Skip to main content

The Use of Solubilizing Excipients and Approaches to Generate Toxicology Vehicles for Contemporary Drug Pipelines

  • Chapter
Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume VI))

Abstract

The purpose of this chapter is two-fold and includes approaches for identifying potentially problematic drug candidates with regard to formulation, in general, and for the preparation of toxicology vehicles, in particular. In addition, an attempt is made to provide insight as to what oral and parenteral excipients are appropriate for early human testing and, by extension, which of these materials can reasonably be used in GLP toxicology evaluation intended to support these Phase I human assessments. These considerations are becoming more visible in the drug development arena as evidenced by a number of recent symposia and congresses (Liu 2005; Van Gelder, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoram B, Woltosz W, and Bolger M. Predicting the Impact of Physiological and Biochemical Processes on Oral Drug Absorption. Adv Drug Deliv Rev 2001; 50: S41–S67.

    PubMed  CAS  Google Scholar 

  • Akers MJ. Excipient-Drug Interactions in Parenteral Formulations. J Pharm Sci 2002; 91: 2283–2300.

    PubMed  CAS  Google Scholar 

  • Akkar A and Müller RH. Intravenous Itraconazole Emulsions Produced by SolEmuls Technology. Eur J Pharm Biopharm 2003; 56: 29–36.

    PubMed  CAS  Google Scholar 

  • Amidon GL, Lennernas H, Shah VP, and Crison JR. Theoretical Basis for a Biopharmaceutical Drug Classification: The Correlation of in vitro Drug Product Dissolution and in vivo Bioavailability.Pharm Res 1995; 12: 413–420.

    PubMed  CAS  Google Scholar 

  • Amidon G and Williams NA. A Solubility Equation for Non-Electrolytes in Water. Int J Pharm 1982; 11: 249–256.

    CAS  Google Scholar 

  • Apple LE, Babcock WC, Friesen DT, Ray RJ, Shamblin RM, and Smithey DT. Pharmaceutical Dosage Forms Comprising a Low Solubility Drug and Polymer. International Patent Appl 2006: WO2006024944 A2.

    Google Scholar 

  • Ash M and Ash I. Handbook of Pharmaceutical Additives. Gower Publishing Ltd, Hampshire, UK, 1997.

    Google Scholar 

  • Avdeef A. The Rise of PAMPA. Expert Opin Drug Metab Toxicol 2005; 1: 325–342.

    PubMed  CAS  Google Scholar 

  • Balbach S and Korn C. Pharmaceutical Evaluation of Early Developmental Candidates “The 100 mg Approach.” Int J Pharm 2004; 275: 1–12.

    PubMed  CAS  Google Scholar 

  • Bergstrom CAS, Strafford M, Lazorova L, Avdeef A, Luthman K, and Artursson P. Absorption Classification of Oral Drugs Based on Molecular Surface Properties. J Med Chem 2003; 46: 558–570.

    PubMed  Google Scholar 

  • Bittner B and Mountfield RJ. Formulation and Related Activities for the Oral Administration of Poorly Water-Soluble Compounds in Early Discovery Animal Studies: An Overview of Frequently Applied Approaches Part 1. Pharmazeut Indust 2002; 64: 800–807.

    CAS  Google Scholar 

  • Bittner B and Mountfield RJ. Formulation and Related Activities for the Oral Administration of Poorly Water-Soluble Compounds in Early Discovery Animal Studies: An Overview of Frequently Applied Approaches Part 2. Pharmazeut Indust 2002a; 64: 985–991.

    CAS  Google Scholar 

  • Bittner B and Mountfield RJ. Intravenous Administration of Poorly Soluble New Drug Entities in Early Drug Discovery: The Potential Impact of Formulation on Pharmacokinetic Parameters. Curr Opin Drug Disc Dev 2002b; 5: 59–71.

