The Biological Clock in Inflammation and Sleep Switch Alterations

  • Marina Bentivoglio
  • Mikael Nygård
  • Maria Palomba
  • Krister Kristensson


The word inflammation derives from Latin inflammare, meaning to set in flame, and signifies the heat and redness related to an increased blood flow and vasodilation in the affected tissue. Although vasodilation, edema, and extravasation of white blood cells are the hallmarks of inflammation, its definition has become broader and has been more loosely applied to tissue reactions to injuries. With the discovery of molecules that mediate inflammation and, in particular, the extensive number of cytokines that regulate the cellular response to inflammation, an inflammatory component is now frequently ascribed to neurodegenerative diseases that were traditionally considered as noninflammatory. This is due to the production of proinflammatory cytokines in activated microglial cells and astrocytes in such diseases. The classical hallmarks of inflammation are, however, lacking.


Circadian Rhythm Lateral Hypothalamus Dorsal Raphe Nucleus Suprachiasmatic Nucleus Biological Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, E.E., Leak, R.K., and Moore, R.Y. (2001) The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12, 435–440.PubMedCrossRefGoogle Scholar
  2. Abrahamson, E.E., and Moore, R.Y. (2001) Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Res 916, 172–191.PubMedCrossRefGoogle Scholar
  3. Alam, M.N., McGinty, D., Bashir, T., Kumar, S., Imeri, L., Opp, M. R., and Szymusiak, R. (2004) Interleukin-1beta modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: Role in sleep regulation. Eur J Neurosci 20, 207–216.PubMedCrossRefGoogle Scholar
  4. Aston-Jones, G., Chen, S., Zhu, Y., and Oshinsky, M.L. (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4, 732–738.PubMedCrossRefGoogle Scholar
  5. Baumann, C.R., and Bassetti, C.L. (2005) Hypocretins (orexins) and sleep-wake disorders. Lancet Neurol 4, 673–682.PubMedCrossRefGoogle Scholar
  6. Bentivoglio, M., Florenzano, F., Peng, Z.C., and Kristensson, K. (1994) Neuronal IFN-gamma in tuberomammillary neurones. Neuroreport 5, 2413–2416.PubMedCrossRefGoogle Scholar
  7. Campbell, I.L. (2005) Cytokine-mediated inflammation, tumorigenesis, and disease-associated JAK/STAT/SOCS signaling circuits in the CNS. Brain Res Brain Res Rev 48, 166–177.PubMedCrossRefGoogle Scholar
  8. Chou, T.C., Bjorkum, A.A., Gaus, S.E., Lu, J., Scammell, T.E., and Saper, C.B. (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22, 977–990.PubMedGoogle Scholar
  9. Chou, T.C., Scammell, T.E., Gooley, J.J., Gaus, S.E., Saper, C.B., and Lu, J. (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23, 10691–106702.PubMedGoogle Scholar
  10. Cote, N.K., and Harrington, M.E. (1993) Histamine phase shifts the circadian clock in a manner similar to light. Brain Res 613, 149–151.PubMedCrossRefGoogle Scholar
  11. Deboer, T., Fontana, A., and Tobler, I. (2002) Tumor necrosis factor (TNF) ligand and TNF receptor deficiency affects sleep and the sleep EEG. J Neurophysiol 88, 839–846.PubMedGoogle Scholar
  12. Deboer, T., Overeem, S., Visser, N.A., Duindam, H., Frolich, M., Lammers, G.J., and Meijer, J.H. (2004) Convergence of circadian and sleep regulatory mechanisms on hypocretin-1. Neuroscience 129, 727–732.PubMedCrossRefGoogle Scholar
