Advertisement

The Role of the Androgen Receptor Polyglutamine Tract in Prostate Cancer: In Mice and Men

  • Diane M. Robins
Chapter

Abstract

The androgen receptor (AR) is critical in the initiation and progression of prostate cancer, and therefore may contribute to disease through its genetic variation. Particular scrutiny has focused on a polymorphic N-terminal glutamine (Q) tract (CAG repeat) that shows population heterogeneity. Abnormal expansion of this tract underlies late-onset neurodegeneration, and in vitro the length correlates inversely with transcriptional activity. Yet the question of whether length variation within the range of normal human alleles affects cancer has produced discordant epidemiological results, in part due to interacting genetic and environmental factors in human disease. To test Q tract length effects, the mouse AR gene was converted to the human sequence (h/mAr), creating alleles with 12, 21, or 48 CAG repeats. These mice were grossly normal, but molecular analysis revealed allele-dependent differences in target gene expression. Further, when crossed with mice transgenic for a prostate-directed oncogene (TRAMP), Q tract length-dependent differences in cancer initiation and progression were evident. TRAMP mice with short Q tract ARs exhibited earlier but more slowly progressing disease than mice with median or long Q tract ARs. Q tract length also affected disease progression after castration, but in directions opposite to those in intact mice – the AR12Q allele delayed tumor detection whereas mice with the AR48Q allele fared worse. These experiments provided evidence for a causal relationship between a human polymorphism and a cancer phenotype. In man, Q tract length effects may only be significant at extremes of variation within the normal range and may vary with stage of disease. The h/mAR mice provide an experimental paradigm in which to dissect mechanisms by which Q tract length affects development and progression of prostate cancer. Some of these mechanisms may lead to better predictors of response to therapy and new treatments targeted to the human AR.

Keywords

Prostate Cancer Androgen Receptor Prostate Cancer Risk Prostatic Intraepithelial Neoplasia Androgen Receptor Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This chapter summarizes work by members of the laboratory over many years, but particularly Megan A. Albertelli, D.V.M., Ph.D., Arno Scheller, Ph.D., Orla A. O'Mahony, Ph.D., and Michele Brogley, M.S. Numerous colleagues providing essential discussions included, from the University of Michigan, Drs. Andrew Lieberman, Mara Steinkamp, and Christopher Krebs; and, from the Fred Hutchinson Cancer Research Center, Norman Greenberg. The Robins laboratory has been supported by the NIH (NIDDK-RO1-56356, NCI-P50-CA69568, NIH-T32-RR07008) and the DOD (DOD17-02-1-0099, W81XWH-05-1-0105), as well as Core support from the University of Michigan Cancer Center (5 P30 CA46592) and the Michigan Diabetes Research and Training Center (5 P60 DK20572).

references

  1. Albertelli, M. 2007. Genetic Variation in the Androgen Receptor Impacts Prostate Cancer Initiation and Progression in the Humanized AR Mouse. Department of Human Genetics. Ann Arbor, University of Michigan Medical School. Ph.D. Dissertation.Google Scholar
  2. Albertelli, M. A., Scheller, A., Brogley, M., and Robins, D. M. 2006. Replacing the mouse androgen receptor with human alleles demonstrates glutamine tract length-dependent effects on physiology and tumorigenesis in mice. Mol. Endocrinol. 20:1248–60.PubMedCrossRefGoogle Scholar
  3. Albertelli, M. A., O'Mahony, O. A., Brogley, M., Tosoian, J., Steinkamp, M., Daignault, S., Wojno, K., and Robins, D. M. 2008. Glutamine tract length of human androgen receptors affects hormone-dependent and -independent prostate cancer in mice. Hum. Mol. Genet. 17:98–110.PubMedCrossRefGoogle Scholar
