Critical Soil Concentrations of Cadmium, Lead, and Mercury in View of Health Effects on Humans and Animals

  • Wim de Vries
  • Paul F. A. M. Römkens
  • Gudrun Schütze
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 191)


To assess the impact of elevated concentrations of metals in terrestrial ecosystems, a major distinction should be made in risks/effects of heavy metals related to (i) the soil ecosystem (soil organisms/processes and plants) and (ii) human health or animal health resulting from bioaccumulation. The latter effect is related to the phenomenon that a chemical accumulates in species through different trophic levels in a food chain, or secondary poisoning. Heavy metal accumulation in the food chain is specifically considered important with respect to cadmium (Cd), mercury (Hg), and, to a lesser extent, lead (Pb). Accumulation ultimately causes toxic effects on (i) humans by affecting food quality of crops (Kawada and Suzuki 1998) and animal products, as well as drinking water quality, and (ii) animal health by affecting fodder quality and by direct intake of contaminated soil (Adriano 2001). For both humans and animals, health effects arise mainly through accumulation in target organs such as kidney and liver (Satarug et al. 2000). Apart from direct health effects related to intake of food and soil, elevated metal levels in soil also lead to an increase in leaching losses of metals to groundwater and surface water, which will, after a considerable delay time, affect both drinking water quality and aquatic organisms (Crommentuijn et al. 1997).


Animal Health Critical Limit Acceptable Daily Intake Critical Metal Critical Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous (2000) Health risks of heavy metals from long range transboundary air pollution. EB.AIR/WG.1/2000/12. Geneve, UN-ECE.Google Scholar
  2. Adams ML, Zhao FJ, McGrath SP, Nicholson FA, Chambers BJ (2004) Predicting cadmium concentrations in wheat and barley grain using soil properties. J Environ Qual 33:532–541.Google Scholar
  3. Adriano DC (2001) Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. Springer, New York.Google Scholar
  4. Beresford N, Mayes RW, Crout NMJ, MacEachern PJ, Dodd BA, Barnett C, Stuart Lamb C (1999) Transfer of cadmium and mercury to sheep tissues. Environ Sci Technol 33:2395–2402.CrossRefGoogle Scholar
  5. BgVV (Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin) (1997) Lebensmittelmonitoring 1997. Zentrale Erfassungs-und Bewertungsstelle für Umweltchemikalien (ZEBS), Berlin, Germany.Google Scholar
  6. Bosveld ATC, Klok C, Bodt JM, Rutgers M (2000) Ecologische risico’s van bodemverontreinigingen in toemaakdek in de gemeente De Ronde Venen. Alterra rapport 151. Alterra, Research Instituut voor de Groene Ruimte, Wageningen, Nederland.Google Scholar
  7. Brus DJ, de Gruijter JJ, Walvoort DJJ, de Vries F, Bronswijk JJB, Römkens PFAM, de Vries W (2002) Mapping the probability of exceeding critical thresholds for cadmium concentrations in soils in the Netherlands. J Environ Qual 31:1875–1884.Google Scholar
  8. Bruus Pedersen M, van Gestel CAM, Elmegaard N (2000) Effects of copper on reproduction of two collembolan species exposed through soil, food and water. Environ Toxicol Chem 19:2579–2588.CrossRefGoogle Scholar
  9. Chaney RL, Reeves PG, Ryan JA, Simmons RW, Welch RM, Angle JS (2004) An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. BioMetals 17:549–553.CrossRefGoogle Scholar
  10. Chang AC, Granato TC, Page AL (1992) A methodology for establishing phytotoxicity criteria for chromium, copper, nickel, and zinc in agricultural land application of municipal sewage sludges. J Environ Qual 21:521–536.CrossRefGoogle Scholar
