Skip to main content

Multitasking and Interplay Between the Androgen Receptor Domains

  • Chapter
  • First Online:
Androgen Action in Prostate Cancer

Abstract

The androgen receptor, like the other nuclear receptors, consists of three canonical domains: the aminoterminal domain (NTD), the DNA-binding domain (DBD) and the ligand-binding domain (LBD). The flexible hinge between the DBD and LBD can also be considered as a separate entity. Each of these domains has multiple functions. The NTD harbors two interdependent transactivation functions Tau-1 and Tau-5, two SUMOylation sites that seem to control cooperativity of the AR, and an 23FQNLF27 motif that interacts with high affinity with the ligand-binding domain. The DBD is involved in the correct interactions of the AR with its response elements, but it also contains a nuclear export signal as well as a nuclear translocation signal. The hinge region controls the interactions of the AR with selective AREs. It harbors an acetylation and a phosphorylation acceptor site, overlaps with the nuclear translocation signal, and seems involved in the control of the steady state of the AR. The LBD binds its natural agonists with high affinity; it interacts with heat-shock protein complexes when unbound and with a series of coregulators when bound by agonists. Many of these coregulators harbor motifs that resemble the 23FQNLF27-motif of the NTD.

Clearly, the domains of the AR do not function independently, but rather act in concert with each other and with other proteins during androgen activation of transcription. The overall activity of the AR as a transcription factor is codetermined by such communications, and also by the nature of the response element or enhancer it is binding to.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alen, P., Claessens, F., Verhoeven, G., Rombauts, W. and Peeters, B.1999. The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol. Cell. Biol. 19:6085–6097.

    PubMed  CAS  Google Scholar 

  • Avila, D.M., Zoppi, S. and McPhaul, M.J.2001. The androgen receptor (AR) in syndromes of androgen insensitivity and in prostate cancer. J. Steroid Biochem. Mol. Biol. 76:135–142.

    Article  PubMed  CAS  Google Scholar 

  • BaiS., He, B. and Wilson, E.M.2005Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol. Cell Biol.25:12380–1257.

    Google Scholar 

  • Barbulescu, K., Geserick, C., Schüttke, I., Schleuning, W. and Haendler, B.2001. New androgen response elements in the murine pem promoter mediate selective transactivation. Mol. Endocrinol. 15:1803–1816.

    Article  PubMed  CAS  Google Scholar 

  • Berrevoets, C.A., Doesburg, P., Steketee, K., Trapman, J. and Brinkmann, A.O.1998. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2). Mol. Endocrinol. 12:1172–1183.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, C.L., Hoare, S., Claessens, F., Heery, D.M. and Parker, M.G.1999. The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol. Cell. Biol. 19:8383–8392.

    PubMed  CAS  Google Scholar 

  • Black, B.E., Holaska, J.M., Rastinejad, F. and Paschal, B.M.2001. DNA binding domains of diverse nuclear receptors function as nuclear export signals. Curr. Biol. 11:1749–1758.

    Article  PubMed  CAS  Google Scholar 

  • Blok, L.J., de Ruiter, P.E. and Brinkmann, A.O.1996. Androgen receptor phosphorylation. Endocr. Res. 22:197–219.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, G., Yang, M., Cheong, A., Harris, J.M., Irvine, R.A., Lambert, P.F., Moore, N.L., Raynor, M., Neufling, P.J., Coetzee, G.A. and Tilley, W.D.2004. Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum. Mol. Genet.13:1677–1692.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, G., Ricciardelli, C., Harris, J.M., Prescott, J., Yu, Z.C., Jia, L., Butler, L.M., Marshall, V.R., Scher, H.I., Gerald, W.L., Coetzee, G.A. and Tilley, W.D.2007. Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine-rich tetratricopeptide repeat containing proteinα. Cancer Res. 67:1–10.

    Article  Google Scholar 

  • Burd, C.J., Petre, C.E., Moghadam, H., Wilson, E.M. and Knudsen, K.E.2005. Cyclin D1 binding to the androgen receptor NH2-terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression. Mol. Endocrinol. 19:607–620.