  4. Alvarado, C., Beitel, L. K., Sircar, K., Aprikian, A., Trifiro, M., and Gottlieb, B. 2005. Somatic mosaicism and cancer: a micro-genetic examination into the role of the androgen receptor gene in prostate cancer. Cancer Res. 65:8514–8.PubMedCrossRefGoogle Scholar
  5. Andersson, P., Varenhorst, E., and Soderkvist, P. 2006. Androgen receptor and vitamin D receptor gene polymorphisms and prostate cancer risk. Eur. J. Cancer 42:2833–7.PubMedCrossRefGoogle Scholar
  6. Banach-Petrosky, W., Jessen, W. J., Ouyang, X., Gao, H., Rao, J., Quinn, J., Aronow, B. J., and Abate-Shen, C. 2007. Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3.1; Pten mutant mice. Cancer Res. 67:9089–96.PubMedCrossRefGoogle Scholar
  7. Beilin, J., Harewood, L., Frydenberg, M., Mameghan, H., Martyres, R. F., Farish, S. J., Yue, C., Deam, D. R., Byron, K. A., and Zajac, J. D. 2001. A case-control study of the androgen receptor gene CAG repeat polymorphism in Australian prostate carcinoma subjects. Cancer 92:941–9.PubMedCrossRefGoogle Scholar
  8. Bennett, C. L., Price, D. K., Kim, S., Liu, D., Jovanovic, B. D., Nathan, D., Johnson, M. E., Montgomery, J. S., Cude, K., Brockbank, J. C., Sartor, O., and Figg, W. D. 2002. Racial variation in CAG repeat lengths within the androgen receptor gene among prostate cancer patients of lower socioeconomic status. J. Clin. Oncol. 20:3599–604.PubMedCrossRefGoogle Scholar
  9. Bingham, P. M., Scott, M. O., Wang, S., McPhaul, M. J., Wilson, E. M., Garbern, J. Y., Merry, D. E., and Fischbeck, K. H. 1995. Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice. Nat. Genet. 9:191–6.PubMedCrossRefGoogle Scholar
  10. Bratt, O., Borg, A., Kristoffersson, U., Lundgren, R., Zhang, Q. X., and Olsson, H. 1999. CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk. Br. J. Cancer 81:672–6.PubMedCrossRefGoogle Scholar
  11. Buchanan, G., Yang, M., Cheong, A., Harris, J. M., Irvine, R. A., Lambert, P. F., Moore, N. L., Raynor, M., Neufing, P. J., Coetzee, G. A., and Tilley, W. D. 2004. Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum. Mol. Genet. 13:1677–92.PubMedCrossRefGoogle Scholar
  12. Caporali, A., Davalli, P., Astancolle, S., D'Arca, D., Brausi, M., Bettuzzi, S., and Corti, A. 2004. The chemopreventive action of catechins in the TRAMP mouse model of prostate carcinogenesis is accompanied by clusterin over-expression. Carcinogenesis 25:2217–24.PubMedCrossRefGoogle Scholar
  13. Casella, R., Maduro, M. R., Lipshultz, L. I., and Lamb, D. J. 2001. Significance of the polyglutamine tract polymorphism in the androgen receptor. Urology 58:651–6.PubMedCrossRefGoogle Scholar
  14. Chamberlain, N. L., Driver, E. D., and Miesfeld, R. L. 1994. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 22:3181–6.PubMedCrossRefGoogle Scholar
  15. Chang, B. L., Zheng, S. L., Hawkins, G. A., Isaacs, S. D., Wiley, K. E., Turner, A., Carpten, J. D., Bleecker, E. R., Walsh, P. C., Trent, J. M., Meyers, D. A., Isaacs, W. B., and Xu, J. 2002. Polymorphic GGC repeats in the androgen receptor gene are associated with hereditary and sporadic prostate cancer risk. Hum. Genet. 110:122–9.PubMedCrossRefGoogle Scholar
  16. Choong, C. S., and Wilson, E. M. 1998. Trinucleotide repeats in the human androgen receptor: a molecular basis for disease. J. Mol. Endocrinol. 21:235–57.PubMedCrossRefGoogle Scholar
  17. Coetzee, G. A., and Ross, R. K. 1994. Re: Prostate Cancer and the Androgen Receptor. J. Nat. Cancer Inst. 86:872–873.PubMedCrossRefGoogle Scholar