  13. Deboer, T., Vansteensel, M.J., Detari, L., and Meijer, J.H. (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6, 1086–1090.PubMedCrossRefGoogle Scholar
  14. Fang, J., Wang, Y., and Krueger, J.M. (1997) Mice lacking the TNF 55 kDa receptor fail to sleep more after TNFalpha treatment. J Neurosci 17, 5949–5955.PubMedGoogle Scholar
  15. Florenzano, F., and Bentivoglio, M. (2000) Degranulation, density, and distribution of mast cells in the rat thalamus: A light and electron microscopic study in basal conditions and after intracerebroventricular administration of nerve growth factor. J Comp Neurol 424, 651–669.PubMedCrossRefGoogle Scholar
  16. Gerashchenko, D., and Shiromani, P.J. (2004) Effects of inflammation produced by chronic lipopolysaccharide administration on the survival of hypocretin neurons and sleep. Brain Res 1019, 162–169.PubMedCrossRefGoogle Scholar
  17. Gonzalez-Hernandez, T., Afonso-Oramas, D., Cruz-Muros, I., Barroso-Chinea, P., Abreu, P., del Mar Perez-Delgado, M., Rancel-Torres, N., and del Carmen Gonzalez, M. (2006) Interleukin-6 and nitric oxide synthase expression in the vasopressin and corticotrophinreleasing factor systems of the rat hypothalamus. J Histochem Cytochem 54, 427–441.PubMedCrossRefGoogle Scholar
  18. Haas, H., and Panula, P. (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci. 4(2):121–130.PubMedCrossRefGoogle Scholar
  19. Li, X., Sankrithi, N., and Davis, F.C. (2002) Transforming growth factor-alpha is expressed in astrocytes of the suprachiasmatic nucleus in hamster: Role of glial cells in circadian clocks. Neuroreport 13, 2143–2147.PubMedCrossRefGoogle Scholar
  20. Lin, L., Hungs, M., and Mignot, E. (2001) Narcolepsy and the HLA region. J Neuroimmunol 117, 9–20.PubMedCrossRefGoogle Scholar
  21. Liou, S.Y., Shibata, S., Yamakawa, K., and Ueki, S. (1983) Inhibitory and excitatory effects of histamine on suprachiasmatic neurons in rat hypothalamic slice preparation. Neurosci Lett 41, 109–113.PubMedCrossRefGoogle Scholar
  22. Lu, J., Sherman, D., Devor, M., and Saper, C.B. (2006) A putative flip-flop switch for control of REM sleep. Nature 441, 589–594.PubMedCrossRefGoogle Scholar
  23. Lundkvist, G.B., Hill, R.H., and Kristensson, K. (2002) Disruption of circadian rhythms in synaptic activity of the suprachiasmatic nuclei by African trypanosomes and cytokines. Neurobiol Dis 11, 20–27.PubMedCrossRefGoogle Scholar
  24. Lundkvist, G.B., Robertson, B., Mhlanga, J.D., Rottenberg, M.E., and Kristensson, K. (1998) Expression of an oscillating interferon-gamma receptor in the suprachiasmatic nuclei. Neuroreport 9, 1059–1063.PubMedCrossRefGoogle Scholar
  25. Maier, J., Kincaid, C., Pagenstecher, A., and Campbell, I.L. (2002) Regulation of signal transducer and activator of transcription and suppressor of cytokine-signaling gene expression in the brain of mice with astrocyte-targeted production of interleukin-12 or experimental autoimmune encephalomyelitis. Am J Pathol 160, 271–288.PubMedGoogle Scholar
  26. Marpegan, L., Bekinschtein, T.A., Costas, M.A., and Golombek, D.A. (2005) Circadian responses to endotoxin treatment in mice. J Neuroimmunol 160, 102–109.PubMedCrossRefGoogle Scholar
  27. Marpegan, L., Bekinschtein, T.A., Freudenthal, R., Rubio, M.F., Ferreyra, G.A., Romano, A., and Golombek, D.A. (2004) Participation of transcription factors from the Rel/NF-kappa B family in the circadian system in hamsters. Neurosci Lett 358, 9–12.PubMedCrossRefGoogle Scholar