    CAS  Google Scholar 

  • Blasko A, Leahy-Dios A, Nelson W, Austin S, Killion R, Visor G, and Massey I. Revisiting the Solubility Concept of Pharmaceutical Compounds. Monat Chem 2001; 132: 789–798.

    CAS  Google Scholar 

  • Box KJ, Volgyi G, Baka E, Stuart M, Takacs-Novak K, and Comer J. Equilibration Versus Kinetic Measurements of Aqueous Solubility and the Ability of Compounds to Supersaturate in Solution—A Validation Study. J Pharm Sci 2006; 95: 1298–1307.

    PubMed  CAS  Google Scholar 

  • Brewster ME, Simpkins JW, Hora MS, Stern WC, and Bodor N. Review: Potential Use of Cyclodextrins in Parenteral Formulations.J Parent Sci Technol 1989; 43: 231–240.

    CAS  Google Scholar 

  • Brewster ME, Verreck G, Chun I, Rosenblatt J, Mensch J, Van Dijck A, Noppe M, Arien T, Bruining M, and Peeters J. The Use of Polymer-Based Electrospun Nanofibers Containing Amorphous Drug Dispersions in the Delivery of Poorly Water-Soluble Pharmaceuticals. Die Pharmazie 2004; 59: 387–391.

    PubMed  CAS  Google Scholar 

  • Burton P, Goodwin JT, Vidmar TJ, and Amore BM. Predicting Drug Absorption: How Nature Made it a Difficult Problem. J Pharm Exp Therap 2002; 303: 889–895.

    CAS  Google Scholar 

  • Camenisch G, Alsenz J, Van de Waterbeemd H, and Folkers G. Estimation of Permeability by Passive Diffusion through Caco-2 Cell Monolayers Using the Drug's Lipophilicity and Molecular Weight.Eur J Pharm Sci 1998; 6: 313–319.

    CAS  Google Scholar 

  • Challa R, Ahuja A, Ali J, and Khar RK. Cyclodextrin in Drug Delivery: An Updated Review. AAPS PharmSciTech 2005; 6: E329–E357.

    PubMed  Google Scholar 

  • Chan K and Gibaldi M. Assessment of Drug Absorption after Oral Administration. J Pharm Sci 1985; 74: 388–393.

    PubMed  CAS  Google Scholar 

  • Cheng C, Yu L, Lee H, Yang C, Lue C, and Chou C. Biowaiver Extension Potential to BCS Class III High Solubility-Low Permeability Drugs: Bridging Evidence for Metformin Immediate-release Tablet. Eur J Pharm Sci 2004; 22: 297–304.

    PubMed  CAS  Google Scholar 

  • Crew MD, Shanker RM, Smithey DT, Miller WK, and Friesen DT. Stabilized Pharmaceutical Solid Compositions of Low Solubility Drugs, Poloxamers and Stabilizing Polymers. International Patent Appl 2005: WO 2005065656 A2.

    Google Scholar 

  • Curatolo W, Physical Chemical Properties of Oral Drug Candidates in the Discovery and Exploratory Development Setting. 1998; PSTT 1: 387–393.

    CAS  Google Scholar 

  • Dannenfelser R, He H, Joshi Y, Bateman S, and Serajuddin ATM. Development of Clinical Dosage Forms for a Poorly Water Soluble Drug I: Application of Polyethylene Glycol-Polysorbate 80 Solid Dispersion Carrier System. J Pharm Sci 2004; 93: 1165–1175.

    PubMed  CAS  Google Scholar 

  • Davis ME and Brewster ME. Cyclodextrin-Based Pharmaceutics: Past, Present, Future. Nature Rev Drug Discov 2004; 3: 1023–1035.

    CAS  Google Scholar 

  • De Beule K and Van Gestel J. Pharmacology of Itraconazole. Drugs 2001; 61(Suppl. 1): 27–33.

    PubMed  Google Scholar 

  • De Conde V, Gilis P, and Putteman P. Pellets having a Core Coated with a Lipid Lowering Agent and a Polymer. International Patent 1999: WO 9955313.