    Article  PubMed  CAS  Google Scholar 

  • Callewaert, L., Christiaens, V., Haelens, A., Verrijdt, G., Verhoeven, G. and Claessens, F.2003. Implications of a polyglutamine tract in the function of the human androgen receptor. Biochem. Biophys. Res. Commun. 306:46–52.

    Article  PubMed  CAS  Google Scholar 

  • Callewaert, L., Verrijdt, G., Haelens, A. and Claessens, F.2004. Differential effect of small ubiquitin-like modifier (SUMO)-ylation of the androgen receptor in the control of cooperativity on selective versus canonical response elements. Mol. Endocrinol. 18:1438–1449.

    Article  PubMed  CAS  Google Scholar 

  • Callewaert, L., Van Tilborgh, N. and Claessens, F.2006. Interplay between two hormone-independent activation domains in the androgen receptor. Cancer Res. 66:543–553.

    Article  PubMed  CAS  Google Scholar 

  • Cato, A.C., Henderson, D. and Ponta, H.1987. The hormone response element of the mouse mammary tumour virus DNA mediates the progestin and androgen induction of transcription in the proviral long terminal repeat region. EMBO J. 6:363–368.

    PubMed  CAS  Google Scholar 

  • Celis, L., Claessens, F., Peeters, B., Heyns, W., Verhoeven, G. and Rombauts, W.1993. Proteins interacting with an androgen-responsive unit in the C3(1) gene intron. Mol. Cell. Endocrinol. 94:165–172.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, N.L., Whitacre, D.C. and Miesfeld, R.L.1996. Delineation of two distinct type 1 activation functions in the androgen receptor amino-terminal domain. J. Biol. Chem. 271:26772–26778.

    Article  PubMed  CAS  Google Scholar 

  • Christiaens, V., Bevan, C.L., Callewaert, L., Haelens, A., Verrijdt, G., Rombauts, W. and Claessens, F.2002. Characterization of two co-activator interacting surfaces of the androgen receptor and their relative role in transcriptional control. J. Biol. Chem. 277:49230–49237.

    Article  PubMed  CAS  Google Scholar 

  • Claessens, F. and Gewirth, D.2004. DNA recognition by nuclear receptors. Essays Biochem. 40:59–72.

    PubMed  CAS  Google Scholar 

  • Claessens, F., Celis, L., Peeters, B., Heyns, W., Verhoeven, G. and Rombauts, W.1989. Functional characterization of an androgen response element in the first intron of the C3(1) gene of prostatic binding protein. Biochem. Biophys. Res. Commun. 164:833–840.

    Article  PubMed  CAS  Google Scholar 

  • Claessens, F., Rushmere, N.K., Davies, P., Celis, L., Peeters, B. and Rombauts, W.A.1990. Sequence-specific binding of androgen-receptor complexes to prostatic binding protein genes. Mol. Cell. Endocrinol. 74:203–212.

    Article  PubMed  CAS  Google Scholar 

  • Claessens, F., Alen, P., Devos, A., Peeters, B., Verhoeven, G. and Rombauts, W.1996. The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. J. Biol. Chem. 271:19013–19016.

    Article  PubMed  CAS  Google Scholar 

  • Dedhar, S., Rennie, P.S., Shago, M., Hagesteijn, C.Y., Yang, H., Filmus, J., Hawley, R.G., Bruchovsky, N., Cheng, H., Matusik, R.J. and Giguére, V.1994. Inhibition of nuclear hormone receptor activity by calreticulin. Nature367:480–483.

    Article  PubMed  CAS  Google Scholar 

  • Dehm, S.M. and Tindall, D.J.2007. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol. Endocrinol.21:2855–2863.

    Article  PubMed  CAS  Google Scholar 

  • Dehm, S.M., Regan, K.M., Schmidt, L.J. and Tindall, D.J.2007. Selective role of an NH2terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res.67:10067–10077.

