Coregulators and the Regulation of Androgen Receptor Action in Prostate Cancer



The importance of androgen receptors in primary prostate cancer is well established and some form of androgen blockade is the primary treatment for metastatic prostate cancer. There is increasing evidence that the androgen receptor (AR) continues to play a role in castration resistant disease despite the decrease in serum androgens. Thus, factors that modulate AR activity are potential therapeutic targets. AR is a transcription factor that regulates its target genes by recruiting a complex of coregulators with multiple enzymatic activities. These coregulators remodel chromatin, modify receptor, other coregulators, and general transcription factors, as well as affect splicing decisions. Here we summarize current evidence for changes in expression of coregulators in prostate cancer and their function in prostate cancer cell lines. Many of these coregulators have pleiotropic functions and modulate transcription factors other then AR. Thus, they may have both AR dependent and AR independent roles in prostate cancer.


Prostate Cancer Androgen Receptor Prostate Cancer Cell Gleason Score LNCaP Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agoulnik, I. U., and N. L. Weigel. 2006. Androgen receptor action in hormone-dependent and recurrent prostate cancer. J Cell Biochem 99: 362–72.PubMedGoogle Scholar
  2. Agoulnik, I. U., W. C. Krause, W. E. Bingman, III, H. T. Rahman, M. Amrikachi, G. E. Ayala, and N. L. Weigel. 2003. Repressors of androgen and progesterone receptor action. J Biol Chem 278: 31136–48.PubMedGoogle Scholar
  3. Agoulnik, I. U., A. Vaid, W. E. Bingman, III, H. Erdeme, A. Frolov, C. L. Smith, G. Ayala, M. M. Ittmann, and N. L. Weigel. 2005. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res 65: 7959–67.PubMedGoogle Scholar
  4. Agoulnik, I. U., A. Vaid, M. Nakka, M. Alvarado, W. E. Bingman, III, H. Erdem, A. Frolov, C. L. Smith, G. E. Ayala, M. M. Ittmann, and N. L. Weigel. 2006. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res 66: 10594–602.PubMedGoogle Scholar
  5. Anzick, S. L., J. Kononen, R. L. Walker, D. O. Azorsa, M. M. Tanner, X. Y. Guan, G. Sauter, O. P. Kallioniemi, J. M. Trent, and P. S. Meltzer. 1997. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277: 965–8.PubMedGoogle Scholar
  6. Arnold, J. T., and J. T. Isaacs. 2002. Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell's fault. Endocr Relat Cancer 9: 61–73.PubMedGoogle Scholar
  7. Ayala, G., D. Wang, G. Wulf, A. Frolov, R. Li, J. Sowadski, T. M. Wheeler, K. P. Lu, and L. Bao. 2003. The prolyl isomerase Pin1 is a novel prognostic marker in human prostate cancer. Cancer Res 63: 6244–51.PubMedGoogle Scholar
  8. Barrett, A., S. Santangelo, K. Tan, S. Catchpole, K. Roberts, B. Spencer-Dene, D. Hall, A. Scibetta, J. Burchell, E. Verdin, P. Freemont, and J. Taylor-Papadimitriou. 2007. Breast cancer associated transcriptional repressor PLU-1/JARID1B interacts directly with histone deacetylases. Int J Cancer 121: 265–75.PubMedGoogle Scholar
  9. Bawa-Khalfe, T., J. Cheng, Z. Wang, and E. T. Yeh. 2007. Induction of the SUMO-specific protease 1 transcription by the androgen receptor in prostate cancer cells. J Biol Chem 282: 37341–9.PubMedGoogle Scholar
  10. Bevan, C. L., S. Hoare, F. Claessens, D. M. Heery, and M. G. Parker. 1999. The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 19: 8383–92.PubMedGoogle Scholar
