Advertisement

Modeling Human Philadelphia Chromosome-Positive Leukemia in Mice

  • Shaoguang Li
Chapter

Abstract

The BCR-ABL oncogene tranforms cells through sustained activation of signal transduction pathways in the cells. Identification of signaling pathways that play critical roles in leukemogenesis is the key to developing effective therapies against these targets. The success of this approach relies on establishment and use of physiological disease models to determine and evaluate potential therapeutic targets. Mouse models provide a powerful tool for studying signaling pathways in leukemic cells and for developing new therapeutic strategies for treating leukemia patients.

Keywords

Chronic Myeloid Leukemia Chronic Myeloid Leukemia Patient Blast Crisis Leukemic Stem Cell Chronic Phase Chronic Myeloid Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M, Sanchez-Garcia I. A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood. 2000; 95: 1007–13.PubMedGoogle Scholar
  2. 2.
    van Rhee F, Hochhaus A, Lin F, Melo JV, Goldman JM, Cross NC. p190 BCR-ABL mRNA is expressed at low levels in p210-positive chronic myeloid and acute lymphoblastic leukemias. Blood. 1996; 87: 5213–7.PubMedGoogle Scholar
  3. 3.
    Roumier C, Daudignon A, Soenen V, Dupriez B, Wetterwald M, Lai JL, Cosson A, Fenaux P, Preudhomme C. p190 bcr-abl rearrangement: a secondary cytogenetic event in some chronic myeloid disorders? Haematologica. 1999; 84: 1075–80.PubMedGoogle Scholar
  4. 4.
    Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001; 344: 1031–7.PubMedGoogle Scholar
  5. 5.
    Marley SB, Deininger MW, Davidson RJ, Goldman JM, Gordon MY. The tyrosine kinase inhibitor STI571, like interferon-alpha, preferentially reduces the capacity for amplification of granulocyte-macrophage progenitors from patients with chronic myeloid leukemia. Exp Hematol. 2000; 28: 551–7.PubMedGoogle Scholar
  6. 6.
    Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001; 293: 876–80.PubMedGoogle Scholar
  7. 7.
    Weisberg E, Griffin JD. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood. 2000; 95: 3498–505.PubMedGoogle Scholar
  8. 8.
    le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G, Marchesi E, Supino R, Gambacorti-Passerini C. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood. 2000; 95: 1758–66.PubMedGoogle Scholar
  9. 9.
    Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000; 96: 1070–9.PubMedGoogle Scholar
  10. 10.
    Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL. Multiple BCR-ABL kinase domain mutants confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crise chronic myeloid leukemia. Cancer Cell. 2002; 2: 117–25.PubMedGoogle Scholar
  11. 11.
    Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, Herrmann R, Lynch KP, Hughes TP. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002; 99: 3472–5.PubMedGoogle Scholar
  12. 12.
    von Bubnoff N, Schneller F, Peschel C, Duyster J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet. 2002; 359: 487–91.Google Scholar
  13. 13.
    Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001; 344: 1038–42.PubMedGoogle Scholar
  14. 14.
    Talpaz M, Sawyers CL, Kantarjain H, Resta D, Fernandes Rees S, Ford J, Bruker BJ. Activity of an ABL specific tyrosine kinase inhibitor in patients with BCR/ABL positive acute leukemias, including chronic myelogenous leukemia in blast crisis. Oncologist. 2000; 5: 282–3 (Abstr.).Google Scholar
  15. 15.
    Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004; 305: 399–401.PubMedGoogle Scholar
  16. 16.
    O'Hare T, Pollock R, Stoffregen EP, Keats JA, Abdullah OM, Moseson EM, Rivera VM, Tang H, Metcalf CA, 3rd, Bohacek RS, Wang Y, Sundaramoorthi R, Shakespeare WC, Dalgarno D, Clackson T, Sawyer TK, Deininger MW, Druker BJ. Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor: implications for CML. Blood. 2004; 104: 2532–9.PubMedGoogle Scholar
  17. 17.
    Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung AL, Mestan J, Daley GQ, Callahan L, Catley L, Cavazza C, Mohammed A, Neuberg D, Wright RD, Gilliland DG, Griffin JD. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005; 7: 129–41.PubMedGoogle Scholar
  18. 18.