  28. Massa, P.T., Saha, S., Wu, C., and Jarosinski, K.W. (2000) Expression and function of the protein tyrosine phosphatase SHP-1 in oligodendrocytes. Glia 29, 376–385.PubMedCrossRefGoogle Scholar
  29. Michelsen, K.A., Lozada, A., Kaslin, J., Karlstedt, K., Kukko-Lukjanov, T.K., Holopainen, I., Ohtsu, H., and Panula, P. (2005) Histamine-immunoreactive neurons in the mouse and rat suprachiasmatic nucleus. Eur J Neurosci 22, 1997–2004.PubMedCrossRefGoogle Scholar
  30. Mistlberger, R.E. (2005) Circadian regulation of sleep in mammals: Role of the suprachiasmatic nucleus. Brain Res Brain Res Rev 49, 429–454.PubMedCrossRefGoogle Scholar
  31. Moga, M.M., and Moore, R.Y. (1997) Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol 389, 508–534.PubMedCrossRefGoogle Scholar
  32. Niederkorn, J.Y. (2006) See no evil, hear no evil, do no evil: The lessons of immune privilege. Nat Immunol 7, 354–359.PubMedCrossRefGoogle Scholar
  33. Ohdo, S., Koyanagi, S., Suyama, H., Higuchi, S., and Aramaki, H. (2001) Changing the dosing schedule minimizes the disruptive effects of interferon on clock function. Nat Med 7, 356–360.PubMedCrossRefGoogle Scholar
  34. Pace-Schott, E.F., and Hobson, J.A. (2002) The neurobiology of sleep: Genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002 Aug, 3(8):591–605.PubMedGoogle Scholar
  35. Rakesh, K., and Agrawal, D.K. (2005) Controlling cytokine signaling by constitutive inhibitors. Biochem Pharmacol 70, 649–657.PubMedCrossRefGoogle Scholar
  36. Robertson, B., Kong, G., Peng, Z., Bentivoglio, M., and Kristensson, K. (2000) Interferongamma-responsive neuronal sites in the normal rat brain: Receptor protein distribution and cell activation revealed by Fos induction. Brain Res Bull 52, 61–74.PubMedCrossRefGoogle Scholar
  37. Rosell, D.R., Akama, K.T., Nacher, J., and McEwen, B.S. (2003) Differential expression of suppressors of cytokine signaling-1, -2, and -3 in the rat hippocampus after seizure: Implications for neuromodulation by gp130 cytokines. Neuroscience 122, 349–358.PubMedCrossRefGoogle Scholar
  38. Sadki, A., Bentivoglio, M., Kristensson, K., and Nygard, M. (2006) Suppressors, receptors and effects of cytokines on the aging mouse biological clock. Neurobiol Aging. Google Scholar
  39. Saper, C.B., Scammell, T.E., and Lu, J. (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263.PubMedCrossRefGoogle Scholar
  40. Scammell, T.E. (2003) The neurobiology, diagnosis, and treatment of narcolepsy. Ann Neurol 53, 154–166.PubMedCrossRefGoogle Scholar
  41. Sutcliffe, J.G., and de Lecea, L. (2002) The hypocretins: Setting the arousal threshold. Nat Rev Neurosci. 3(5):339–349.PubMedCrossRefGoogle Scholar
  42. Vitkovic, L., Bockaert, J., and Jacque, C. (2000) “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 74, 457–471.PubMedCrossRefGoogle Scholar
  43. Zhao, J., and Lurie D.I. (2004) Loss of SHP-1 phosphatase alters cytokine expression in the mouse hindbrain following cochlear ablation. Cytokine. 2004 Oct 7;28(1):1–9.PubMedCrossRefGoogle Scholar
  44. Zhao, J., Lurie D.I. (2004) Cochlear ablation in mice lacking SHP-1 results in an extended period of cell death of anteroventral cochlear nucleus neurons. Hear Res. 2004 Mar; 189(1–2):63–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Marina Bentivoglio
  • Mikael Nygård
  • Maria Palomba
  • Krister Kristensson

There are no affiliations available

Personalised recommendations