  11. Bordone, L., and L. Guarente. 2005. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6: 298–305.PubMedGoogle Scholar
  12. Burd, C. J., C. E. Petre, L. M. Morey, Y. Wang, M. P. Revelo, C. A. Haiman, S. Lu, C. M. Fenoglio-Preiser, J. Li, E. S. Knudsen, J. Wong, and K. E. Knudsen. 2006. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci USA 103: 2190–5.PubMedGoogle Scholar
  13. Byvoet, P., G. R. Shepherd, J. M. Hardin, and B. J. Noland. 1972. The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch Biochem Biophys 148: 558–67.PubMedGoogle Scholar
  14. Callewaert, L., G. Verrijdt, A. Haelens, and F. Claessens. 2004. Differential effect of small ubiquitin-like modifier (SUMO)-ylation of the androgen receptor in the control of cooperativity on selective versus canonical response elements. Mol Endocrinol 18: 1438–49.PubMedGoogle Scholar
  15. Castoria, G., M. Lombardi, M. V. Barone, A. Bilancio, M. Di Domenico, D. Bottero, F. Vitale, A. Migliaccio, and F. Auricchio. 2003. Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. J Cell Biol 161: 547–56.PubMedGoogle Scholar
  16. Castoria, G., M. Lombardi, M. V. Barone, A. Bilancio, M. Di Domenico, A. De Falco, L. Varricchio, D. Bottero, M. Nanayakkara, A. Migliaccio, and F. Auricchio. 2004. Rapid signalling pathway activation by androgens in epithelial and stromal cells. Steroids 69: 517–22.PubMedGoogle Scholar
  17. Chen, D., H. Ma, H. Hong, S. S. Koh, S. M. Huang, B. T. Schurter, D. W. Aswad, and M. R. Stallcup. 1999. Regulation of transcription by a protein methyltransferase. Science 284: 2174–7.PubMedGoogle Scholar
  18. Chen, C. D., D. S. Welsbie, C. Tran, S. H. Baek, R. Chen, R. Vessella, M. G. Rosenfeld, and C. L. Sawyers. 2004a. Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: 33–9.Google Scholar
  19. Chen, G., N. Shukeir, A. Potti, K. Sircar, A. Aprikian, D. Goltzman, and S. A. Rabbani. 2004b. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101: 1345–56.Google Scholar
  20. Chen, S. Y., G. Wulf, X. Z. Zhou, M. A. Rubin, K. P. Lu, and S. P. Balk. 2006. Activation of beta-catenin signaling in prostate cancer by peptidyl-prolyl isomerase Pin1-mediated abrogation of the androgen receptor-beta-catenin interaction. Mol Cell Biol 26: 929–39.PubMedGoogle Scholar
  21. Cheng, J., D. Wang, Z. Wang, and E. T. Yeh. 2004. SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol Cell Biol 24: 6021–8.PubMedGoogle Scholar
  22. Cheng, J., T. Bawa, P. Lee, L. Gong, and E. T. Yeh. 2006. Role of desumoylation in the development of prostate cancer. Neoplasia 8: 667–76.PubMedGoogle Scholar
  23. Cohen, H. Y., C. Miller, K. J. Bitterman, N. R. Wall, B. Hekking, B. Kessler, K. T. Howitz, M. Gorospe, R. de Cabo, and D. A. Sinclair. 2004. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305: 390–2.PubMedGoogle Scholar
  24. Comstock, C. E., M. P. Revelo, C. R. Buncher, and K. E. Knudsen. 2007. Impact of differential cyclin D1 expression and localisation in prostate cancer. Br J Cancer 96: 970–9.PubMedGoogle Scholar
  25. Culig, Z., A. Hobisch, M. V. Cronauer, C. Radmayr, J. Trapman, A. Hittmair, G. Bartsch, and H. Klocker. 1994. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–8.PubMedGoogle Scholar
  26. Daniel, J. A., M. G. Pray-Grant, and P. A. Grant. 2005. Effector proteins for methylated histones: an expanding family. Cell Cycle 4: 919–26.PubMedGoogle Scholar