    Hu Y, Swerdlow S, Duffy TM, Weinmann R, Lee FY, Li S. Targeting multiple kinase pathways in leukemic prognitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad Sci USA. 2006; 103: 16870–75.PubMedGoogle Scholar
  19. 19.
    Advani AS, Pendergast AM. Bcr-Abl variants: biological and clinical aspects. Leuk Res. 2002; 26: 713–20.PubMedGoogle Scholar
  20. 20.
    Van Etten RA. Malignant transformation by abl and BCR/ABL. Cancer Treat Res. 1992; 63: 167–92.PubMedGoogle Scholar
  21. 21.
    Van Etten RA. The molecular pathogenesis of the Philadelphia-positive leukemias: implications for diagnosis and therapy. Cancer Treat Res. 1993; 64: 295–325.PubMedGoogle Scholar
  22. 22.
    Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, Saglio G, Salvatore F, Rotoli B. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood. 1996; 88: 2410–4.PubMedGoogle Scholar
  23. 23.
    Sawyers CL. Chronic myeloid leukemia. N Engl J Med. 1999; 340: 1330–40.PubMedGoogle Scholar
  24. 24.
    Janossy G, Roberts M, Greaves MF. Target cell in chronic myeloid leukaemia and its relationship to acute lymphoid leukaemia. Lancet. 1976; 2: 1058–61.PubMedGoogle Scholar
  25. 25.
    Towatari M, Adachi K, Kato H, Saito H. Absence of the human retinoblastoma gene product in the megakaryoblastic crisis of chronic myelogenous leukemia. Blood. 1991; 78: 2178–81.PubMedGoogle Scholar
  26. 26.
    Sill H, Goldman JM, Cross NC. Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood. 1995; 85: 2013–6.PubMedGoogle Scholar
  27. 27.
    Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K, Goldman J, Zaccaria A, Berrebi A, Canaani E. p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci USA. 1991; 88: 6293–7.PubMedGoogle Scholar
  28. 28.
    Deutsch E, Dugray A, AbdulKarim B, Marangoni E, Maggiorella L, Vaganay S, M'Kacher R, Rasy SD, Eschwege F, Vainchenker W, Turhan AG, Bourhis J. BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood. 2001; 97: 2084–90.PubMedGoogle Scholar
  29. 29.
    Takeda N, Shibuya M, Maru Y. The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein. Proc Natl Acad Sci USA. 1999; 96: 203–7.PubMedGoogle Scholar
  30. 30.
    Canitrot Y, Lautier D, Laurent G, Frechet M, Ahmed A, Turhan AG, Salles B, Cazaux C, Hoffmann JS. Mutator phenotype of BCR-ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase beta. Oncogene. 1999; 18: 2676–80.PubMedGoogle Scholar
  31. 31.
    Slupianek A, Schmutte C, Tombline G, Nieborowska-Skorska M, Hoser G, Nowicki MO, Pierce AJ, Fishel R, Skorski T. BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Mol Cell. 2001; 8: 795–806.PubMedGoogle Scholar
  32. 32.
    Dierov J, Dierova R, Carroll M. BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint. Cancer Cell. 2004; 5: 275–85.PubMedGoogle Scholar
  33. 33.
    Huettner CS, Zhang P, Van Etten RA, Tenen DG. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet. 2000; 24: 57–60.PubMedGoogle Scholar
  34. 34.
    Calabretta B, Perrotti D. The biology of CML blast crisis. Blood. 2004; 103: 4010–22.PubMedGoogle Scholar
  35. 35.
    Sawyers CL. Signal transduction pathways involved in BCR-ABL transformation. Baillieres Clin Haematol. 1997; 10: 223–31.PubMedGoogle Scholar
  36. 36.
    Anderson SM, Mladenovic J. The BCR-ABL oncogene requires both kinase activity and src-homology 2 domain to induce cytokine secretion. Blood. 1996; 87: 238–44.PubMedGoogle Scholar
  37. 37.
    Hariharan IK, Adams JM, Cory S. bcr-abl oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia. Oncogene Res. 1988; 3: 387–99.PubMedGoogle Scholar
  38. 38.
    Skorski T, Nieborowska-Skorska M, Wlodarski P, Perrotti D, Martinez R, Wasik MA, Calabretta B. Blastic transformation of p53-deficient bone marrow cells by p210bcr/abl tyrosine kinase. Proc Natl Acad Sci USA. 1996; 93: 13137–42.PubMedGoogle Scholar
  39. 39.