  18. Crabbe, P., Bogaert, V., De Bacquer, D., Goemaere, S., Zmierczak, H., and Kaufman, J. M. 2007. Part of the interindividual variation in serum testosterone levels in healthy men reflects differences in androgen sensitivity and feedback set point: contribution of the androgen receptor polyglutamine tract polymorphism. J. Clin. Endocrinol. Metab. 92:3604–10.PubMedCrossRefGoogle Scholar
  19. Cude, K. J., Montgomery, J. S., Price, D. K., Dixon, S. C., Kincaid, R. L., Kovacs, K. F., Venzon, D. J., Liewehr, D. J., Johnson, M. E., Reed, E., and Figg, W. D. 2002. The role of an androgen receptor polymorphism in the clinical outcome of patients with metastatic prostate cancer. Urol. Int. 68:16–23.PubMedCrossRefGoogle Scholar
  20. Cunha, G. R., Donjacour, A. A., Cooke, P. S., Mee, S., Bigsby, R. M., Higgins, S. J., and Sugimura, Y. 1987. The endocrinology and developmental biology of the prostate. Endocrinol. Rev. 8:338–62.CrossRefGoogle Scholar
  21. Davis-Dao, C. A., Tuazon, E. D., Sokol, R. Z., and Cortessis, V. K. 2007. Male Infertility and Variation in CAG Repeat Length in the Androgen Receptor Gene: A Meta-analysis. J. Clin. Endocrinol. Metab. 92:4319–26.PubMedCrossRefGoogle Scholar
  22. Dehm, S. M., and Tindall, D. J. 2007. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol. Endocrinol. 21:2855–63.PubMedCrossRefGoogle Scholar
  23. Desai, K. V., Michalowska, A. M., Kondaiah, P., Ward, J. M., Shih, J. H., and Green, J. E. 2004. Gene expression profiling identifies a unique androgen-mediated inflammatory/immune signature and a PTEN (phosphatase and tensin homolog deleted on chromosome 10)-mediated apoptotic response specific to the rat ventral prostate. Mol. Endocrinol. 18:2895–907.PubMedCrossRefGoogle Scholar
  24. Ding, D., Xu, L., Menon, M., Reddy, G. P., and Barrack, E. R. 2004. Effect of a short CAG (glutamine) repeat on human androgen receptor function. Prostate 58:23–32.PubMedCrossRefGoogle Scholar
  25. Duff, J., Davies, P., Watt, K., and McEwan, I. J. 2006. Structural dynamics of the human androgen receptor: implications for prostate cancer and neurodegenerative disease. Biochem. Soc. Trans. 34:1098–102.PubMedCrossRefGoogle Scholar
  26. Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T., and Chakraborty, R. 1992. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12:241–53.PubMedCrossRefGoogle Scholar
  27. Edwards, S. M., Badzioch, M. D., Minter, R., Hamoudi, R., Collins, N., Ardern-Jones, A., Dowe, A., Osborne, S., Kelly, J., Shearer, R., Easton, D. F., Saunders, G. F., Dearnaley, D. P., and Eeles, R. A. 1999. Androgen receptor polymorphisms: association with prostate cancer risk, relapse and overall survival. Int. J. Cancer 84:458–65.PubMedCrossRefGoogle Scholar
  28. Freedman, M. L., Pearce, C. L., Penney, K. L., Hirschhorn, J. N., Kolonel, L. N., Henderson, B. E., and Altshuler, D. 2005. Systematic evaluation of genetic variation at the androgen receptor locus and risk of prostate cancer in a multiethnic cohort study. Am. J. Hum. Genet. 76:82–90.PubMedCrossRefGoogle Scholar
  29. Gerber, H. P., Seipel, K., Georgiev, O., Hofferer, M., Hug, M., Rusconi, S., and Schaffner, W. 1994. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263:808–11.PubMedCrossRefGoogle Scholar
  30. Giovannucci, E. 2002. Is the androgen receptor CAG repeat length significant for prostate cancer? Cancer Epidemiol. Biomarkers Prev. 11:985–6.Google Scholar
  31. Giovannucci, E., Stampfer, M. J., Krithivas, K., Brown, M., Dahl, D., Brufsky, A., Talcott, J., Hennekens, C. H., and Kantoff, P. W. 1997. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 94:3320–3.PubMedCrossRefGoogle Scholar
  32. Greenberg, N. M., DeMayo, F., Finegold, M. J., Medina, D., Tilley, W. D., Aspinall, J. O., Cunha, G. R., Donjacour, A. A., Matusik, R. J., and Rosen, J. M. 1995. Prostate cancer in a transgenic mouse. Proc. Natl. Acad. Sci. U.S.A. 92:3439–43.PubMedCrossRefGoogle Scholar