  27. David, A., N. Mabjeesh, I. Azar, S. Biton, S. Engel, J. Bernstein, J. Romano, Y. Avidor, T. Waks, Z. Eshhar, S. Z. Langer, B. Lifschitz-Mercer, H. Matzkin, G. Rotman, A. Toporik, K. Savitsky, and L. Mintz. 2002. Unusual alternative splicing within the human kallikrein genes KLK2 and KLK3 gives rise to novel prostate-specific proteins. J Biol Chem 277: 18084–90.PubMedGoogle Scholar
  28. Debes, J. D., L. J. Schmidt, H. Huang, and D. J. Tindall. 2002. p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62: 5632–6.PubMedGoogle Scholar
  29. Desai, S. J., A. H. Ma, C. G. Tepper, H. W. Chen, and H. J. Kung. 2006. Inappropriate activation of the androgen receptor by nonsteroids: involvement of the Src kinase pathway and its therapeutic implications. Cancer Res 66: 10449–59.PubMedGoogle Scholar
  30. Dong, X., J. Sweet, J. R. Challis, T. Brown, and S. J. Lye. 2007. Transcriptional activity of androgen receptor is modulated by two RNA splicing factors, PSF and p54nrb. Mol Cell Biol 27: 4863–75.PubMedGoogle Scholar
  31. Fu, M., M. Rao, C. Wang, T. Sakamaki, J. Wang, D. Di Vizio, X. Zhang, C. Albanese, S. Balk, C. Chang, S. Fan, E. Rosen, J. J. Palvimo, O. A. Janne, S. Muratoglu, M. L. Avantaggiati, and R. G. Pestell. 2003. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol 23: 8563–75.PubMedGoogle Scholar
  32. Fu, M., C. Wang, X. Zhang, and R. G. Pestell. 2004. Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem Pharmacol 68: 1199–208.PubMedGoogle Scholar
  33. Fu, M., M. Liu, A. A. Sauve, X. Jiao, X. Zhang, X. Wu, M. J. Powell, T. Yang, W. Gu, M. L. Avantaggiati, N. Pattabiraman, T. G. Pestell, F. Wang, A. A. Quong, C. Wang, and R. G. Pestell. 2006. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 26: 8122–35.PubMedGoogle Scholar
  34. Furuya, F., C. J. Guigon, L. Zhao, C. Lu, J. A. Hanover, and S. Y. Cheng. 2007. Nuclear receptor corepressor is a novel regulator of phosphatidylinositol 3-kinase signaling. Mol Cell Biol 27: 6116–26.PubMedGoogle Scholar
  35. Gao, X., S. K. Mohsin, Z. Gatalica, G. Fu, P. Sharma, and Z. Nawaz. 2005. Decreased expression of e6-associated protein in breast and prostate carcinomas. Endocrinology 146: 1707–12.PubMedGoogle Scholar
  36. Gioeli, D., J. W. Mandell, G. R. Petroni, H. F. Frierson, Jr., and M. J. Weber. 1999. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 59: 279–84.PubMedGoogle Scholar
  37. Girdwood, D., D. Bumpass, O. A. Vaughan, A. Thain, L. A. Anderson, A. W. Snowden, E. Garcia-Wilson, N. D. Perkins, and R. T. Hay. 2003. P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11: 1043–54.PubMedGoogle Scholar
  38. Goldknopf, I. L., and H. Busch. 1977. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc Natl Acad Sci USA 74: 864–8.PubMedGoogle Scholar
  39. Gong, J., J. Zhu, O. B. Goodman, Jr., R. G. Pestell, P. N. Schlegel, D. M. Nanus, and R. Shen. 2006. Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells. Oncogene 25: 2011–21.PubMedGoogle Scholar
  40. Gregoretti, I. V., Y. M. Lee, and H. V. Goodson. 2004. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338: 17–31.PubMedGoogle Scholar
  41. Gregory, C. W., B. He, R. T. Johnson, O. H. Ford, J. L. Mohler, F. S. French, and E. M. Wilson. 2001. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 61: 4315–9.PubMedGoogle Scholar
  42. Gregory, C. W., X. Fei, L. A. Ponguta, B. He, H. M. Bill, F. S. French, and E. M. Wilson. 2004. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem 279: 7119–30.PubMedGoogle Scholar
  43. Guo, Z., B. Dai, T. Jiang, K. Xu, Y. Xie, O. Kim, I. Nesheiwat, X. Kong, J. Melamed, V. D. Handratta, V. C. Njar, A. M. Brodie, L. R. Yu, T. D. Veenstra, H. Chen, and Y. Qiu. 2006. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10: 309–19.PubMedGoogle Scholar
