications make their mark. Cell112:11–17.PubMedCrossRefGoogle Scholar
  31. Fu, M., Wang, C., Reutens, A.T., Wang, J., Angeletti, R.H., Siconolfi-Baez, L., Ogryzko, V., Avantaggiati, M.L. and Pestell, R.G.2000. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J. Biol. Chem. 275:20853–50860.PubMedCrossRefGoogle Scholar
  32. Fu, M., Wang, C., Wang, J., Zhang, X., Sakamaki, T., Yeung, Y.G., Chang, C., Hopp, T., Fuqua, S.A., Jaffray, E., Hay, R.T., Palvimo, J.J., Jänne, O.A. and Pestell, R.G.2002. Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. Mol. Cell. Biol.22:3373–3388.PubMedCrossRefGoogle Scholar
  33. Gaughan, L., Logan, I.R., Cook, S., Neal, D.E. and Robson, C.N.2002. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J. Biol. Chem. 277:25904–25913.PubMedCrossRefGoogle Scholar
  34. Gelmann, E.P.2002. Molecular biology of the androgen receptor. J. Clin. Oncol. 20:3001–3015.PubMedCrossRefGoogle Scholar
  35. Gobinet, J., Poujol, N. and Sultan, C.2002. Molecular action of androgens. Mol. Cell. Endocrinol. 198:15–24.PubMedCrossRefGoogle Scholar
  36. Gottlieb, B., Beitel, L.K., Lumbroso, R., Pinsky, L. and Trifiro, M.1999. Update of the androgen receptor gene mutations database. Hum. Mutat. 14:103–114.PubMedCrossRefGoogle Scholar
  37. Greenland, K.J. and Zajac, J.D.2004. Kennedy's disease: pathogenesis and clinical approaches. Intern. Med. J. 34:279–286.CrossRefGoogle Scholar
  38. Haelens, A., Verrijdt, G., Callewaert, L., Chrsitiaens, V., Schauwaers, K., Peeters, B., Rombauts, W. and Claessens, F.2003. DNA recognition by the androgen receptor: evidence for an alternative DNA-dependent dimerization, and an active role of sequences flanking the response element on transactivation. Biochem. J. 369:141–151.PubMedCrossRefGoogle Scholar
  39. Haelens, A., Tanner, T., Denayer, S., Callewaert, L. and Claessens, F.2007. The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. Cancer Res. 67:4514–4523.PubMedCrossRefGoogle Scholar
  40. Ham, J., Thomson, A., Needham, M., Webb, P. and Parker, M.G.1988. Characterization of response elements for androgens, glucocorticoids and progestins in mouse mammary tumour virus. Nucleic Acids Res. 16:5263–5276.PubMedCrossRefGoogle Scholar
  41. He, B., Kemppainen, J.A., Voegel, J.J., Gronemeyer, H. and Wilson, E.M.1999. Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J. Biol. Chem. 274:37219–37225.PubMedCrossRefGoogle Scholar
  42. He, B., Bai, S., Hnat, A.T., Kalman, R.I., Minges, J.T., Patterson, C. and Wilson, E.M.2004a. An androgen receptor NH2-terminal conserved motif interacts with the COOH terminus of the Hsp70-interacting protein (CHIP). J. Biol. Chem.279:30643–30653.CrossRefGoogle Scholar
  43. He, B., Gampe, R.T., Kole, A.J., Mnat, A.T., Stanley, T.B., An, G., Stewart, E.L., Kalman, R.I., Minges, J.T. and Wilson, E.M.2004b. Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol. Cell16:425–438.CrossRefGoogle Scholar
  44. Heemers, H., Verrijdt, G., Organe, S., Claessens, F., Heyns, W., Verhoeven, G. and Swinnen, J.V.2004. Identification of an androgen response element in intron 8 of the sterol regulatory element-binding protein cleavage-activating protein gene allowing direct regulation by the androgen receptor. J. Biol. Chem. 279:30880–30887.PubMedCrossRefGoogle Scholar
  45. Heemers, H.V., Regan, K.M., Dehm, S.M. and Tindall, D.J.2007. Androgen induction of the androgen receptor coactivator four and a half LIM domain protein-2: evidence for a role for serum response factor in prostate cancer. Cancer Res. 67:10592–10599.PubMedCrossRefGoogle Scholar
  46. Heinlein, C.A. and Chang, C.2002. Androgen receptor (AR) coregulators: an overview. Endocr. Rev. 23:175–200.PubMedCrossRefGoogle Scholar
  47. Huang, Z.Q., Li, J., Sachs, L.M., Cole, P.A. and Wong, J.2003. A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 22:2146–2155.PubMedCrossRefGoogle Scholar