    Google Scholar 

  • Dehring KA, Workman H, Miller K, Mandagere A, and Poole S. Automated Robotic Liquid Handling/Laser-based System for High Throughput Measurement of Kinetic Aqueous Solubility. J Pharm Biomed Anal 2004; 35: 447–456.

    Google Scholar 

  • Dokoumetzidis A, Papadopoulou V, and Macheras P. Analysis of Dissolution Rate Using Modified Versions of Noyes-Whitney Equation and the Weibull Function. Pharm Res 2006; 23: 256–261.

    PubMed  CAS  Google Scholar 

  • Dressman JB, Amidon G, Reppas C, and Shah VP. Dissolution Testing as a Prognostic Tool for Oral Drug Absorption: Immediate Release Dosage Forms. Pharm Res 1998; 15: 11–22.

    PubMed  CAS  Google Scholar 

  • Dressman J, Butler J, Hempenstall J, and Reppas C. The BCS: Where do We go from Here? Pharm Tech 2001; 25: 68–76.

    CAS  Google Scholar 

  • FDA, Guidance for Industry. Q3C Impurities: Residual Solvents. http://www.fda.gov/cder/ guidance/Q3Cfinal.htm (Dated 1997).

    Google Scholar 

  • FDA, Guidance for Industry. Drug product—Chemistry, Manufacturing and Control Information. http://www.fda.gov/cder/guidance/1215dft.pdf (Dated 2003).

    Google Scholar 

  • FDA, Guidance for Industry. Q3C—Tables and List. http://www.fda.gov/ cder/guidance/Q3CT&Lrev1.pdf (Dated 2003a).

    Google Scholar 

  • FDA, Guidance for Industry. Nonclinical Studies for the Safety Evaluation of Pharmaceutical Excipients. http://www.fda.gov/cder/guidance/ 5544fnl.htm (Dated 2005).

    Google Scholar 

  • FDA, Center for Drug Evaluation and Research, Inactive Ingredient Database. http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm (2006).

    Google Scholar 

  • FDA GRAS, Summary of All GRAS Notices. http://www.cfsan.fda.gov/~rdb/opa-gras. html (May 2006).

    Google Scholar 

  • Fiese EF. General Pharmaceutics—The New Physical Pharmacy. J Pharm Sci 2003; 92: 1331–1342.

    PubMed  CAS  Google Scholar 

  • Gao P, Guyton ME, Huang T, Bauer J, Stefanski K, and Lu L. Enhanced Oral Bioavailability of a Poorly Water Soluble Drug PNU-91325 by Supersaturable Formulations. Drug Dev Ind Pharm 2004; 30: 221–229.

    PubMed  CAS  Google Scholar 

  • Gao P, Hageman MJ, Morozowich W, Dalga RJ, Stefanski KJ, Huang T, Karim A, Hassan F, and Forbes, JC. Pharmaceutical Compositions Having Reduced Tendency for Drug Crystallization. International Patent Appl 2002: WO 02056878 A2.

    Google Scholar 

  • Gao P, Rush BD, Pfund WP, Huang T, Bauer JM, Morozowich W, KUO M, and Hageman MJ. Development of a Supersaturable SEDDS (S-SEDDS) Formulation of Paclitaxel with Improved Oral Bioavailability. J Pharm Sci 2003; 92: 2386–2398.

    PubMed  CAS  Google Scholar 

  • Gardner CR, Walsh CT, and Almarsson O. Drugs as Materials: Valuing Physical Form in Drug Discovery. Nature Rev Drug Discov 2004; 3: 926–934.

    CAS  Google Scholar 

  • Gelderblom H, Verweij J, Nooter K, and Sparreboom A. Chrmophor EL: The Drawbacks and Advantages of Vehicle Selection for Drug Formulation. Eur J Cancer 2001; 37: 1591–1598.