  11. Cooke JA, Johnson MS (1996) Cadmium in small mammals. In: Beyer WN, Heinz GH, Redman AW (eds) Environmental Contaminants in Wildlife: Interpreting Tissue concentrations. Lewis, New York, USA, pp 377–388.Google Scholar
  12. Crommentuijn T, Polder MD, van de Plassche EJ (1997) Maximum permissible concentrations and negligible concentrations for metals, taking background concentrations into account. RIVM Report 601501 001. National Institute of Public Health and the Environment, Bilthoven, The Netherlands.Google Scholar
  13. Crössmann G (1981) Ein Beitrag zur Aufnahme und Rückstandsbildung von Cadmium bei Mastschweinen. Arch Lebensmittelhyg 1:21–24.Google Scholar
  14. De Temmerman L, de Witte T (2003a) Biologisch onderzoek van de verontreiniging van het milieu door zware metalen te Hoboken groeiseizoen 2001. Internal report Centrum voor onderzoek in diergeneeskunde en agrochemie. C.O.D.A, Tervuren, België.Google Scholar
  15. De Temmerman L, de Witte T (2003b) Biologisch onderzoek van de verontreiniging van het milieu door kwik en chloriden te Tessenderlo en van kwik te Berendrecht. Internal report Centrum voor onderzoek in diergeneeskunde en agrochemie. C.O.D.A, Tervuren, België.Google Scholar
  16. De Vries W, Schütze G, Lofts S, Tipping E, Meili M, Römkens PFAM, Groenenberg JE (2005) Calculation of critical loads for cadmium, lead and mercury. Background document to a mapping manual on critical Loads of cadmium, lead and mercury. Alterra Report 1104. Alterra, Wageningen, The Netherlands.Google Scholar
  17. De Vries W, Römkens PFAM, Rietra RPJJ, Bonten L, Ma WC, Faber J, Harmsen J, Bloem J (2007) De invloed van bodemeigenschappen op kritische concentraties voor zware metalen en organische microverontreinigingen in de bodem. Alterra rapport 817. Alterra, Wageningen, The Netherlands.Google Scholar
  18. Dijkshoorn W, van Broekhoven W, Lampe JEM (1979) Phytotoxicity of zinc, nickel, cadmium, lead, copper and chromium in three pasture plant species supplied with graduated amounts from the soil. Neth J Agric Sci 27:241–253.Google Scholar
  19. EC (2003) Risk assessment report on cadmium metal and cadmium oxide (the targeted report on the use in batteries, included): final draft version (July 2003). European Commission. Available on the ECB web-site:
  20. EC CSTEE (European Commission Scientific Committee on Toxicity, Ecotoxicity and the Environment) (2004) Opinion on the result of the risk assessment of cadmium metal human health, cadmium oxide human health. Adopted by the CSTEE on 08 Jan 2004.Google Scholar
  21. EC DG Industry (1997) European Commission, Food Science and Techniques: Opinion of the Scientific Committee for Food on Cadmium expressed on 2 June 1995. Reports of the Scientific Committee for Food (36th series). European Commission Directorate-General Industry, Brussels, Belgium.Google Scholar
  22. EU (2001) Verordening nr. 466/2001 van 8 maart 2001, tot vaststelling van maximumgehalten aan bepaalde verontreinigingen in levensmiddelen. Publicatieblad van de Europese Gemeenschappen L 77.Google Scholar
  23. Friberg L, Kjellström T, Nordberg. G, Piscator M (1979) Cadmium. Elsevier/North-Holland, Amsterdam.Google Scholar
  24. Hapke H-J, Abel J, Kühl U, Glaser U (1977) Die Ansammlung von Cadmium in verzehrbaren Geweben in Abhängigkeit von der Cadmium-Menge im Futter. Arch Lebensmittelhyg 28:174–177.Google Scholar
  25. Hecht H (1982) Toxische Schwermetalle in Fleisch und Innereien verschiedener Tierarten. Mitteilungsbl Bundesanst Fleischforsch 76:5053.Google Scholar
  26. Helling CS, Chesters G, Corey RB (1964) Contribution of organic matter and clay to soil cation exchange capacity as affected by the pH of the saturating solution. Soil Sci Soc Am J 28:517–520.Google Scholar