  48. Iordanidou, P., Aggelidou, E., Demetriades, C. and Hadzopoulou-Cladaras, M.2005. Distinct amino acid residues may be involved in coactivator and ligand interactions in hepatocyte nuclear factor-4α. J. Biol. Chem. 280:21810–21819.PubMedCrossRefGoogle Scholar
  49. Irvine, R.A., Ma, H., Yu, M.C., Ross, R.K., Stallcup, M.R. and Coetzee, G.A.2000. Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum. Mol. Genet. 9:267–274.PubMedCrossRefGoogle Scholar
  50. Jenster, G., Trapman, J. and Brinkmann, A.O.1993. Nuclear import of the human androgen receptor. Biochem. J. 293:761–768.PubMedGoogle Scholar
  51. Jenster, G., van der Korput, J.A., Trapman, J. and Brinkmann, A.O.1995. Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J. Biol. Chem. 270:7341–7346.PubMedCrossRefGoogle Scholar
  52. Jeong, B.C., Hong, C.Y., Chattopadhyay, S., Park, J.H., Gong, E.Y., Kim, H.J., Chun, S.Y. and Lee, K.2004. Androgen receptor corepressor-19 kDa (ARR19), a leucine-rich protein that represses the transcriptional activity of androgen receptor through recruitment of histone deacetylase. Mol. Endocrinol. 18:13–25.PubMedCrossRefGoogle Scholar
  53. Langley, E., Zhou, Z.X. and Wilson, E.M.1995. Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J. Biol. Chem. 270:29983–29990.PubMedCrossRefGoogle Scholar
  54. Lee, S.R., Ramos, S.M., Ko, A., Masiello, D., Swanson, K.D., Lu, M.L. and Balk, S.P.2002. AR and ER interaction with a p21-activated kinase (PAK6). Mol. Endocrinol. 16:85–99.PubMedCrossRefGoogle Scholar
  55. Lee, D.Y., Ianculescu, I., Purcell, D., Zhang, X., Cheng, X. and Stallcup, M.R.2007. Surface-scanning mutational analysis of protein arginine methyltransferase 1: roles of specific amino acids in methyltransferase substrate specificity, oligomerization, and coactivator function. Mol. Endocrinol. 21:1381–1393.PubMedCrossRefGoogle Scholar
  56. Lewis, B.A. and Reinberg, D.2003. The mediator coactivator complex: functional and physical roles in transcriptional regulation. J. Cell. Sci. 116:3667–3675.PubMedCrossRefGoogle Scholar
  57. Li, X.Y., Boudjelal, M., Xiao, J.H., Peng, Z.H., Asuru, A., Kang, S., Fisher, G.J. and Voorhees, J.J.1999. 1,25-Dihydroxyvitamin D3 increases nuclear vitamin D3 receptors by blocking ubiquitin/proteasome-mediated degradation in human skin. Mol. Endocrinol.13:1686–1694.PubMedCrossRefGoogle Scholar
  58. Li, J., Zhang, D., Fu, J., Huang, Z. and Wong, J. 2007. Structural and functional analysis of androgen receptor in chromatin. Mol. Endocrinol.Google Scholar
  59. Liao, G., Chen, L.Y., Zhang, A., Godavarthy, A., Xia, F., Ghosh, J.C., Li, H. and Chen, J.D.2003. Regulation of androgen receptor activity by the nuclear corepressor SMRT. J. Biol. Chem. 278:5052–5061.PubMedCrossRefGoogle Scholar
  60. Lin, H.K., Hu, Y.C., Lee, D.K. and Chang, C.2004. Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol. Endocrinol. 18:2409–2423.PubMedCrossRefGoogle Scholar
  61. Link, K.A., Burd, C.J., Williams, E., Marshall, T., Rosson, G., Henry, E., Weissman, B. and Knudsen, K.E.2005. BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF. Mol. Cell. Biol. 25:2200–2215.PubMedCrossRefGoogle Scholar
  62. Liu, G., Wang, H. and Wang, Z.2003. Identification of a highly conserved domain in the androgen receptor that suppresses the DNA-binding domain-DNA interactions. J. Biol. Chem. 278:14956–14960.PubMedCrossRefGoogle Scholar
  63. Luisi, B.F., Xu, W.X., Otwinowski, Z., Freedman, L.P., Yamamoto, K.R. and Sigler, P.B.1991. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature352(6335):497–505.PubMedCrossRefGoogle Scholar
  64. Matias, P.M., Donner, P., Coelho, R., Thomaz, M., Peixoto, C., Mecedo, S., Otto, N., Joschko, S., Scholz, P., Wegg, A., Bäsler, S., Schäfer, M., Egner, U. and Carrondo, M.A.2000. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. J. Biol. Chem. 275:26164–26171.PubMedCrossRefGoogle Scholar
  65. McEwan, I.J.2004. Molecular mechanisms of androgen receptor-mediated gene regulation: structure-function analysis of the AF-1 domain. Endocr. Relat. Cancer11:281–293.PubMedCrossRefGoogle Scholar