  44. Haas, A. L. 2007. Structural insights into early events in the conjugation of ubiquitin and ubiquitin-like proteins. Mol Cell 27: 174–5.PubMedGoogle Scholar
  45. Halkidou, K., V. J. Gnanapragasam, P. B. Mehta, I. R. Logan, M. E. Brady, S. Cook, H. Y. Leung, D. E. Neal, and C. N. Robson. 2003. Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 22: 2466–77.PubMedGoogle Scholar
  46. He, M. L., A. L. Jiang, P. J. Zhang, X. Y. Hu, Z. F. Liu, H. Q. Yuan, and J. Y. Zhang. 2005. Identification of androgen-responsive element ARE and Sp1 element in the maspin promoter. Chin J Physiol 48: 160–6.PubMedGoogle Scholar
  47. Heemers, H. V., T. J. Sebo, J. D. Debes, K. M. Regan, K. A. Raclaw, L. M. Murphy, A. Hobisch, Z. Culig, and D. J. Tindall. 2007. Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res 67: 3422–30.PubMedGoogle Scholar
  48. Huffman, D. M., W. E. Grizzle, M. M. Bamman, J. S. Kim, I. A. Eltoum, A. Elgavish, and T. R. Nagy. 2007. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67: 6612–8.PubMedGoogle Scholar
  49. Kahl, P., L. Gullotti, L. C. Heukamp, S. Wolf, N. Friedrichs, R. Vorreuther, G. Solleder, P. J. Bastian, J. Ellinger, E. Metzger, R. Schule, and R. Buettner. 2006. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66: 11341–7.PubMedGoogle Scholar
  50. Kalkhoven, E. 2004. CBP and p300: HATs for different occasions. Biochem Pharmacol 68: 1145–55.PubMedGoogle Scholar
  51. Kang, Z., A. Pirskanen, O. A. Janne, and J. J. Palvimo. 2002. Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex. J Biol Chem 277: 48366–71.PubMedGoogle Scholar
  52. Karvonen, U., O. A. Janne, and J. J. Palvimo. 2006. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion. Exp Cell Res 312: 3165–83.PubMedGoogle Scholar
  53. Khan, O. Y., G. Fu, A. Ismail, S. Srinivasan, X. Cao, Y. Tu, S. Lu, and Z. Nawaz. 2006. Multifunction steroid receptor coactivator, E6-associated protein, is involved in development of the prostate gland. Mol Endocrinol 20: 544–59.PubMedGoogle Scholar
  54. Kotaja, N., S. Aittomaki, O. Silvennoinen, J. J. Palvimo, and O. A. Janne. 2000. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol 14: 1986–2000.PubMedGoogle Scholar
  55. Kotaja, N., U. Karvonen, O. A. Janne, and J. J. Palvimo. 2002. The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J Biol Chem 277: 30283–8.PubMedGoogle Scholar
  56. Lalli, E., K. Ohe, C. Hindelang, and P. Sassone-Corsi. 2000. Orphan receptor DAX-1 is a shuttling RNA binding protein associated with polyribosomes via mRNA. Mol Cell Biol 20: 4910–21.PubMedGoogle Scholar
  57. Lee, D. Y., J. P. Northrop, M. H. Kuo, and M. R. Stallcup. 2006. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J Biol Chem 281: 8476–85.PubMedGoogle Scholar
  58. Li, R., T. Wheeler, H. Dai, A. Frolov, T. Thompson, and G. Ayala. 2004. High level of androgen receptor is associated with aggressive clinicopathologic features and decreased biochemical recurrence-free survival in prostate: cancer patients treated with radical prostatectomy. Am J Surg Pathol 28: 928–34.PubMedGoogle Scholar
  59. Lin, H. K., S. Altuwaijri, W. J. Lin, P. Y. Kan, L. L. Collins, and C. Chang. 2002. Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J Biol Chem 277: 36570–6.PubMedGoogle Scholar
  60. Lu, S., G. Jenster, and D. E. Epner. 2000. Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol 14: 753–60.PubMedGoogle Scholar