    Google Scholar 

  • Gould S and Scott RC. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A Toxicological Review. Food Chem Toxicol 2005; 43: 1451–1459.

    PubMed  CAS  Google Scholar 

  • Hidalgo I. Assessing the Absorption of New Pharmaceuticals. Curr Top Med Chem 2001; 1: 385–401.

    PubMed  CAS  Google Scholar 

  • Hilde LR and Morris KR, Physics of Amorphous Solids. J Pharm Sci 2004; 93: 3–12.

    Google Scholar 

  • Horter D and Dressman JB. Influence of Physicochemical Properties on Dissolution of Drugs in the Gastrointestinal Tract. Adv Drug Deliv Rev 2001; 46: 75–87.

    PubMed  CAS  Google Scholar 

  • Ingels F and Augustijns P. Biological, Pharmaceutical and Analytical Considerations with Respect to the Transport Media Used in the Absorption Screening System, Caco-2. J Pharm Sci 2003; 92: 1545–1558.

    PubMed  CAS  Google Scholar 

  • International Pharmaceutical Excipients Council. IPEC, the International Pharmaceutical Excipients Council is the World-wide Trade Association of Manufacturers and Users of Pharmaceutical Excipients. http://www.ipec.org (2006).

    Google Scholar 

  • Jain N and Yalkowsky SH. Estimation of Aqueous Solubility I: Application to Organic Non-electrolytes. J Pharm Sci 2001; 9: 234–252.

    Google Scholar 

  • JECFA. Monographs, and Evaluation of the Joint WHO/FAO Expert Committee on Food Additives. http://www.inchem.org/pages/jecfa.html (2006).

    Google Scholar 

  • Johnson KC. Dissolution and Absorption Modeling: Model Expansion to Simulate the Effects of Precipitation, Water Absorption, Longitudinally Changing Intestinal Permeability, and Controlled Release on Drug Absorption. Drug Devlop Ind Pharm 2003; 29: 833–842.

    CAS  Google Scholar 

  • Johnson KC and Swindell AC. Guidance in the Setting of Drug Particle Size Specifications to Minimize Variability in Absorption. Pharm Res 1996; 1795–1798.

    Google Scholar 

  • Johnson S and Zheng W. Recent Progress in the Computational Prediction of Aqueous Solubility and Absorption. AAPS J 2006; 8: E27–E40.

    PubMed  CAS  Google Scholar 

  • Jolivette L and Ward K. Extrapolation of Human Pharmacokinetic Parameters from Rat, Dog and Monkey Data: Molecular Properties Associated with Extrapolative Success or Failure. J Pharm Sci 2005; 94: 1467–1483.

    PubMed  CAS  Google Scholar 

  • Jung S, Choi S, Um S, Kim J, Choo H, Choi S, and Chung S. Prediction of the Permeability of Drug through Study on Quantitative-Permeability Relationship. J Pharm Biomed Anal 2006; 41: 469–475.

    PubMed  CAS  Google Scholar 

  • Kalantzi L, Reppas C, Dressman JB, Amidon G, Junginger HE, Midha KK, Shah VP, Stavchansky SA, and Barends DM, Biowaiver Monograph for Immediate Release Solid Dosage Forms: Acetominophen (Paracetamol). J Pharm Sci 2005; 95: 4–14.

    Google Scholar 

  • Kashchiev D and Van Rosmalen GM. Review: Nucleation in Solutions Revisited. Cryst Res Technol 2003; 38: 555–574.

    CAS  Google Scholar 

  • Kerns EH, Li C, Petusky S, Farris M, Ley R, and Jupp P. Combined Application of Parallel Artificial Membrane Permeability Assay and Caco-2 Permeability Assays in Drug Discovery. J Pharm Sci 2004; 93: 1440–1453.

    PubMed  CAS  Google Scholar 

  • Koks C, Meenhorst P, Bult A, and Beijnen J. Itraconazole Solution: Summary of Pharmacokinetic Features and Review of Activity in the Treatment of Fluconazole-resistant Oral Candidosis in HIV-infected Persons. Pharmacol Res 2002; 46: 195–201.