    Article  PubMed  CAS  Google Scholar 

  • Denison, S.H., Sands, A. and Tindall, D.J.1989. A tyrosine aminotransferase glucocorticoid response element also mediates androgen enhancement of gene expression. Endocrinology124:1091–1093.

    Article  PubMed  CAS  Google Scholar 

  • Doesburg, P., Kuil, C.W., Berrevoets, C.A., Steketee, K., Faber, P.W., Mulder, E., Brinkmann, A.O. and Trapman, J.1997. Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor. Biochemistry36:1052–1064.

    Article  PubMed  CAS  Google Scholar 

  • Fang, Y., Fliss, A.E., Robins, D.M. and Caplan, A.J.1996. Hsp90 regulates androgen receptor hormone binding affinity in vivo. J. Biol. Chem. 271:28697–28702.

    Article  PubMed  CAS  Google Scholar 

  • Faus, H. and Haendler, B.2007. Post-translational modifications of steroid receptors. Biomed. Pharmacother. 60:520–528.

    Google Scholar 

  • Freiman, R.N. and Tjian, R.2003. Regulating the regulators: lysine modifications make their mark. Cell112:11–17.

    Article  PubMed  CAS  Google Scholar 

  • Fu, M., Wang, C., Reutens, A.T., Wang, J., Angeletti, R.H., Siconolfi-Baez, L., Ogryzko, V., Avantaggiati, M.L. and Pestell, R.G.2000. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J. Biol. Chem. 275:20853–50860.

    Article  PubMed  CAS  Google Scholar 

  • Fu, M., Wang, C., Wang, J., Zhang, X., Sakamaki, T., Yeung, Y.G., Chang, C., Hopp, T., Fuqua, S.A., Jaffray, E., Hay, R.T., Palvimo, J.J., Jänne, O.A. and Pestell, R.G.2002. Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. Mol. Cell. Biol.22:3373–3388.

    Article  PubMed  CAS  Google Scholar 

  • Gaughan, L., Logan, I.R., Cook, S., Neal, D.E. and Robson, C.N.2002. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J. Biol. Chem. 277:25904–25913.

    Article  PubMed  CAS  Google Scholar 

  • Gelmann, E.P.2002. Molecular biology of the androgen receptor. J. Clin. Oncol. 20:3001–3015.

    Article  PubMed  CAS  Google Scholar 

  • Gobinet, J., Poujol, N. and Sultan, C.2002. Molecular action of androgens. Mol. Cell. Endocrinol. 198:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, B., Beitel, L.K., Lumbroso, R., Pinsky, L. and Trifiro, M.1999. Update of the androgen receptor gene mutations database. Hum. Mutat. 14:103–114.

    Article  PubMed  CAS  Google Scholar 

  • Greenland, K.J. and Zajac, J.D.2004. Kennedy's disease: pathogenesis and clinical approaches. Intern. Med. J. 34:279–286.

    Article  Google Scholar 

  • Haelens, A., Verrijdt, G., Callewaert, L., Chrsitiaens, V., Schauwaers, K., Peeters, B., Rombauts, W. and Claessens, F.2003. DNA recognition by the androgen receptor: evidence for an alternative DNA-dependent dimerization, and an active role of sequences flanking the response element on transactivation. Biochem. J. 369:141–151.

    Article  PubMed  CAS  Google Scholar 

  • Haelens, A., Tanner, T., Denayer, S., Callewaert, L. and Claessens, F.2007. The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. Cancer Res. 67:4514–4523.

    Article  PubMed  CAS  Google Scholar 

  • Ham, J., Thomson, A., Needham, M., Webb, P. and Parker, M.G.1988. Characterization of response elements for androgens, glucocorticoids and progestins in mouse mammary tumour virus. Nucleic Acids Res. 16:5263–5276.

    Article  PubMed  CAS  Google Scholar 

  • He, B., Kemppainen, J.A., Voegel, J.J., Gronemeyer, H. and Wilson, E.M.1999. Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J. Biol. Chem. 274:37219–37225.