  61. Ma, Z. Q., Z. Liu, E. S. Ngan, and S. Y. Tsai. 2001. Cdc25B functions as a novel coactivator for the steroid receptors. Mol Cell Biol 21: 8056–67.PubMedGoogle Scholar
  62. Ma, A. H., L. Xia, S. J. Desai, D. L. Boucher, Y. Guan, H. M. Shih, X. B. Shi, R. W. deVere White, H. W. Chen, C. G. Tepper, and H. J. Kung. 2006. Male germ cell-associated kinase, a male-specific kinase regulated by androgen, is a coactivator of androgen receptor in prostate cancer cells. Cancer Res 66: 8439–47.PubMedGoogle Scholar
  63. Mahajan, N. P., Y. Liu, S. Majumder, M. R. Warren, C. E. Parker, J. L. Mohler, H. S. Earp, and Y. E. Whang. 2007. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA 104: 8438–43.PubMedGoogle Scholar
  64. Majumder, S., Y. Liu, O. H. Ford, III, J. L. Mohler, and Y. E. Whang. 2006. Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 66: 1292–301.PubMedGoogle Scholar
  65. Metzger, E., J. M. Muller, S. Ferrari, R. Buettner, and R. Schule. 2003. A novel inducible transactivation domain in the androgen receptor: implications for PRK in prostate cancer. EMBO J 22: 270–80.PubMedGoogle Scholar
  66. Metzger, E., M. Wissmann, N. Yin, J. M. Muller, R. Schneider, A. H. Peters, T. Gunther, R. Buettner, and R. Schule. 2005. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437: 436–9.PubMedGoogle Scholar
  67. Metzger, E., N. Yin, M. Wissmann, N. Kunowska, K. Fischer, N. Friedrichs, D. Patnaik, J. M. Higgins, N. Potier, K. H. Scheidtmann, R. Buettner, and R. Schule. 2008. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 10: 53–60.PubMedGoogle Scholar
  68. Michan, S., and D. Sinclair. 2007. Sirtuins in mammals: insights into their biological function. Biochem J 404: 1–13.PubMedGoogle Scholar
  69. Nair, S. S., Z. Guo, J. M. Mueller, S. Koochekpour, Y. Qiu, R. R. Tekmal, R. Schule, H. J. Kung, R. Kumar, and R. K. Vadlamudi. 2007. Proline-, glutamic acid-, and leucine-rich protein-1/modulator of nongenomic activity of estrogen receptor enhances androgen receptor functions through LIM-only coactivator, four-and-a-half LIM-only protein 2. Mol Endocrinol 21: 613–24.PubMedGoogle Scholar
  70. Ngan, E. S., Y. Hashimoto, Z. Q. Ma, M. J. Tsai, and S. Y. Tsai. 2003. Overexpression of Cdc25B, an androgen receptor coactivator, in prostate cancer. Oncogene 22: 734–9.PubMedGoogle Scholar
  71. Olshavsky, N. A., E. M. Groh, C. E. Comstock, L. M. Morey, Y. Wang, M. P. Revelo, C. Burd, J. Meller, and K. E. Knudsen. 2008. Cyclin D3 action in androgen receptor regulation and prostate cancer. Oncogene 27: 3111–21.PubMedGoogle Scholar
  72. Onate, S. A., S. Y. Tsai, M. J. Tsai, and B. W. O'Malley. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354–7.PubMedGoogle Scholar
  73. Popov, V. M., C. Wang, L. A. Shirley, A. Rosenberg, S. Li, M. Nevalainen, M. Fu, and R. G. Pestell. 2007. The functional significance of nuclear receptor acetylation. Steroids 72: 221–30.PubMedGoogle Scholar
  74. Poukka, H., P. Aarnisalo, U. Karvonen, J. J. Palvimo, and O. A. Janne. 1999. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J Biol Chem 274: 19441–6.PubMedGoogle Scholar
  75. Poukka, H., U. Karvonen, O. A. Janne, and J. J. Palvimo. 2000. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA 97: 14145–50.PubMedGoogle Scholar
  76. Rowan, B. G., N. L. Weigel, and B. W. O'Malley. 2000. Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J Biol Chem 275: 4475–83.PubMedGoogle Scholar