    PubMed  CAS  Google Scholar 

  • Kola I and Landis J. Can the Pharmaceutical Industry Reduce Attrition Rates? Nature Rev Drug Discov 2004; 2: 711–715.

    Google Scholar 

  • Krill SK, Fort JJ, Law D, Schmitt EA, and Qiu Y. Inhibitors of Crystallization in a Solid Dispersion. International Patent Appl 2001: WO 0134119 A2.

    Google Scholar 

  • Kuentz M, Nick S, Parrott N, and Roethlisberger D. A Strategy for Preclinical Formulation Development Using GastroPlus as Pharmacokinetic Simulation Tool and a Statistical Screening Design Applied to a Dog Study.Eur J Pharm Sci 2006; 27: 91–99.

    PubMed  CAS  Google Scholar 

  • Lee Y, Zocharski PD, and Samas B. An Intravenous Formulation Decision Tree for Discovery Compound Formulation Development. Int J Pharm 2003; 253: 111–119.

    PubMed  CAS  Google Scholar 

  • Leuner C and Dressman J. Improving Drug Solubility for Oral Delivery using Solid Dispersion. Eur J Pharm Biopharm 2000; 50: 47–60.

    PubMed  CAS  Google Scholar 

  • Lipinski CA. Avoiding Investment in Doomed Drugs. Curr Drug Discov 2001; 1: 17–19.

    Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, and Feeney PJ. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv Drug Deliv Rev 1997; 23: 3–25.

    CAS  Google Scholar 

  • Liu R. Water-insoluble Drug Formulation. Interpharm Press, Englewood, CO, 2000.

    Google Scholar 

  • Liu R. Meeting of the American Association of Pharmaceutical Scientists (AAPS)—Roundtable: Challenges and New Approaches to the Formulation of Poorly Water-Soluble Compounds for the Support of Toxicology Studies, Meeting of the American Association of Pharmaceutical Scientists (AAPS), Nashville, Tennessee, November 6–10, 2005.

    Google Scholar 

  • Loftsson T and Brewster M. Pharmaceutical Applications of Cyclodextrins. I. Drug Solubilization and Stabilization. J Pharm Sci 1996; 85: 1017–1025.

    PubMed  CAS  Google Scholar 

  • Loftsson T and Brewster M. Cyclodextrins as Pharmaceutical Excipients. Pharmaceut Technol Europe 1997; 9: 26–34.

    CAS  Google Scholar 

  • Loftsson T, Brewster ME, and Masson M. Role of Cyclodextrins in Improving Oral Drug Delivery. Am J Drug Deliv 2004; 2: 261–275.

    CAS  Google Scholar 

  • Mahmood I. Estimation of Absorption Rate Constant (Ka) following Oral Administration by Wagner-Nelson, Loo-Riegelman, and Statistical Moments in the Presence of a Second Peak. Drug Metab Drug Interact 2004; 20: 85–100.

    CAS  Google Scholar 

  • Masungi C, Borremans C, Willems B, Mensch J, Van Dijck A, Augustijns P, Brewster M, and Noppe M. Usefulness of a Novel CACO-2 Cell Perfusion System I. In Vitro Prediction of the Absorption Potential of Passively Diffused Compounds.J Pharm Sci 2004; 93: 2507–2521.

    PubMed  CAS  Google Scholar 

  • Noyes AA and Whitney WR. The Rate of Solution of Solid Substances in their Own Solutions. J Am Chem Soc 1897; 19: 930–934.

    Google Scholar 

  • Parrott N, Paquereau N, Coassolo P, and Lave T. An Evaluation of the Utility of Physiologically Based Models of Pharmacokinetics in Early Discovery. J Pharm Sci 2005; 94: 2327–2343.