  33. Hardy, D. O., Scher, H. I., Bogenreider, T., Sabbatini, P., Zhang, Z. F., Nanus, D. M., and Catterall, J. F. 1996. Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J. Clin. Endocrinol. Metab. 81:4400–5.PubMedCrossRefGoogle Scholar
  34. He, B., and Wilson, E. M. 2002. The NH(2)-terminal and carboxyl-terminal interaction in the human androgen receptor. Mol. Genet. Metab. 75:293–8.PubMedCrossRefGoogle Scholar
  35. Hsiao, P. W., Lin, D. L., Nakao, R., and Chang, C. 1999. The linkage of Kennedy's neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. J. Biol. Chem. 274:20229–34.PubMedCrossRefGoogle Scholar
  36. Hsing, A. W., Gao, Y. T., Wu, G., Wang, X., Deng, J., Chen, Y. L., Sesterhenn, I. A., Mostofi, F. K., Benichou, J., and Chang, C. 2000. Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res. 60:5111–6.PubMedGoogle Scholar
  37. Irvine, R. A., Yu, M. C., Ross, R. K., and Coetzee, G. A. 1995. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res. 55:1937–40.PubMedGoogle Scholar
  38. Irvine, R. A., Ma, H., Yu, M. C., Ross, R. K., Stallcup, M. R., and Coetzee, G. A. 2000. Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum. Mol. Genet. 9:267–74.PubMedCrossRefGoogle Scholar
  39. Johnson, M. A., Iversen, P., Schwier, P., Corn, A. L., Sandusky, G., Graff, J., and Neubauer, B. L. 2005. Castration triggers growth of previously static androgen-independent lesions in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Prostate 62:322–38.PubMedCrossRefGoogle Scholar
  40. July, L. V., Akbari, M., Zellweger, T., Jones, E. C., Goldenberg, S. L., and Gleave, M. E. 2002. Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate 50:179–88.PubMedCrossRefGoogle Scholar
  41. Kaplan-Lefko, P. J., Chen, T. M., Ittmann, M. M., Barrios, R. J., Ayala, G. E., Huss, W. J., Maddison, L. A., Foster, B. A., and Greenberg, N. M. 2003. Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate 55:219–37.PubMedCrossRefGoogle Scholar
  42. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E., and Fischbeck, K. H. 1991. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–9.PubMedCrossRefGoogle Scholar
  43. Li, C., Gronberg, H., Matsuyama, H., Weber, G., Nordenskjold, M., Naito, K., Bergh, A., Bergerheim, U., Damber, J. E., Larsson, C., and Ekman, P. 2003. Difference between Swedish and Japanese men in the association between AR CAG repeats and prostate cancer suggesting a susceptibility-modifying locus overlapping the androgen receptor gene. Int. J. Mol. Med. 11:529–33.PubMedGoogle Scholar
  44. Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio, J., Koskenvuo, M., Pukkala, E., Skytthe, A., and Hemminki, K. 2000. Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343:78–85.PubMedCrossRefGoogle Scholar
  45. Lieberman, A. P., and Robins, D. M. in press. The androgen receptor's CAG/glutamine tract in mouse models of neurological disease and cancer. J. Alzheimers Dis. 14:247–255.Google Scholar
  46. Lindstrom, S., Wiklund, F., Adami, H. O., Balter, K. A., Adolfsson, J., and Gronberg, H. 2006a. Germ-line genetic variation in the key androgen-regulating genes androgen receptor, cytochrome P450, and steroid-5-alpha-reductase type 2 is important for prostate cancer development. Cancer Res. 66:11077–83.CrossRefGoogle Scholar
  47. Lindstrom, S., Zheng, S. L., Wiklund, F., Jonsson, B. A., Adami, H. O., Balter, K. A., Brookes, A. J., Sun, J., Chang, B. L., Liu, W., Li, G., Isaacs, W. B., Adolfsson, J., Gronberg, H., and Xu, J. 2006b. Systematic replication study of reported genetic associations in prostate cancer: Strong support for genetic variation in the androgen pathway. Prostate 66:1729–43.CrossRefGoogle Scholar