  66. McEwan, I.J., Lavery, D., Fischer, K. and Watt, K.2007. Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors. Nucl. Recept. Signal. 5:e001.PubMedGoogle Scholar
  67. Metzger, E., Müller, J.M., Ferrari, S., Buettner, R. and Schüle, R.2003A novel inducible transactivation domain in the androgen receptor: implications for PRK in prostate cancer. EMBO J.22:270–280.PubMedCrossRefGoogle Scholar
  68. Nascimento, A.S., Dias, S.M.G., Nunes, F.M., Aparicio, R., Ambrosio, A.L.B., Bleicher, L., Figueira, A.C.M., Santos, M.A.M., Neto, M.O., Fischer, H., Togashi, M., Craievich, A.F., Garratt, R.C., Baxter, J.D., Webb, P. and Plikaripov, I.2006. Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function. J. Mol. Biol. 360:586–598.PubMedCrossRefGoogle Scholar
  69. Poukka, H., Karvonen, U., Janne, O.A. and Palvimo, J.J.2000a. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc. Natl. Acad. Sci. USA97:14145–14150.CrossRefGoogle Scholar
  70. Poukka, H., Karvonen, U., Yoshikawa, N., Tanaka, H., Palvimo, J.J. and Jänne, O.A.2000b. The RING finger protein SNURF modulates nuclear trafficking of the androgen receptor. J. Cell. Sci. 113:2991–3001.Google Scholar
  71. Rastinejad, F., Wagner, T., Zhao, Q. and Khorasanizadeh, S.2000. Structure of the RXRRAR DNA-binding complex on the retinoic acid response element DR1. EMBO J. 19:1045–1054.PubMedCrossRefGoogle Scholar
  72. Rechsteiner, M. and Rogers, S.W.1996. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21:267–271.PubMedGoogle Scholar
  73. Rees, I., Lee, S., Kim, H. and Tsai, FTF.2006. The E3 ubiquitin ligase CHIP binds the androgen receptor in a phosphorylation-dependent manner. Biochim. Biophys. Acta1764:1073–1079.PubMedGoogle Scholar
  74. Sack, J.S., Kish, K.F., Wang, C., Attar, R.M., Kiefer, S.E., An, Y., Wu, G.Y., Scheffler, J.E., Salvati, M.E., Krystek, S.R., Weinmann, R. and Einsphar, H.M.2001. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc. Natl. Acad. Sci. USA. 98:4904–4909.PubMedCrossRefGoogle Scholar
  75. Saporita, A.J., Zhang, Q., Navai, N., Dincer, Z., Hahn, J., Cai, X. and Wang, Z.2003. Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J. Biol. Chem. 278:41998–42005.PubMedCrossRefGoogle Scholar
  76. Schoenmakers, E., Alen, P., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W. and Claessens, F.1999. Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and C-terminal extension of the DNA-binding domains. Biochem. J. 341:515–521.PubMedCrossRefGoogle Scholar
  77. Schoenmakers, E., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W. and Claessens, F.2000. Differences in DNA binding characteristics of the androgen and glucocorticoid receptors can determine hormone-specific responses. J. Biol. Chem. 275:12290–12297.PubMedCrossRefGoogle Scholar
  78. Shaffer, P., Jivan, A., Dollins, D.E., Claessens, F. and gewirth, D.T.2004. Structural basis of androgen receptor binding to selective androgen response elements. Proc. Natl. Acad. Sci. 101:4758–4763.PubMedCrossRefGoogle Scholar
  79. Sheflin, L., Keegan, B., Zhang, W. and Spaulding, S.W.2000. Inhibiting proteasomes in human Hep3B and LNCaP cells increases endogenous androgen receptor levels. Biochem. Biophys. Res. Commun. 276:144–150.PubMedCrossRefGoogle Scholar
  80. Shin, S. and Verma, I.M.2003. BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc. Natl. Acad. Sci. USA100:7201–7206.PubMedCrossRefGoogle Scholar
  81. Sleddens, H.F., Oostra, B.A., Brinkmann, A.O. and Trapman, J.1992. Trinucleotide repeat polymorphism in the androgen receptor gene (AR). Nucleic Acids Res. 20:1427.PubMedCrossRefGoogle Scholar
  82. Tanner, T., Claessens, F. and Haelens, A.2004. The hinge region of the androgen receptor plays a role in proteasome-mediated transcriptional activation. Ann. NY Acad. Sci. 1030:587–592.PubMedCrossRefGoogle Scholar