  77. Sathya, G., C. Y. Chang, D. Kazmin, C. E. Cook, and D. P. McDonnell. 2003. Pharmacological uncoupling of androgen receptor-mediated prostate cancer cell proliferation and prostate-specific antigen secretion. Cancer Res 63: 8029–36.PubMedGoogle Scholar
  78. Scibetta, A. G., S. Santangelo, J. Coleman, D. Hall, T. Chaplin, J. Copier, S. Catchpole, J. Burchell, and J. Taylor-Papadimitriou. 2007. Functional analysis of the transcription repressor PLU-1/JARID1B. Mol Cell Biol 27: 7220–35.PubMedGoogle Scholar
  79. Seligson, D. B., S. Horvath, T. Shi, H. Yu, S. Tze, M. Grunstein, and S. K. Kurdistani. 2005. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435: 1262–6.PubMedGoogle Scholar
  80. Shang, Y., M. Myers, and M. Brown. 2002. Formation of the androgen receptor transcription complex. Mol Cell 9: 601–10.PubMedGoogle Scholar
  81. Shen, M. M., and C. Abate-Shen. 2003. Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Dev Dyn 228: 767–78.PubMedGoogle Scholar
  82. Sigismund, S., S. Polo, and P. P. Di Fiore. 2004. Signaling through monoubiquitination. Curr Top Microbiol Immunol 286: 149–85.PubMedGoogle Scholar
  83. Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley. 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–8.PubMedGoogle Scholar
  84. Sun, J., A. L. Blair, S. E. Aiyar, and R. Li. 2007. Cofactor of BRCA1 modulates androgen-dependent transcription and alternative splicing. J Steroid Biochem Mol Biol 107: 131–9.PubMedGoogle Scholar
  85. Sykes, S. M., H. S. Mellert, M. A. Holbert, K. Li, R. Marmorstein, W. S. Lane, and S. B. McMahon. 2006. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841–51.PubMedGoogle Scholar
  86. Tomlins, S. A., D. R. Rhodes, S. Perner, S. M. Dhanasekaran, R. Mehra, X. W. Sun, S. Varambally, X. Cao, J. Tchinda, R. Kuefer, C. Lee, J. E. Montie, R. B. Shah, K. J. Pienta, M. A. Rubin, and A. M. Chinnaiyan. 2005. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–8.PubMedGoogle Scholar
  87. Truica, C. I., S. Byers, and E. P. Gelmann. 2000. Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60: 4709–13.PubMedGoogle Scholar
  88. Ueda, T., N. R. Mawji, N. Bruchovsky, and M. D. Sadar. 2002. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem 277: 38087–94.PubMedGoogle Scholar
  89. Unni, E., S. Sun, B. Nan, M. J. McPhaul, B. Cheskis, M. A. Mancini, and M. Marcelli. 2004. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res 64: 7156–68.PubMedGoogle Scholar
  90. van der Horst, E. H., Y. Y. Degenhardt, A. Strelow, A. Slavin, L. Chinn, J. Orf, M. Rong, S. Li, L. H. See, K. Q. Nguyen, T. Hoey, H. Wesche, and S. Powers. 2005. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA 102: 15901–6.PubMedGoogle Scholar
  91. Waltregny, D., B. North, F. Van Mellaert, J. de Leval, E. Verdin, and V. Castronovo. 2004. Screening of histone deacetylases (HDAC) expression in human prostate cancer reveals distinct class I HDAC profiles between epithelial and stromal cells. Eur J Histochem 48: 273–90.PubMedGoogle Scholar
  92. Wang, H., Z. Q. Huang, L. Xia, Q. Feng, H. Erdjument-Bromage, B. D. Strahl, S. D. Briggs, C. D. Allis, J. Wong, P. Tempst, and Y. Zhang. 2001. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293: 853–7.PubMedGoogle Scholar
  93. Wang, Q., J. S. Carroll, and M. Brown. 2005. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19: 631–42.PubMedGoogle Scholar
  94. Wissmann, M., N. Yin, J. M. Muller, H. Greschik, B. D. Fodor, T. Jenuwein, C. Vogler, R. Schneider, T. Gunther, R. Buettner, E. Metzger, and R. Schule. 2007. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9: 347–53.PubMedGoogle Scholar