    Article  PubMed  CAS  Google Scholar 

  • He, B., Bai, S., Hnat, A.T., Kalman, R.I., Minges, J.T., Patterson, C. and Wilson, E.M.2004a. An androgen receptor NH2-terminal conserved motif interacts with the COOH terminus of the Hsp70-interacting protein (CHIP). J. Biol. Chem.279:30643–30653.

    Article  CAS  Google Scholar 

  • He, B., Gampe, R.T., Kole, A.J., Mnat, A.T., Stanley, T.B., An, G., Stewart, E.L., Kalman, R.I., Minges, J.T. and Wilson, E.M.2004b. Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol. Cell16:425–438.

    Article  CAS  Google Scholar 

  • Heemers, H., Verrijdt, G., Organe, S., Claessens, F., Heyns, W., Verhoeven, G. and Swinnen, J.V.2004. Identification of an androgen response element in intron 8 of the sterol regulatory element-binding protein cleavage-activating protein gene allowing direct regulation by the androgen receptor. J. Biol. Chem. 279:30880–30887.

    Article  PubMed  CAS  Google Scholar 

  • Heemers, H.V., Regan, K.M., Dehm, S.M. and Tindall, D.J.2007. Androgen induction of the androgen receptor coactivator four and a half LIM domain protein-2: evidence for a role for serum response factor in prostate cancer. Cancer Res. 67:10592–10599.

    Article  PubMed  CAS  Google Scholar 

  • Heinlein, C.A. and Chang, C.2002. Androgen receptor (AR) coregulators: an overview. Endocr. Rev. 23:175–200.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Z.Q., Li, J., Sachs, L.M., Cole, P.A. and Wong, J.2003. A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 22:2146–2155.

    Article  PubMed  CAS  Google Scholar 

  • Iordanidou, P., Aggelidou, E., Demetriades, C. and Hadzopoulou-Cladaras, M.2005. Distinct amino acid residues may be involved in coactivator and ligand interactions in hepatocyte nuclear factor-4α. J. Biol. Chem. 280:21810–21819.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R.A., Ma, H., Yu, M.C., Ross, R.K., Stallcup, M.R. and Coetzee, G.A.2000. Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum. Mol. Genet. 9:267–274.

    Article  PubMed  CAS  Google Scholar 

  • Jenster, G., Trapman, J. and Brinkmann, A.O.1993. Nuclear import of the human androgen receptor. Biochem. J. 293:761–768.

    PubMed  CAS  Google Scholar 

  • Jenster, G., van der Korput, J.A., Trapman, J. and Brinkmann, A.O.1995. Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J. Biol. Chem. 270:7341–7346.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, B.C., Hong, C.Y., Chattopadhyay, S., Park, J.H., Gong, E.Y., Kim, H.J., Chun, S.Y. and Lee, K.2004. Androgen receptor corepressor-19 kDa (ARR19), a leucine-rich protein that represses the transcriptional activity of androgen receptor through recruitment of histone deacetylase. Mol. Endocrinol. 18:13–25.

    Article  PubMed  CAS  Google Scholar 

  • Langley, E., Zhou, Z.X. and Wilson, E.M.1995. Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J. Biol. Chem. 270:29983–29990.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.R., Ramos, S.M., Ko, A., Masiello, D., Swanson, K.D., Lu, M.L. and Balk, S.P.2002. AR and ER interaction with a p21-activated kinase (PAK6). Mol. Endocrinol. 16:85–99.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D.Y., Ianculescu, I., Purcell, D., Zhang, X., Cheng, X. and Stallcup, M.R.2007. Surface-scanning mutational analysis of protein arginine methyltransferase 1: roles of specific amino acids in methyltransferase substrate specificity, oligomerization, and coactivator function. Mol. Endocrinol. 21:1381–1393.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, B.A. and Reinberg, D.2003. The mediator coactivator complex: functional and physical roles in transcriptional regulation. J. Cell. Sci. 116:3667–3675.