  83. Tilley, W.D., Buchanan, G., Hickey, T.E. and Bentel, J.M.1996. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin. Cancer Res. 2:277–285.PubMedGoogle Scholar
  84. Van Royen, M.E., Cunha, S.M., Brink, M.C., Mattern, K.A., Nigg, A.L., Dubbink, H.J., Verschure, P.J., Trapman, J. and Houtsmuller, A.2007. Compartmentalization of androgen receptor protein-protein interactions in living cells. J. Cell. Biol. 177:63–72.PubMedCrossRefGoogle Scholar
  85. Veldscholte, J., Berrevoets, C.A., Zegers, N.D., van der Kwast, T.H., Grootegoed, J.A. and Mulder, E.1992. Hormone-induced dissociation of the androgen receptor-heat-shock protein complex: use of a new monoclonal antibody to distinguish transformed from nontransformed receptors. Biochemistry31:7422–7430.PubMedCrossRefGoogle Scholar
  86. Verrijdt, G., Schoenmakers, E., Alen, P., Haelens, A., Peeters, B., Rombauts, W. and Claessens, F.1999. Androgen specificity of a response unit upstream of the human secretory component gene is mediated by differential receptor binding to an essential androgen response element. Mol. Endocrinol. 13:1558–1570.PubMedCrossRefGoogle Scholar
  87. Verrijdt, G., Schoenmakers, E., Haelens, A., Peeters, B., Verhoeven, G., Rombauts, W. and Claessens, F.2000. Change of specificity mutations in androgen-selective enhancers: evidence for a role of differential DNA binding by the androgen receptor. J. Biol. Chem. 275:12298–12305.PubMedCrossRefGoogle Scholar
  88. Verrijdt, G., Tanner, T., Moehren, U., Callewaert, L., Haelens, A. and Claessens, F.2006. Biochem. Soc. Trans. 34:1089–1094.Google Scholar
  89. Vijayvargia, R., May, M.S. and Fondell, J.D.2007. A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression. Cancer Res. 67:4034–4041.PubMedCrossRefGoogle Scholar
  90. Wang, Q., Lu, J.H. and Yong, E.L.2001. Ligand- and coactivator-mediated transactivation function 2 (AF2) of the androgen receptor ligand-binding domain is inhibited by the cognate hinge region. J. Biol. Chem. 276:7493–7499.PubMedCrossRefGoogle Scholar
  91. Wang, Q., Li, W., Liu, X.S., Carroll, J.S., Jänne, O.A., Keeton, E.K., Chinnaiyan, A.M., Pienta, K.J. and Brown, M.2007. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell27:380–392.PubMedCrossRefGoogle Scholar
  92. Werner, R., Holterhus, P.M., Binder, G., Schwartz, H.P., Morlot, M., Struve, D., Marschke, C. and Hiort, O.2006. The A645D mutation in the hinge region of the human androgen receptor (AR) gene modulates AR activity, depending on the context of the polymorphic glutamine and glycine repeats. J. Clin. Endocrinol. Metab. 91:3515–3520.PubMedCrossRefGoogle Scholar
  93. Xu, P., Liu, Y., Shan, S., Kong, Y., Zhou, Q., Li, M., Ding, J., Xie, Y. and Wang, Y.2004. Molecular mechanism for the potentiation of the transcriptional activity of human liver receptor homolog 1 by steroid receptor coactivator-1. Mol. Endocrinol. 18:1887–1905.PubMedCrossRefGoogle Scholar
  94. Zhou, Z.X., Sar, M., Simental, J.A., Lane, M.V. and Wilson, E.M.1994. A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J. Biol. Chem.269:13115–13123.PubMedGoogle Scholar
  95. Zhou, Z.X., Kemppainen, J.A. and Wilson, E.M.1995. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol. Endocrinol.9:605 615.PubMedGoogle Scholar
  96. Zhu, P., Baek, S.H., Bourk, E.M., Garcia-Bassets, I., Sanjo, H., Akira, S., Kotol, P.F., Glass, C.K., Rosenfeld, R.M. and Rose, D.W.2006. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell124:615–629.PubMedCrossRefGoogle Scholar
  97. Zuccarello, D., Ferlin, A., Vinanzi, C., Prana, E., Callewaert, L., Claessens, F., Brinkmann, O.A. and Foresta, C.2007. Detailed functional studies on androgen receptor mild mutations demonstrate their association with male infertility. Clin. Endocrinol. 68:580–588.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • F. Claessens
    • 1
  • T. Tanner
    • 1
  • A. Haelens
    • 1
  1. 1.Molecular Endocrinology LaboratoryDepartment of Molecular Cell Biology, K.U. LeuvenLeuvenBelgium

Personalised recommendations