  27. Holm J (1983) Aufbau eines ursachenorientierten Monitoring-Systems für Schadstoffbelastungen beim Wild. Fleischwirtschaft 63:1764–1766.Google Scholar
  28. Huinink J (2000) Functiegerichte bodemkwaliteitssystematiek 2. Functiegerichte bodemkwaliteits waarden. IKC-Landbouw, Ede, Nederland.Google Scholar
  29. Ikeda M, Ezaki T, Tsukahara T, Moriguchi J, Furuki K, Fukui Y, Ukai H, Okamoto S, Sakurai H (2003) Threshold levels of urinary cadmium in relation to increases in urinary β2-microglobulin among general Japanese populations. Toxicol Lett 137:135–141.CrossRefGoogle Scholar
  30. Jakubowski M (2003) Health risk from environmental exposure to heavy metals. Report prepared for the WHO-ECEH-UNECE Task Force on Health Aspects of Long Range Transboundary Air Pollution.Google Scholar
  31. JECFA (Joint FAO/WHO Expert Committee on Food Additives) (2000) Fifty-fifth meeting. Summary and conclusion. Geneva, 6–15 June 2000.Google Scholar
  32. Jongbloed RH, Pijnenburg J, Mensink BJWG, Traas TP, Luttik R (1994) A model for environmental risk assessment and standard setting based on biomagnifi cation. Top predators in terrestrial ecosystems. RIVM Report 719101 012. National Institute of Public Health and the Environment, Bilthoven, The Netherlands.Google Scholar
  33. Kabata-Pendias A, Pendias H (1992) Trace Elements in Soils and Plants. CRC press, Boca Raton, FL.Google Scholar
  34. Kalberlah F (1999) Cadmium und seine Verbindungen. In: Basisdaten Toxikologie für umweltrelevante Stoffe zur Gefahrenbeurteilung bei Altlasten mit Ableitung von toxikologisch begründeten Werten resorbierten Körperdosen (TRD-Werten) Bericht zum F+E Vorhaben 103 40 113. Umweltforschungsplan des Ministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Umweltbundesamt, Berlin, Germany.Google Scholar
  35. Kawada T, Suzuki S (1998) A review on the cadmium content of rice, daily cadmium intake, and accumulation in the kidneys. J Occup Health 40:264–269.CrossRefGoogle Scholar
  36. Klok C, de Roos AM, Broekhuizen S, van Apeldoorn RC (1998) Effecten van zware metalen op de Das. Interactie tussen versnippering en vergiftiging. Landschap 15:77–86.Google Scholar
  37. Kübler W, Anders HJ, Heeschen W (eds) (1995) Bayerische Verzehrsstudie 1995. In: Ergebnisse der nationalen Verkehrsstudie 1985–88 über die Lebensmittel-und Nährstoffaufnahme in der BRD: Band XI. Wiss. Fachverlag Fleck. VERA Schriftenreihe, Niederkleen, Germany.Google Scholar
  38. Lijzen JPA, Baars AJ, Otte PF, Rikken MGJ, Swartjes FA, Verbruggen EMJ, van Wezel AP (2001) Technical evaluation of the intervention values for soil/sediment and groundwater. Human and ecotoxicological risk assessment and derivation of risk limits for soil, aquatic sediment and groundwater. RIVM report 711701 023. Rijksinstituut voor Volksgezondheid en Milieu, Bilthoven, Nederland.Google Scholar
  39. Ma W, van der Voet H (1993) A risk-assessment model for toxic exposure of small mamalian carnivores to cadmium in contaminated natural environments. Sci Total Environ Suppl 1993:1701–1714.CrossRefGoogle Scholar
  40. Ma WC (1983) Regenwormen als bio-indicators van bodemverontreiniging. Min. van VROM. Staatsuitgeverij, Den Haag, Nederland.Google Scholar
  41. Ma WC (1996) Lead in mammals. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations. Lewis, New York, pp 281–296.Google Scholar
  42. Ma WC, Bosveld ATC, van den Brink DB (2001) Schotse hooglanders in de broekpolder? Analyse van de veterinair-toxicologische risico’s van de verontreinigde bodem voor grote grazers. Alterra rapport 260. Alterra, Research Instituut voor de Groene Ruimte, Wageningen, Nederland.Google Scholar