    PubMed  CAS  Google Scholar 

  • PDR. Physician's Desk Reference, Fifty-seventh Edition. Medical Economics Company, Montvale, NJ, 2003.

    Google Scholar 

  • Peeters J, Neeskens P, Tollenaere J, and Van Remoortere P. Characterization of the Interaction of 2-Hydroxypropyl-β-cyclodextrin with Itraconazole at pH 2, 4 and 7. J Pharm Sci 2002; 91: 1414–1422.

    PubMed  CAS  Google Scholar 

  • Peeters J, Vandecruys R, and Brewster M. The Use of Supersaturation Studies in Early Pharmaceutical Development. American Association of Pharmaceutical Scientists Annual Meeting and Exposition, Salt Lake City, Utah, USA, October 26–30, 2003.

    Google Scholar 

  • Pellet MA, Castellano S, Hadgraft J, and Davis AF. The Penetration of Supersaturated Solutions of Piroxicam across Silicon Membranes and Human Skin In Vitro. J Control Rel 1997; 46: 205–214.

    Google Scholar 

  • Pellet MA, Davis AF, and Hadgraft J. Effect of Supersaturation on Membrane Transport: 2 Piroxicam. Int J Pharm 1994; 111: 1–6.

    Google Scholar 

  • Pellet MA, Roberts MS, and Hadgraft J. Supersaturated Solutions Evaluated with an In Vitro Stratum Corneum Tape Stripping Technique. 1997; 151: 91–98.

    Google Scholar 

  • Pitha J and Teruhiko H. Effect of Ethanol on Formation of Inclusion Complexes of Hydroxypropyl Cyclodextrins with Testosterone or with Methyl Orange.Int J Pharm 1992; 243–251.

    Google Scholar 

  • Pitha J, Teruhiko H, Torres-Labandeira J, and Irie T. Preparation of Drug-Hydroxypropyl Cyclodextrin Complexes by a Method Using Ethanol or Aqueous Ammonium Hydroxide as Cosolubilizers. Int J Pharm 1992; 80: 253–258.

    CAS  Google Scholar 

  • Prentis, R A, Lis, Y, and Walker, SR. Pharmaceutical Innovation by Seven UK-owned Pharmaceutical Companies.Br J Clin Pharmacol 1988; 25: 387–396.

    PubMed  CAS  Google Scholar 

  • Rajewski RA, Traiger G, Bresnahan J, Jaberaboansari P, Stella VJ, and Thompson DO. Preliminary Safety Evaluation of Parenterally Administered Sulfoalkyl Ether β-Cyclodextrin Derivatives.J Pharm Sci 1995; 84: 927–932.

    PubMed  CAS  Google Scholar 

  • Rao VM and Stella VJ. When Can Cyclodextrins be Considered for Solubilization Purposes? J Pharm Sci 2003; 92: 927–932.

    PubMed  CAS  Google Scholar 

  • Rowe RC, Sheskey PJ, and Owen S (Eds). Handbook of Pharmaceutical Excipients, Fifth Edition. Pharmaceutical Press and the American Pharmsists Association, London, 2006.

    Google Scholar 

  • Schulze JDR, Waddington WA, Ell, PJ, Parsons GE, Coffin MD, and Basit AW. Concentration-Dependent Effects of Polyethylene Glycol 400 on Gastrointestinal Transit and Drug Absorption.Pharm Res 2003; 20: 1984–1888.

    PubMed  CAS  Google Scholar 

  • Serajuddin AT. Solid Dispersion of Poorly Water-soluble drugs. Early Promises, Subsequent Problems and Recent Breakthroughs. J Pharm Sci 1999; 88: 1058–1066.

    PubMed  CAS  Google Scholar 

  • Singh S. Preclinical Pharmacokinetics: An Approach Towards Safer and Efficacious Drugs.Curr Drug Metab 2006; 7: 165–182.