    Article  PubMed  CAS  Google Scholar 

  • Li, X.Y., Boudjelal, M., Xiao, J.H., Peng, Z.H., Asuru, A., Kang, S., Fisher, G.J. and Voorhees, J.J.1999. 1,25-Dihydroxyvitamin D3 increases nuclear vitamin D3 receptors by blocking ubiquitin/proteasome-mediated degradation in human skin. Mol. Endocrinol.13:1686–1694.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Zhang, D., Fu, J., Huang, Z. and Wong, J. 2007. Structural and functional analysis of androgen receptor in chromatin. Mol. Endocrinol.

    Google Scholar 

  • Liao, G., Chen, L.Y., Zhang, A., Godavarthy, A., Xia, F., Ghosh, J.C., Li, H. and Chen, J.D.2003. Regulation of androgen receptor activity by the nuclear corepressor SMRT. J. Biol. Chem. 278:5052–5061.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H.K., Hu, Y.C., Lee, D.K. and Chang, C.2004. Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol. Endocrinol. 18:2409–2423.

    Article  PubMed  CAS  Google Scholar 

  • Link, K.A., Burd, C.J., Williams, E., Marshall, T., Rosson, G., Henry, E., Weissman, B. and Knudsen, K.E.2005. BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF. Mol. Cell. Biol. 25:2200–2215.

    Article  PubMed  CAS  Google Scholar 

  • Liu, G., Wang, H. and Wang, Z.2003. Identification of a highly conserved domain in the androgen receptor that suppresses the DNA-binding domain-DNA interactions. J. Biol. Chem. 278:14956–14960.

    Article  PubMed  CAS  Google Scholar 

  • Luisi, B.F., Xu, W.X., Otwinowski, Z., Freedman, L.P., Yamamoto, K.R. and Sigler, P.B.1991. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature352(6335):497–505.

    Article  PubMed  CAS  Google Scholar 

  • Matias, P.M., Donner, P., Coelho, R., Thomaz, M., Peixoto, C., Mecedo, S., Otto, N., Joschko, S., Scholz, P., Wegg, A., Bäsler, S., Schäfer, M., Egner, U. and Carrondo, M.A.2000. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. J. Biol. Chem. 275:26164–26171.

    Article  PubMed  CAS  Google Scholar 

  • McEwan, I.J.2004. Molecular mechanisms of androgen receptor-mediated gene regulation: structure-function analysis of the AF-1 domain. Endocr. Relat. Cancer11:281–293.

    Article  PubMed  CAS  Google Scholar 

  • McEwan, I.J., Lavery, D., Fischer, K. and Watt, K.2007. Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors. Nucl. Recept. Signal. 5:e001.

    PubMed  Google Scholar 

  • Metzger, E., Müller, J.M., Ferrari, S., Buettner, R. and Schüle, R.2003A novel inducible transactivation domain in the androgen receptor: implications for PRK in prostate cancer. EMBO J.22:270–280.

    Article  PubMed  CAS  Google Scholar 

  • Nascimento, A.S., Dias, S.M.G., Nunes, F.M., Aparicio, R., Ambrosio, A.L.B., Bleicher, L., Figueira, A.C.M., Santos, M.A.M., Neto, M.O., Fischer, H., Togashi, M., Craievich, A.F., Garratt, R.C., Baxter, J.D., Webb, P. and Plikaripov, I.2006. Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function. J. Mol. Biol. 360:586–598.

    Article  PubMed  CAS  Google Scholar 

  • Poukka, H., Karvonen, U., Janne, O.A. and Palvimo, J.J.2000a. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc. Natl. Acad. Sci. USA97:14145–14150.

    Article  CAS  Google Scholar 

  • Poukka, H., Karvonen, U., Yoshikawa, N., Tanaka, H., Palvimo, J.J. and Jänne, O.A.2000b. The RING finger protein SNURF modulates nuclear trafficking of the androgen receptor. J. Cell. Sci. 113:2991–3001.