    Honda H, Hirai H. Model mice for BCR/ABL-positive leukemias. Blood Cells Mol Dis. 2001; 27: 265–78.PubMedGoogle Scholar
  40. 40.
    Neshat MS, Raitano AB, Wang HG, Reed JC, Sawyers CL. The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3-kinase and Raf. Mol Cell Biol. 2000; 20: 1179–86.PubMedGoogle Scholar
  41. 41.
    Majewski M, Nieborowska-Skorska M, Salomoni P, Slupianek A, Reiss K, Trotta R, Calabretta B, Skorski T. Activation of mitochondrial Raf-1 is involved in the antiapoptotic effects of Akt. Cancer Res. 1999; 59: 2815–9.PubMedGoogle Scholar
  42. 42.
    Sanchez-Garcia I, Martin-Zanca D. Regulation of Bcl-2 gene expression by BCR-ABL is mediated by Ras. J Mol Biol. 1997; 267: 225–8.PubMedGoogle Scholar
  43. 43.
    Dubrez L, Eymin B, Sordet O, Droin N, Turhan AG, Solary E. BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood. 1998; 91: 2415–22.PubMedGoogle Scholar
  44. 44.
    Amarante-Mendes GP, Naekyung Kim C, Liu L, Huang Y, Perkins CL, Green DR, Bhalla K. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood. 1998; 91: 1700–5.PubMedGoogle Scholar
  45. 45.
    McGahon AJ, Nishioka WK, Martin SJ, Mahboubi A, Cotter TG, Green DR. Regulation of the Fas apoptotic cell death pathway by Abl. J Biol Chem. 1995; 270: 22625–31.PubMedGoogle Scholar
  46. 46.
    Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO, Wasik MA, Tsichlis PN, Calabretta B. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3 k/Akt-dependent pathway. Embo J. 1997; 16: 6151–61.PubMedGoogle Scholar
  47. 47.
    Jonuleit T, van der Kuip H, Miething C, Michels H, Hallek M, Duyster J, Aulitzky WE. Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood. 2000; 96: 1933–9.PubMedGoogle Scholar
  48. 48.
    Parada Y, Banerji L, Glassford J, Lea NC, Collado M, Rivas C, Lewis JL, Gordon MY, Thomas NS, Lam EW. BCR-ABL and interleukin 3 promote haematopoietic cell proliferation and survival through modulation of cyclin D2 and p27Kip1 expression. J Biol Chem. 2001; 276: 23572–80.PubMedGoogle Scholar
  49. 49.
    Goetz AW, van der Kuip H, Maya R, Oren M, Aulitzky WE. Requirement for Mdm2 in the survival effects of Bcr-Abl and interleukin 3 in hematopoietic cells. Cancer Res. 2001; 61: 7635–41.PubMedGoogle Scholar
  50. 50.
    Danhauser-Riedl S, Warmuth M, Druker BJ, Emmerich B, Hallek M. Activation of Src kinases p53/56 lyn and p59hck by p210bcr/abl in myeloid cells. Cancer Res. 1996; 56: 3589–96.PubMedGoogle Scholar
  51. 51.
    Warmuth M, Bergmann M, Priess A, Hauslmann K, Emmerich B, Hallek M. The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J Biol Chem. 1997; 272: 33260–70.PubMedGoogle Scholar
  52. 52.
    Lionberger JM, Wilson MB, Smithgall TE. Transformation of myeloid leukemia cells to cytokine independence by Bcr-Abl is suppressed by kinase-defective Hck. J Biol Chem. 2000; 275: 18581–5.PubMedGoogle Scholar
  53. 53.
    Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D, Hallek M, Van Etten RA, Li S. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet. 2004; 36: 453–61.PubMedGoogle Scholar
  54. 54.
    Li S, Ilaria RL, Jr., Million RP, Daley GQ, Van Etten RA. The P190, P210, and p230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med. 1999; 189: 1399–412.PubMedGoogle Scholar
  55. 55.
    Roumiantsev S, de Aos IE, Varticovski L, Ilaria RL, Van Etten RA. The src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood. 2001; 97: 4–13.PubMedGoogle Scholar
  56. 56.
    Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, Skorski T. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. Embo J. 2002; 21: 5766–74.PubMedGoogle Scholar
  57. 57.
    Warmuth M, Simon N, Mitina O, Mathes R, Fabbro D, Manley PW, Buchdunger E, Forster K, Moarefi I, Hallek M. Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood. 2003; 101: 664–72.PubMedGoogle Scholar
  58. 58.
    Daigle I, Yousefi S, Colonna M, Green DR, Simon HU. Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat Med. 2002; 8: 61–7.PubMedGoogle Scholar
  59. 59.
    Yang W, McKenna SD, Jiao H, Tabrizi M, Lynes MA, Shultz LD, Yi T. SHP-1 deficiency in B-lineage cells is associated with heightened lyn protein expression and increased lyn kinase activity. Exp Hematol. 1998; 26: 1126–32.PubMedGoogle Scholar
  60. 60.
    Tauchi, Feng GS, Shen R, Song HY, Donner D, Pawson T, Broxmeyer HE. SH2-containing phosphotyrosine phosphatase Syp is a target of p210bcr-abl tyrosine kinase. J Biol Chem. 1994; 269: 15381–7.PubMedGoogle Scholar
  61. 61.
    Anderson SM, Jorgensen B. Activation of src-related tyrosine kinases by IL-3. J Immunol. 1995; 155: 1660–70.PubMedGoogle Scholar
  62. 62.
    Daley GQ, Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA. 1988; 85: 9312–6.PubMedGoogle Scholar
  63. 63.
    Kabarowski JH, Allen PB, Wiedemann LM. A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells. Embo J. 1994; 13: 5887–95.PubMedGoogle Scholar
  64. 64.
    Bruecher-Encke B, Griffin JD, Neel BG, Lorenz U. Role of the tyrosine phosphatase SHP-1 in K562 cell differentiation. Leukemia. 2001; 15: 1424–32.PubMedGoogle Scholar
  65. 65.
    Gardai S, Whitlock BB, Helgason C, Ambruso D, Fadok V, Bratton D, Henson PM. Activation of SHIP by NADPH oxidase-stimulated Lyn leads to enhanced apoptosis in neutrophils. J Biol Chem. 2002; 277: 5236–46.PubMedGoogle Scholar
  66. 66.
    Park H, Wahl MI, Afar DE, Turck CW, Rawlings DJ, Tam C, Scharenberg AM, Kinet JP, Witte ON. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity. 1996; 4: 515–25.PubMedGoogle Scholar
  67. 67.
    Rawlings DJ, Scharenberg AM, Park H, Wahl MI, Lin S, Kato RM, Fluckiger AC, Witte ON, Kinet JP. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science. 1996; 271: 822–5.PubMedGoogle Scholar
  68. 68.
    Hariharan IK, Harris AW, Crawford M, Abud H, Webb E, Cory S, Adams JM. A bcr-v-abl oncogene induces lymphomas in transgenic mice. Mol Cell Biol. 1989; 9: 2798–805.PubMedGoogle Scholar
  69. 69.
    Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature. 1990; 344: 251–3.PubMedGoogle Scholar
  70. 70.
    Honda H, Fujii T, Takatoku M, Mano H, Witte ON, Yazaki Y, Hirai H. Expression of p210bcr/abl by metallothionein promoter induced T-cell leukemia in transgenic mice. Blood. 1995; 85: 2853–61.PubMedGoogle Scholar
  71. 71.
    Voncken JW, Kaartinen V, Pattengale PK, Germeraad WT, Groffen J, Heisterkamp N. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood. 1995; 86: 4603–11.PubMedGoogle Scholar
  72. 72.
    Castellanos A, Pintado B, Weruaga E, Arevalo R, Lopez A, Orfao A, Sanchez-Garcia I. A BCR-ABL(p190) fusion gene made by homologous recombination causes B-cell acute lymphoblastic leukemias in chimeric mice with independence of the endogenous bcr product. Blood. 1997; 90: 2168–74.PubMedGoogle Scholar
  73. 73.
    Heisterkamp N, Jenster G, Kioussis D, Pattengale PK, Groffen J. Human bcr-abl gene has a lethal effect on embryogenesis. Transgenic Res. 1991; 1: 45–53.PubMedGoogle Scholar
  74. 74.