    PubMed  CAS  Google Scholar 

  • Steinberg M, Borzelleca JF, Enters EK, Kinoshita FK, Loper A, Mitchell DB, Tamulinas CB, and Weiner ML. A New Approach to the Safety Assessment of Pharmaceutical Excipients.Reg Toxicol Pharmacol 1996; 24: 149–154.

    CAS  Google Scholar 

  • Stoner C, Cleton A, Johnson K, Oh D, Hallak H, Brodfuehrer J, Surendran N, and Han H. Integrated Oral Bioavailability Projection Using In Vitro Screening Data as a Selection Tool. Int J Pharm 2004; 269: 241–249.

    PubMed  CAS  Google Scholar 

  • Stoner C, Gifford E, Stankoic C, Lepsy C, Brodfuehrer J, Prasad J, and Surendran N. Implementation of an ADME Enabling Selection and Visualization Tool for Drug Discovery.J Pharm Sci 2004; 93: 1131–1141.

    PubMed  CAS  Google Scholar 

  • Strickley RG. Parenteral Formulations of Small Molecule Therapeutics Marketed in the United States (1999)—Part I. PDA J Pharm Sci Technol 1999; 53: 324–349.

    PubMed  CAS  Google Scholar 

  • Strickley RG. Solubilizing Excipients in Oral and Liquid Formulations. Pharm Res 2004; 21: 201–230.

    PubMed  CAS  Google Scholar 

  • Sun D, Yu L, Hussain M, Wall D, Smith R, and Amidon G. In Vitro Testing of Drug Absorption for Drug ‘Developability’ Assessment: Forming an Interface between In Vitro Preclinical Data and Clinical Outcome. Curr Opin Drug Discov Develop 2004; 7: 75–85.

    CAS  Google Scholar 

  • Sweetana S and Akers MJ. Solubility Principles and Practices for Parenteral Drug Dosage Form Development. PDA J Pharm Sci Technol 1996; 50: 330–342.

    PubMed  CAS  Google Scholar 

  • Taylor LS and Zografi G. Spectroscopic Characterization of Interactions between PVP and Indomethacin in Amorphous Molecular Dispersions. Pharm Res 1997; 14: 1691–1698.

    PubMed  CAS  Google Scholar 

  • Thompson DO. Cyclodextrins—Enabling Excipients: Their Present and Future Use in Pharmaceuticals. Crit Rev Therap Drug Carrier Syst 1997; 14: 1–104.

    CAS  Google Scholar 

  • Tissel AL. Handbook on Injectable Drugs, Eleventh Edition. American Society of Heath System Pharmacists, Bethesda, MD, 2001.

    Google Scholar 

  • Uekama K. Cyclodextrins in Drug Delivery System.Adv Drug Del Rev 1999; 36: 1–2.

    CAS  Google Scholar 

  • Uekama K, Hirayama F, and Irie T. Cyclodextrin Drug Carrier Systems. Chem Rev 1998; 98: 2045–2076.

    PubMed  CAS  Google Scholar 

  • Valvani SC, Yalkowsky SH, and Roseman TJ. Solubility and Partitioning: IV Aqueous Solubility and Octanol-Water Partition Coefficients of Liquid Non-Electrolytes.J Pharm Sci 1981; 70: 502–507.

    PubMed  CAS  Google Scholar 

  • Van Breemen R and Li Y. Caco-2 Cell Permeability Assays to Measure Drug Absorption. Expert Opin Drug Metab Toxicol 2005; 1: 175–185.

    PubMed  Google Scholar 

  • Van de Waterbeemd H, and Gifford E. ADMET In Silico Modelling: Towards Prediction Paradise? Nature Rev Drug Discov 2003; 192–204.

    Google Scholar 

  • Van Dijck A, Masungi C, Mensch J, Borremans C, Willems B, Mackie C, Brewster M, and Noppe, M. Parallel Artificial Membrane Permeability Assay (PAMPA) Combined with a 10-Day Multiscreen CACO-2 Cell Culture for Prediction of Passive and Active Absorption of Drugs. 2003 American Association of Pharmaceutical Scientists Annual Meeting and Exposition, Salt Lake City, Utah, USA, October 26–30, 2003.