    CAS  Google Scholar 

  • Rastinejad, F., Wagner, T., Zhao, Q. and Khorasanizadeh, S.2000. Structure of the RXRRAR DNA-binding complex on the retinoic acid response element DR1. EMBO J. 19:1045–1054.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M. and Rogers, S.W.1996. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21:267–271.

    PubMed  CAS  Google Scholar 

  • Rees, I., Lee, S., Kim, H. and Tsai, FTF.2006. The E3 ubiquitin ligase CHIP binds the androgen receptor in a phosphorylation-dependent manner. Biochim. Biophys. Acta1764:1073–1079.

    PubMed  CAS  Google Scholar 

  • Sack, J.S., Kish, K.F., Wang, C., Attar, R.M., Kiefer, S.E., An, Y., Wu, G.Y., Scheffler, J.E., Salvati, M.E., Krystek, S.R., Weinmann, R. and Einsphar, H.M.2001. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc. Natl. Acad. Sci. USA. 98:4904–4909.

    Article  PubMed  CAS  Google Scholar 

  • Saporita, A.J., Zhang, Q., Navai, N., Dincer, Z., Hahn, J., Cai, X. and Wang, Z.2003. Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J. Biol. Chem. 278:41998–42005.

    Article  PubMed  CAS  Google Scholar 

  • Schoenmakers, E., Alen, P., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W. and Claessens, F.1999. Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and C-terminal extension of the DNA-binding domains. Biochem. J. 341:515–521.

    Article  PubMed  CAS  Google Scholar 

  • Schoenmakers, E., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W. and Claessens, F.2000. Differences in DNA binding characteristics of the androgen and glucocorticoid receptors can determine hormone-specific responses. J. Biol. Chem. 275:12290–12297.

    Article  PubMed  CAS  Google Scholar 

  • Shaffer, P., Jivan, A., Dollins, D.E., Claessens, F. and gewirth, D.T.2004. Structural basis of androgen receptor binding to selective androgen response elements. Proc. Natl. Acad. Sci. 101:4758–4763.

    Article  PubMed  CAS  Google Scholar 

  • Sheflin, L., Keegan, B., Zhang, W. and Spaulding, S.W.2000. Inhibiting proteasomes in human Hep3B and LNCaP cells increases endogenous androgen receptor levels. Biochem. Biophys. Res. Commun. 276:144–150.

    Article  PubMed  CAS  Google Scholar 

  • Shin, S. and Verma, I.M.2003. BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc. Natl. Acad. Sci. USA100:7201–7206.

    Article  PubMed  CAS  Google Scholar 

  • Sleddens, H.F., Oostra, B.A., Brinkmann, A.O. and Trapman, J.1992. Trinucleotide repeat polymorphism in the androgen receptor gene (AR). Nucleic Acids Res. 20:1427.

    Article  PubMed  CAS  Google Scholar 

  • Tanner, T., Claessens, F. and Haelens, A.2004. The hinge region of the androgen receptor plays a role in proteasome-mediated transcriptional activation. Ann. NY Acad. Sci. 1030:587–592.

    Article  PubMed  CAS  Google Scholar 

  • Tilley, W.D., Buchanan, G., Hickey, T.E. and Bentel, J.M.1996. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin. Cancer Res. 2:277–285.

    PubMed  CAS  Google Scholar 

  • Van Royen, M.E., Cunha, S.M., Brink, M.C., Mattern, K.A., Nigg, A.L., Dubbink, H.J., Verschure, P.J., Trapman, J. and Houtsmuller, A.2007. Compartmentalization of androgen receptor protein-protein interactions in living cells. J. Cell. Biol. 177:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Veldscholte, J., Berrevoets, C.A., Zegers, N.D., van der Kwast, T.H., Grootegoed, J.A. and Mulder, E.1992. Hormone-induced dissociation of the androgen receptor-heat-shock protein complex: use of a new monoclonal antibody to distinguish transformed from nontransformed receptors. Biochemistry31:7422–7430.