    Honda H, Oda H, Suzuki T, Takahashi T, Witte ON, Ozawa K, Ishikawa T, Yazaki Y, Hirai H. Development of acute lymphoblastic leukemia and myeloproliferative disorder in transgenic mice expressing p210bcr/abl: a novel transgenic model for human Ph1-positive leukemias. Blood. 1998; 91: 2067–75.PubMedGoogle Scholar
  75. 75.
    Inokuchi K, Dan K, Takatori M, Takahuji H, Uchida N, Inami M, Miyake K, Honda H, Hirai H, Shimada T. Myeloproliferative disease in transgenic mice expressing P230 Bcr/Abl: longer disease latency, thrombocytosis, and mild leukocytosis. Blood. 2003; 102: 320–3.PubMedGoogle Scholar
  76. 76.
    Huettner CS, Koschmieder S, Iwasaki H, Iwasaki-Arai J, Radomska HS, Akashi K, Tenen DG. Inducible expression of BCR/ABL using human CD34 regulatory elements results in a megakaryocytic myeloproliferative syndrome. Blood. 2003; 102: 3363–70.PubMedGoogle Scholar
  77. 77.
    Koschmieder S, Gottgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL, Dayaram T, Geary K, Green AR, Tenen DG, Huettner CS. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood. 2005; 105: 324–34.PubMedGoogle Scholar
  78. 78.
    Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B, Jamal N, Messner H, Addey L, Minden M, Laraya P, Keating A, Eaves A, Lansdorp PM, Eaves CJ, Dick JE. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood. 1996; 87: 1539–48.PubMedGoogle Scholar
  79. 79.
    Wang JC, Lapidot T, Cashman JD, Doedens M, Addy L, Sutherland DR, Nayar R, Laraya P, Minden M, Keating A, Eaves AC, Eaves CJ, Dick JE. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood. 1998; 91: 2406–14.PubMedGoogle Scholar
  80. 80.
    Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007; 7: 118–30.PubMedGoogle Scholar
  81. 81.
    Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990; 247: 824–30.PubMedGoogle Scholar
  82. 82.
    Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. Embo J. 1990; 9: 1069–78.PubMedGoogle Scholar
  83. 83.
    Kelliher MA, McLaughlin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci USA. 1990; 87: 6649–53.PubMedGoogle Scholar
  84. 84.
    Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, Pendergast AM, Bronson R, Aster JC, Scott ML, Baltimore D. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood. 1998; 92: 3780–92.PubMedGoogle Scholar
  85. 85.
    Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood. 1998; 92: 3829–40.PubMedGoogle Scholar
  86. 86.
    Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005; 5: 172–83.PubMedGoogle Scholar
  87. 87.
    Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, Van Etten RA. Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood. 2001; 97: 1442–50.PubMedGoogle Scholar
  88. 88.
    Wolff NC, Ilaria RL, Jr. Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood. 2001; 98: 2808–16.PubMedGoogle Scholar
  89. 89.
    Peng C, Brain J, Hu Y, Goodrich A, Kong L, Grayzel D, Park R, Read M, Li S. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood. 2007; 110: 678–85.Google Scholar
  90. 90.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414: 105–11.PubMedGoogle Scholar
  91. 91.
    Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004; 351: 657–67.PubMedGoogle Scholar
  92. 92.
    Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003; 423: 409–14.PubMedGoogle Scholar
  93. 93.
    Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, 3rd, Nusse R. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003; 423: 448–52.PubMedGoogle Scholar
  94. 94.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997; 3: 730–7.PubMedGoogle Scholar
  95. 95.
    Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003; 423: 255–60.PubMedGoogle Scholar
  96. 96.
    Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003; 423: 302–5.PubMedGoogle Scholar
  97. 97.
    Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, Macdonald HR, Trumpp A. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004; 18: 2747–63.PubMedGoogle Scholar
  98. 98.
    Deininger M. Src kinases in Ph+ lymphoblastic leukemia. Nat Genet. 2004; 36: 440–1.PubMedGoogle Scholar
  99. 99.
    Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000; 96: 3343–56.PubMedGoogle Scholar
  100. 100.
    Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, Gathmann I, Bolton AE, van Hoomissen IC, Goldman JM, Radich JP. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003; 349: 1423–32.PubMedGoogle Scholar
  101. 101.