  48. Litvinov, I. V., De Marzo, A. M., and Isaacs, J. T. 2003. Is the Achilles' heel for prostate cancer therapy a gain of function in androgen receptor signaling? J. Clin. Endocrinol. Metab. 88:2972–82.CrossRefGoogle Scholar
  49. Lu, B., Smock, S. L., Castleberry, T. A., and Owen, T. A. 2001. Molecular cloning and functional characterization of the canine androgen receptor. Mol. Cell. Biochem. 226:129–40.PubMedCrossRefGoogle Scholar
  50. Mankodi, A., Takahashi, M. P., Jiang, H., Beck, C. L., Bowers, W. J., Moxley, R. T., Cannon, S. C., and Thornton, C. A. 2002. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10:35–44.PubMedCrossRefGoogle Scholar
  51. McPhaul, M. J. 2002. Androgen receptor mutations and androgen insensitivity. Mol. Cell. Endocrinol. 198:61–7.PubMedCrossRefGoogle Scholar
  52. Mhatre, A. N., Trifiro, M. A., Kaufman, M., Kazemi-Esfarjani, P., Figlewicz, D., Rouleau, G., and Pinsky, L. 1993. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nat. Genet. 5:184–8.PubMedCrossRefGoogle Scholar
  53. Perutz, M. F., Johnson, T., Suzuki, M., and Finch, J. T. 1994. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. U.S.A. 91:5355–8.PubMedCrossRefGoogle Scholar
  54. Pratt, W. B., Galigniana, M. D., Morishima, Y., and Murphy, P. J. 2004. Role of molecular chaperones in steroid receptor action. Essays Biochem. 40:41–58.PubMedGoogle Scholar
  55. Robins, D. M. 2004. Multiple mechanisms of male-specific gene expression: lessons from the mouse sex-limited protein (Slp) gene. Prog. Nucleic Acid Res. Mol. Biol. 78:1–36.PubMedCrossRefGoogle Scholar
  56. San Francisco, I. F., Regan, M. M., Dewolf, W. C., and Olumi, A. F. 2006. Low age adjusted free testosterone levels correlate with poorly differentiated prostate cancer. J. Urol. 175:1341–5; discussion 1345–6.PubMedCrossRefGoogle Scholar
  57. Santos, M. L., Sarkis, A. S., Nishimoto, I. N., and Nagai, M. A. 2003. Androgen receptor CAG repeat polymorphism in prostate cancer from a Brazilian population. Cancer Detect. Prev. 27:321–6.PubMedCrossRefGoogle Scholar
  58. Schoenberg, M. P., Hakimi, J. M., Wang, S., Bova, G. S., Epstein, J. I., Fischbeck, K. H., Isaacs, W. B., Walsh, P. C., and Barrack, E. R. 1994. Microsatellite mutation (CAG24  –> 18) in the androgen receptor gene in human prostate cancer. Biochem. Biophys. Res. Commun. 198:74–80.PubMedCrossRefGoogle Scholar
  59. Shappell, S. B., Thomas, G. V., Roberts, R. L., Herbert, R., Ittmann, M. M., Rubin, M. A., Humphrey, P. A., Sundberg, J. P., Rozengurt, N., Barrios, R., Ward, J. M., and Cardiff, R. D. 2004. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 64:2270–305.PubMedCrossRefGoogle Scholar
  60. Shariff, A. H., and Ather, M. H. 2006. Neuroendocrine differentiation in prostate cancer. Urology 68:2–8.PubMedCrossRefGoogle Scholar
  61. Shen, H. C., and Coetzee, G. A. 2005. The androgen receptor: unlocking the secrets of its unique transactivation domain. Vitam. Horm. 71:301–19.PubMedCrossRefGoogle Scholar
  62. Shibuya, H., Nonneman, D. J., Huang, T. H., Ganjam, V. K., Mann, F. A., and Johnson, G. S. 1993. Two polymorphic microsatellites in a coding segment of the canine androgen receptor gene. Anim. Genet. 24:345–8.PubMedCrossRefGoogle Scholar
  63. Shimbo, M., Suzuki, H., Kamiya, N., Imamoto, T., Komiya, A., Ueda, T., Watanabe, M., Shiraishi, T., and Ichikawa, T. 2005. CAG polymorphic repeat length in androgen receptor gene combined with pretreatment serum testosterone level as prognostic factor in patients with metastatic prostate cancer. Eur. Urol. 47:557–63.PubMedCrossRefGoogle Scholar
  64. Sieh, W., Edwards, K. L., Fitzpatrick, A. L., Srinouanprachanh, S. L., Farin, F. M., Monks, S. A., Kronmal, R. A., and Eaton, D. L. 2006. Genetic Susceptibility to Prostate Cancer: Prostate-specific Antigen and its Interaction with the Androgen Receptor (United States). Cancer Causes Control 17:187–97.PubMedCrossRefGoogle Scholar