    Article  PubMed  CAS  Google Scholar 

  • Verrijdt, G., Schoenmakers, E., Alen, P., Haelens, A., Peeters, B., Rombauts, W. and Claessens, F.1999. Androgen specificity of a response unit upstream of the human secretory component gene is mediated by differential receptor binding to an essential androgen response element. Mol. Endocrinol. 13:1558–1570.

    Article  PubMed  CAS  Google Scholar 

  • Verrijdt, G., Schoenmakers, E., Haelens, A., Peeters, B., Verhoeven, G., Rombauts, W. and Claessens, F.2000. Change of specificity mutations in androgen-selective enhancers: evidence for a role of differential DNA binding by the androgen receptor. J. Biol. Chem. 275:12298–12305.

    Article  PubMed  CAS  Google Scholar 

  • Verrijdt, G., Tanner, T., Moehren, U., Callewaert, L., Haelens, A. and Claessens, F.2006. Biochem. Soc. Trans. 34:1089–1094.

    CAS  Google Scholar 

  • Vijayvargia, R., May, M.S. and Fondell, J.D.2007. A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression. Cancer Res. 67:4034–4041.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Lu, J.H. and Yong, E.L.2001. Ligand- and coactivator-mediated transactivation function 2 (AF2) of the androgen receptor ligand-binding domain is inhibited by the cognate hinge region. J. Biol. Chem. 276:7493–7499.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Li, W., Liu, X.S., Carroll, J.S., Jänne, O.A., Keeton, E.K., Chinnaiyan, A.M., Pienta, K.J. and Brown, M.2007. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell27:380–392.

    Article  PubMed  Google Scholar 

  • Werner, R., Holterhus, P.M., Binder, G., Schwartz, H.P., Morlot, M., Struve, D., Marschke, C. and Hiort, O.2006. The A645D mutation in the hinge region of the human androgen receptor (AR) gene modulates AR activity, depending on the context of the polymorphic glutamine and glycine repeats. J. Clin. Endocrinol. Metab. 91:3515–3520.

    Article  PubMed  CAS  Google Scholar 

  • Xu, P., Liu, Y., Shan, S., Kong, Y., Zhou, Q., Li, M., Ding, J., Xie, Y. and Wang, Y.2004. Molecular mechanism for the potentiation of the transcriptional activity of human liver receptor homolog 1 by steroid receptor coactivator-1. Mol. Endocrinol. 18:1887–1905.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z.X., Sar, M., Simental, J.A., Lane, M.V. and Wilson, E.M.1994. A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J. Biol. Chem.269:13115–13123.

    PubMed  CAS  Google Scholar 

  • Zhou, Z.X., Kemppainen, J.A. and Wilson, E.M.1995. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol. Endocrinol.9:605 615.

    PubMed  Google Scholar 

  • Zhu, P., Baek, S.H., Bourk, E.M., Garcia-Bassets, I., Sanjo, H., Akira, S., Kotol, P.F., Glass, C.K., Rosenfeld, R.M. and Rose, D.W.2006. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell124:615–629.

    Article  PubMed  CAS  Google Scholar 

  • Zuccarello, D., Ferlin, A., Vinanzi, C., Prana, E., Callewaert, L., Claessens, F., Brinkmann, O.A. and Foresta, C.2007. Detailed functional studies on androgen receptor mild mutations demonstrate their association with male infertility. Clin. Endocrinol. 68:580–588.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the members of the Molecular Endocrinology Laboratory of Leuven for helpful discussions. This laboratory has been supported by the “Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO),” by a U.S. Army Prostate Cancer Research Program grant, by a “Geconcerteerde Onderzoeksactie K.U. Leuven,” and by a grant of the Association for International Cancer Research (AICR).

Author information

Authors and Affiliations

Authors

Editor information

James Mohler Donald Tindall

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Claessens, F., Tanner, T., Haelens, A. (2009). Multitasking and Interplay Between the Androgen Receptor Domains. In: Mohler, J., Tindall, D. (eds) Androgen Action in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69179-4_17

Download citation

Publish with us

Policies and ethics