    O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003; 348: 994–1004.PubMedGoogle Scholar
  102. 102.
    Lin F, Drummond M, O'Brien S, Cervantes F, Goldman J, Kaeda J. Molecular monitoring in chronic myeloid leukemia patients who achieve complete cytogenetic remission on imatinib. Blood. 2003; 102: 1143.PubMedGoogle Scholar
  103. 103.
    Drummond MW, Lush CJ, Vickers MA, Reid FM, Kaeda J, Holyoake TL. Imatinib mesylate-induced molecular remission of Philadelphia chromosome-positive myelodysplastic syndrome. Leukemia. 2003; 17: 463–5.PubMedGoogle Scholar
  104. 104.
    Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, Schiffer Ca, Talpaz M, Guilhot F, Deiniger MW, Fischer T, O'Brien SG, Stone RM, Gambacorti-Passerini C, Russell NH, Reiffers JJ, Shea TC, Chapuis B, Coutre S, Tura S, Morra E, Larson RA, Saven A, Peschel C, Gratwohl A, Mandelli F, Ben-Am M, Gathmann I, Capdeville R, Paquette RL, Druker B. Imatinib induces hematologic and cytogeneic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood. 2002; 99: 3530–9.PubMedGoogle Scholar
  105. 105.
    Kantarjian HM, Cortes J, O'Brien S, Giles FJ, Albitar M, Rios MB, Shan J, Faderl S, Garcia-Manero G, Thomas DA, Resta D, Talpaz M. Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase. Blood. 2002; 99: 3547–53.PubMedGoogle Scholar
  106. 106.
    Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest. 2000; 105: 3–7.PubMedGoogle Scholar
  107. 107.
    Lydon NB, Druker BJ. Lessons learned from the development of imatinib. Leuk Res. 2004; 28 Suppl 1: S29–S38.PubMedGoogle Scholar
  108. 108.
    Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM. Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med. 2004; 10: 1187–9.PubMedGoogle Scholar
  109. 109.
    Elrick LJ, Jorgensen HG, Mountford JC, Holyoake TL. Punish the parent not the progeny. Blood. 2005; 105: 1862–6.PubMedGoogle Scholar
  110. 110.
    Pfeifer H, Wassmann B, Pavlova A, Wunderle L, Oldenburg J, Binckebanck A, Lange T, Hochhaus A, Wystub S, Bruck P, Hoelzer D, Ottmann OG. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2007; 110: 727–34.PubMedGoogle Scholar
  111. 111.
    Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A, Su M, Golec JM, Miller KM. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med. 2004; 10: 262–7.PubMedGoogle Scholar
  112. 112.
    Doggrell SA. Dawn of Aurora kinase inhibitors as anticancer drugs. Expert Opin Investig Drugs. 2004; 13: 1199–201.PubMedGoogle Scholar
  113. 113.
    Carter TA, Wodicka LM, Shah NP, Velasco AM, Fabian MA, Treiber DK, Milanov ZV, Atteridge CE, Biggs WH, 3rd, Edeen PT, Floyd M, Ford JM, Grotzfeld RM, Herrgard S, Insko DE, Mehta SA, Patel HK, Pao W, Sawyers CL, Varmus H, Zarrinkar PP, Lockhart DJ. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci U S A. 2005; 102: 11011–6.PubMedGoogle Scholar
  114. 114.
    Young MA, Shah NP, Chao LH, Seeliger M, Milanov ZV, Biggs WH, 3rd, Treiber DK, Patel HK, Zarrinkar PP, Lockhart DJ, Sawyers CL, Kuriyan J. Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680. Cancer Res. 2006; 66: 1007–14.PubMedGoogle Scholar
  115. 115.
    Giles FJ, Cortes J, Jones D, Bergstrom D, Kantarjian H, Freedman SJ. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood. 2007; 109: 500–2.PubMedGoogle Scholar
  116. 116.
    Cheetham GM, Charlton PA, Golec JM, Pollard JR. Structural basis for potent inhibition of the Aurora kinases and a T315I multi-drug resistant mutant form of Abl kinase by VX-680. Cancer Lett. 2007; 251: 323–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shaoguang Li
    • 1
  1. 1.The Jackson LaboratoryBar HarborUSA

Personalised recommendations