  65. Stanford, J. L., Just, J. J., Gibbs, M., Wicklund, K. G., Neal, C. L., Blumenstein, B. A., and Ostrander, E. A. 1997. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res. 57:1194–8.PubMedGoogle Scholar
  66. Suzuki, H., Akakura, K., Komiya, A., Ueda, T., Imamoto, T., Furuya, Y., Ichikawa, T., Watanabe, M., Shiraishi, T., and Ito, H. 2002. CAG polymorphic repeat lengths in androgen receptor gene among Japanese prostate cancer patients: potential predictor of prognosis after endocrine therapy. Prostate 51:219–24.PubMedCrossRefGoogle Scholar
  67. Suzuki, H., Ueda, T., Ichikawa, T., and Ito, H. 2003. Androgen receptor involvement in the progression of prostate cancer. Endocr. Relat. Cancer 10:209–16.PubMedCrossRefGoogle Scholar
  68. Thompson, I. M., Goodman, P. J., Tangen, C. M., Lucia, M. S., Miller, G. J., Ford, L. G., Lieber, M. M., Cespedes, R. D., Atkins, J. N., Lippman, S. M., Carlin, S. M., Ryan, A., Szczepanek, C. M., Crowley, J. J., and Coltman, C. A., Jr. 2003. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349:215–24.PubMedCrossRefGoogle Scholar
  69. Tomlins, S. A., Mehra, R., Rhodes, D. R., Cao, X., Wang, L., Dhanasekaran, S. M., Kalyana-Sundaram, S., Wei, J. T., Rubin, M. A., Pienta, K. J., Shah, R. B., and Chinnaiyan, A. M. 2007. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 39:41–51.PubMedCrossRefGoogle Scholar
  70. Wang, S., Gao, J., Lei, Q., Rozengurt, N., Pritchard, C., Jiao, J., Thomas, G. V., Li, G., Roy-Burman, P., Nelson, P. S., Liu, X., and Wu, H. 2003. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4:209–21.PubMedCrossRefGoogle Scholar
  71. Wang, Q., Udayakumar, T. S., Vasaitis, T. S., Brodie, A. M., and Fondell, J. D. 2004. Mechanistic relationship between androgen receptor polyglutamine tract truncation and androgen-dependent transcriptional hyperactivity in prostate cancer cells. J. Biol. Chem. 279:17319–28.PubMedCrossRefGoogle Scholar
  72. Wikstrom, P., Lindahl, C., and Bergh, A. 2005. Characterization of the autochthonous transgenic adenocarcinoma of the mouse prostate (TRAMP) as a model to study effects of castration therapy. Prostate 62:148–64.PubMedCrossRefGoogle Scholar
  73. Yang, X., Chen, M. W., Terry, S., Vacherot, F., Bemis, D. L., Capodice, J., Kitajewski, J., de la Taille, A., Benson, M. C., Guo, Y., and Buttyan, R. 2006. Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells. Oncogene 25:3436–44.PubMedCrossRefGoogle Scholar
  74. Yeap, B. B., Wilce, J. A., and Leedman, P. J. 2004. The androgen receptor mRNA. Bioessays 26:672–82.PubMedCrossRefGoogle Scholar
  75. Yong, E. L., Loy, C. J., and Sim, K. S. 2003. Androgen receptor gene and male infertility. Hum. Reprod. Update 9:1–7.PubMedCrossRefGoogle Scholar
  76. Yu, Z., Dadgar, N., Albertelli, M., Gruis, K., Jordan, C., Robins, D. M., and Lieberman, A. P. 2006. Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J. Clin. Invest. 116:2663–72.PubMedGoogle Scholar
  77. Zeegers, M. P., Kiemeney, L. A., Nieder, A. M., and Ostrer, H. 2004. How strong is the association between CAG and GGN repeat length polymorphisms in the androgen receptor gene and prostate cancer risk? Cancer Epidemiol. Biomarkers Prev. 13:1765–71.Google Scholar
  78. Zitzmann, M., and Nieschlag, E. 2003. The CAG repeat polymorphism within the androgen receptor gene and maleness. Int. J. Androl. 26:76–83.PubMedCrossRefGoogle Scholar
  79. Zitzmann, M., Depenbusch, M., Gromoll, J., and Nieschlag, E. 2004. X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J. Clin. Endocrinol. Metab. 89:6208–17.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Human Genetics, University of Michigan Medical SchoolMIUSA

Personalised recommendations