    Google Scholar 

  • Van Gelder J. EUFEPS Conference: When Poor Water Solubility Becomes an Issue: From Early Stage to Proof of Principle, Verona, Italy, April 26–27, 2006.

    Google Scholar 

  • Veng PP. Novel Deconvolution Method for Linear Pharmacokinetic Systems with Polyexponential Impulse Response.J Pharm Sci 1980; 69: 312–318.

    Google Scholar 

  • Veng PP. Novel Approach to Bioavailability Testing: Statistical Method for Comparing Drug Input Calculated by a Least-square Deconvolution Technique. J Pharm Sci 1980a; 69: 318–324.

    Google Scholar 

  • Weiner M and Bernstein IL. Adverse Reactions to Drug Formulation Agents: A Handbook of Excipients. Marcel Dekker, New York, NY, 1989.

    Google Scholar 

  • Weiner ML and Kotkoskie LA. Excipient Toxicity and Safety. Marcel Dekker, New York, NY, 2000.

    Google Scholar 

  • Wu S and Hopkins W. Characteristics of D-α-Tocopheryl PEG 100 Succinate for Applications as an Absorption Enhancer in Drug Delivery Systems. Pharm Tech 1999; 23: 52–68.

    CAS  Google Scholar 

  • Yalkowsky SH and Valvani S. Solubility and Partitioning I: Solubility of Non-Electrolytes in Water. J Pharm Sci 1980; 69: 912–922.

    PubMed  CAS  Google Scholar 

  • Yang Z, Zadjura L, D'Arienzo C, Marino A, Santone K, Klunk L, Greene D, Lin P, Colonno R, Wang T, Meanwell N, and Hansel S. Preclinical Pharmacokinetics of a Novel HIV-1 Attachment Inhibitor BMS-378806 and Prediction of its Human Pharmacokinetics. Biopharm Drug Disp 2005; 26: 387–402.

    CAS  Google Scholar 

  • Yee S. In Vitro Permeability Across Caco-2 Cells (Colonic) Can Predict In Vivo (Small Intestinal) Absorption in Man—Fact or Myth. Pharm Res 1997; 14: 763–766.

    PubMed  CAS  Google Scholar 

  • Yu L. An Integrated Model for Determining Causes for Poor Oral Drug Absorption. Pharm Res 1999; 16: 1883–1887.

    PubMed  CAS  Google Scholar 

  • Yu L, Amidon G, Polli J, Zhao H, Mehta M, Conner D, Shah VP, Lesko L, Chen M, Lee VL, and Hussain AS. Biopharmaceutics Classification System: The Scientific Basis for Biowaiver Extensions. Pharm Res 2002; 19: 921–925.

    PubMed  CAS  Google Scholar 

  • Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, Boutina D, Beck G, Sherborne B, Cooper J, and Platts JA. Evaluation of Human Intestinal Data and Subsequent Derivation of a Quantitative Structure-Activity Relationship (QSAR) with the Abraham Descriptors.J Pharm Sci 2001; 90: 749–784.

    PubMed  CAS  Google Scholar 

  • Zhu C, Jiang L, Chen T, and Hwang K. A Comparative Study of Artificial Membrane Permeability Assay for High Throughput Profiling of Drug Absorption Potential. Eur J Med Chem 2002; 37: 399–407.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

BREWSTER, M.E., MACKIE, C., NOPPE, M., LAMPO, A., LOFTSSON, T. (2007). The Use of Solubilizing Excipients and Approaches to Generate Toxicology Vehicles for Contemporary Drug Pipelines. In: Augustijns, P., Brewster, M.E. (eds) Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics. Biotechnology: Pharmaceutical Aspects, vol VI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69154-1_8

Download citation

Publish with us

Policies and ethics