  43. MacNicol RD, Beckett PHT (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85:107–129.CrossRefGoogle Scholar
  44. McKone TE, Ryan PB (1989) Human exposures to chemicals through food chains: an uncertainty analysis. Environ Sci Technol 23:1154–1163.CrossRefGoogle Scholar
  45. Meili M (1997) Mercury in lakes and rivers. In: Sigel A, Sigel H (eds) Mercury and Its Effects on Environment and Biology. Dekker, New York, pp 21–51.Google Scholar
  46. Meili M, Bishop K, Bringmark L, Johansson K, Munthe J, Sverdrup H, de Vries W (2003) Critical levels of atmospheric pollution: criteria and concepts for operational modelling of mercury in forest and lake ecosystems. Sci Total Environ 304:83–106.CrossRefGoogle Scholar
  47. Mortvedt JJ, Cox FR, Shuman LM, Welch RM (1991) Micronutrients in agriculture. Soil Science Society of America (SSSA), Madison, WI.Google Scholar
  48. Nicholson JK, Kendall MD, Osborn D (1983) Cadmium and mercury nephrotoxicity. Nature (Lon) 304:633–635.CrossRefGoogle Scholar
  49. Pascoe GA, Blanchet RJ, Linder G (1996) Food chain analysis of exposure and risks to wildlife at a metals-contaminated wetland. Arch Environ Contam Toxicol 30:306–318.CrossRefGoogle Scholar
  50. Puls R (1988) Mineral Levels in Animal Health: Diagnostic Data. Sherpa International, Clearbook, BC, Canada.Google Scholar
  51. Reeves PG, Chaney RL (2004) Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed ricebased diets. Environ Res 96:311–322.CrossRefGoogle Scholar
  52. Reeves PG, Chaney RL, Simmons RW, Cherian MG (2005) Metallothionein induction is not involved in cadmium accumulation in the duodenum of mice and rats fed diets containing high-cadmium rice or sunflower kernels and a marginal supply of zinc, iron, and calcium. J Nutr 135:99–108.Google Scholar
  53. Rikken MGJ, Lijzen JPA, Cornelese AA (2001) Evaluation of model concepts on human exposure. Proposals for updating the most relevant exposure routes of CSOIL. RIVM report 711701 022. National Institute of Public Health and the Environment, Bilthoven, The Netherlands.Google Scholar
  54. Romijn CAF, Luttik R, van de Meent D, Slooff W, Canton JH (1991a) Presentation and analysis of a general algorithm for risk-assessment on secondary poisoning. RIVM Report 679102 002. National Institute of Public Health and the Environment, Bilthoven, The Netherlands.Google Scholar
  55. Romijn CAF, Luttik R, van de Meent D, Slooff W, Canton JH (1991b) Presentation of a general algorithm for effect-assessment on secondary poisoning. RIVM Report 679102 007. National Institute of Public Health and the Environment, Bilthoven, The Netherlands.Google Scholar
  56. Römkens PFAM, Groenenberg JE, Bonten LTC, de Vries W, Bril J (2004) Derivation of partition relationships to calculate Cd, Cu, Ni, Pb and Zn solubility and activity in soil solutions. Alterra Rapport 305. Alterra, Wageningen, The Netherlands.Google Scholar
  57. Satarug S, Haswell-Elkins MR, Moore MR (2000) Safe levels of cadmium intake to prevent renal toxicity in human subjects. Br J Nutr 84:791–802.Google Scholar
  58. Sauerbeck D (1983) Welche Schwermetallgehalte in Pflanzen dürfen nicht überschritten werden, um Wachstumsbeeinträchtigungen zu vermeiden? Landwirtsch Forsch Sonderh 39:108–129.Google Scholar
  59. Schinner L (1981) Untersuchungen über endogene und exogene Einflüsse auf den Blei-(Pb-) und Cadmium-(Cd-) Gehalt in Muskeln und Organen von Rehwild und Wildkaninchen. Mitt Bund Fleischforsch 75:3056.Google Scholar
  60. Schütze G, Becker R, Dämmgen U, Nagel H-D, Schlutow A, Weigel H-J (2003a) Risikoabschätzung der Cadmium-Belastung für Mensch und Umwelt infolge der Anwendung von cadmiumhaltigen Düngemitteln. Landbauforsch Völkenrode 2/3 2003:63–170.Google Scholar