  95. Wu, R. C., J. Qin, P. Yi, J. Wong, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley. 2004. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic responses to multiple cellular signaling pathways. Mol Cell 15: 937–49.PubMedGoogle Scholar
  96. Xiang, Y., Z. Zhu, G. Han, X. Ye, B. Xu, Z. Peng, Y. Ma, Y. Yu, H. Lin, A. P. Chen, and C. D. Chen. 2007. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci USA 104: 19226–31.PubMedGoogle Scholar
  97. Xin, L., M. A. Teitell, D. A. Lawson, A. Kwon, I. K. Mellinghoff, and O. N. Witte. 2006. Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc Natl Acad Sci USA 103: 7789–94.PubMedGoogle Scholar
  98. Xu, J., Y. Qiu, F. J. DeMayo, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley. 1998. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279: 1922–5.PubMedGoogle Scholar
  99. Xu, J., L. Liao, G. Ning, H. Yoshida-Komiya, C. Deng, and B. W. O'Malley. 2000. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA 97: 6379–84.PubMedGoogle Scholar
  100. Xu, J., and B. W. O'Malley. 2002. Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function. Rev Endocr Metab Disord 3: 185–92.PubMedGoogle Scholar
  101. Yamane, K., C. Toumazou, Y. Tsukada, H. Erdjument-Bromage, P. Tempst, J. Wong, and Y. Zhang. 2006. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125: 483–95.PubMedGoogle Scholar
  102. Yan, J., C. T. Yu, M. Ozen, M. Ittmann, S. Y. Tsai, and M. J. Tsai. 2006. Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res 66: 11039–46.PubMedGoogle Scholar
  103. Yu, J., C. Palmer, T. Alenghat, Y. Li, G. Kao, and M. A. Lazar. 2006. The corepressor silencing mediator for retinoid and thyroid hormone receptor facilitates cellular recovery from DNA double-strand breaks. Cancer Res 66: 9316–22.PubMedGoogle Scholar
  104. Zhao, Y., K. Goto, M. Saitoh, T. Yanase, M. Nomura, T. Okabe, R. Takayanagi, and H. Nawata. 2002. Activation function-1 domain of androgen receptor contributes to the interaction between subnuclear splicing factor compartment and nuclear receptor compartment. Identification of the p102 U5 small nuclear ribonucleoprotein particle-binding protein as a coactivator for the receptor. J Biol Chem 277: 30031–9.PubMedGoogle Scholar
  105. Zheng, Z., C. Cai, J. Omwancha, S. Y. Chen, T. Baslan, and L. Shemshedini. 2006. SUMO-3 enhances androgen receptor transcriptional activity through a sumoylation-independent mechanism in prostate cancer cells. J Biol Chem 281: 4002–12.PubMedGoogle Scholar
  106. Zhou, G., Y. Hashimoto, I. Kwak, S. Y. Tsai, and M. J. Tsai. 2003. Role of the steroid receptor coactivator SRC-3 in cell growth. Mol Cell Biol 23: 7742–55.PubMedGoogle Scholar
  107. Zhou, H. J., J. Yan, W. Luo, G. Ayala, S. H. Lin, H. Erdem, M. Ittmann, S. Y. Tsai, and M. J. Tsai. 2005. SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res 65: 7976–83.PubMedGoogle Scholar
  108. Zhu, P., W. Zhou, J. Wang, J. Puc, K. A. Ohgi, H. Erdjument-Bromage, P. Tempst, C. K. Glass, and M. G. Rosenfeld. 2007. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 27: 609–21.PubMedGoogle Scholar
  109. Zong, H., Y. Chi, Y. Wang, Y. Yang, L. Zhang, H. Chen, J. Jiang, Z. Li, Y. Hong, H. Wang, X. Yun, and J. Gu. 2007. Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol Cell Biol 27: 7125–42.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Baylor College of MedicineUSA

Personalised recommendations