  61. Schütze G, Lorenz U, Spranger U (2003b) Expert Meeting on Critical Limits for Heavy Metals and Methods for Their Application. Proceedings, Berlin, 2–4 December 2003, UBA Texte 47/2003. Umweltbundesamt, Berlin, Germany.Google Scholar
  62. SCOPE (Scientific Committee on Problems of the Environment) (2003) Risk Assessment and Management of Environmental Cadmium. Report from the SCOPE Workshop, University of Ghent, Belgium, 3–6 September, 2003.Google Scholar
  63. Sheppard SC (1992) Summary of phytotoxic levels of soil arsenic. Water Air Soil Pollut 64:539–550.CrossRefGoogle Scholar
  64. Simmons RW, Pongsakul P, Chaney RL, Saiyasitpanich D, Klinphoklap S, Nobuntou W (2003) The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: implications for human health. Plant Soil 257:163–170.CrossRefGoogle Scholar
  65. Smilde KW (1976) Toxische gehalten aan zware metalen (Zn, Cu, Cr, Ni, Pb, en Cd) in grond en gewas: een literatuuroverzicht. Nota Instituut voor Bodemvruchtbaarheid no 25, I.B., Haren, Nederland.Google Scholar
  66. Statistisches Bundesamt (1999) Verbrauch an Nahrungsmitteln in Deutschland 1991 bis 1998. In: Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland. Metzler-Poeschel, Stuttgart Germany.Google Scholar
  67. Sverdrup H (2002) Setting critical limits for mercury, cadmium and lead to be used in calculation of critical loads for different receptors. Internal report. Chemical Engineering, Lund University, Lund, Sweden.Google Scholar
  68. Van de Plassche EJ (1994) Towards integrated environmental quality objectives for several compounds with a potential for secondary poisoning. Report 679101 012. National Institute of Public Health and the Environment, Bilthoven, The Netherlands.Google Scholar
  69. Van den Berg R, Roels JM (1991) Risk assessment to man and the environment in case of exposure to soil contamination. Integration of different aspects. RIVM report 725201 013. Rijksinstituut voor Volksgezondheid en Milieuhygiëne, Bilthoven, The Netherlands.Google Scholar
  70. Van Driel W, van Luit B, Schuurmans W, de Vries W, Stienen MJJ (1988) Zware metalen in oevergronden en daarop verbouwde gewassen in het stroomgebied van Maas, Geul en Roer in de provincie Limburg. 3. Bodem-gewasrelaties. Rapport van de projectgroep zware metalen in oevergronden van Maas en zijrivieren.Google Scholar
  71. Van Hooft WF (1995) Risico’s voor de volksgezondheid als gevolg van blootstelling van runderen aan sporenelementen bij beweiding. Rapport 693810 001. Rijksinstituut voor Volksgezondheid en Milieuhygiëne, Bilthoven, Nederland.Google Scholar
  72. VROM (1998) Soil Protection Act. Ministry of Housing, Spatial Planning and the Environment, The Hague, The Netherlands.Google Scholar
  73. WGE (2004) Review and assessment of air pollution effects and their recorded trends. Report of the Working Group on Effects, Convention on Long-Range Transboundary Air Pollution. National Environment Research Council, UK.Google Scholar
  74. WHO (2004) Guidelines for Drinking-Water Quality. Volume 1: Recommendations. WHO, Geneva.Google Scholar
  75. Wiersma D, van Goor BJ, van der Veen NG (1986) Cadmium, lead, mercury and arsenic concentrations in crops and corresponding soils in the Netherlands. J Agric Food Chem 34:1067–1074.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Wim de Vries
    • 1
  • Paul F. A. M. Römkens
    • 1
  • Gudrun Schütze
    • 2
  1. 1.AlterraWageningen University and Research CentreWageningenThe Netherlands
  2. 2.ÖKO-DATA Ecosystem Analysis and Environmental Data ManagementStrausbergGermany

Personalised recommendations