Dietary Restriction: A Model System Probing the Cell Fate Decision Between Cancer and Senescence

  • Robin P. Ertl
  • David E. Harrison


A major aspect of cancer is unregulated cell proliferation. Yet, in general as organisms age, their cells lose the ability to proliferate, which leads to cellular senescence (Hayflick 1965; Smith and Pereira-Smith 1996). It is important to remember that the ability of stem cells to repopulate a tissue in vivo requires more than just proliferation. It requires a coordinated pattern of homing, engraftment, self-renewal, differentiation, and proliferation. In this chapter, all of these necessary functions are referred to collectively as repopulating ability (RA). The loss of RA can cause severe clinical problems with age, such as anemia (Robinson 2003; Guralnik et al. 2004; Penninx et al. 2004). There are treatments that can increase RA and delay senescence. Unfortunately, most of these treatments also increase the risk of cancer (Campisi 2003; Pardal et al. 2005; Beausejour and Campisi 2006). The maximal potential lifespan of an organism, therefore, seems to depend on...


Diet Restriction Cellular Senescence Flow Criterion Cell Fate Decision Serial Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ames, B. N., and Gold, L. S. 1998. The causes and prevention of cancer: the role of environment. Biotherapy. 11:205–220.PubMedCrossRefGoogle Scholar
  2. Aranda-Anzaldo, A., and Dent, M. A. R. 2007. Reassessing the role of p53 in cancer and ageing from an evolutionary perspective. Mech Ageing Dev. 128:293–302.PubMedCrossRefGoogle Scholar
  3. Beausejour, C. M., and Campisi, J. 2006. Ageing: balancing regeneration and cancer. Nature. 443:404–405.PubMedCrossRefGoogle Scholar
  4. Blackwell, B. N., Bucci, T. J., Hart, R. W., et al. 1995. A. Longevity, body weight, and neoplasia in ad libitum-fed and diet-restricted C57BL6 mice fed NIH-31 open formula diet. Toxicol Pathol. 23:570–582.PubMedCrossRefGoogle Scholar
  5. Bronson, R. T., and Lipman, R. D. 1991. Reduction in rate of occurrence of age related lesions in dietary restricted laboratory mice. Growth Dev Aging. 55:169–184.PubMedGoogle Scholar
  6. Bryder, D., Rossi, D. J., and Weissman, I. L. 2006. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol. 169:338–346.PubMedCrossRefGoogle Scholar
  7. Campisi, J. Cancer and ageing: rival demons? 2003. Nat Rev Cancer. 3:339–349.PubMedCrossRefGoogle Scholar
  8. Chen, J., Astle, C. M., and Harrison, D. E. 1998. Delayed immune aging in diet-restricted B6CBAT6F1 mice is associated with preservation of naive T cells. J Gerontol A Biol Sci Med Sci. 53:B330–B337.PubMedCrossRefGoogle Scholar
  9. Chen, J., Astle, C. M., and Harrison, D. E. 2000. Genetic regulation of primitive hematopoietic stem cell senescence. Exp Hematol. 28:442–450.PubMedCrossRefGoogle Scholar
  10. Chen, J., Astle, C. M., and Harrison, D. E. 2003. Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol. 31:1097–1103.PubMedCrossRefGoogle Scholar
  11. Christensen, J. L., and Weissman, I. L. 2001. Flk-2 is a marker in hematopoietic stem cell differentiation: A simple method to isolate long-term stem cells. Proc Natl Acad Sci USA. 98:14541–14546.PubMedCrossRefGoogle Scholar
  12. Dröge, W., and Schipper, H. M. 2007. Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell. 6:361–370.PubMedCrossRefGoogle Scholar
  13. Dumble, M., Moore, L., Chambers, S. M., et al. 2007. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood. 109:1736–1742.PubMedCrossRefGoogle Scholar
  14. Effros, R. B., Walford, R. L., Weindruch, R., et al. 1991. Influences of dietary restriction on immunity to influenza in aged mice. J Gerontol. 46:B142–B147.PubMedGoogle Scholar
  15. Ertl, R. P., Chen, J., Astle, C. M., et al. (2008). Effects of dietary restriction on hematopoietic stem cell aging are genetically regulated. Blood. 111:1709–1716.Google Scholar
  16. Flurkey, K., Currer, J. M., and Harrison, D. E. 2007. The Mouse in Aging Research. In: The Mouse in Biomedical Research, 2nd Edition, Vol III, Normative Biology, Husbandry, and Models. Fox J. G. et al., (eds). American College of Laboratory Animal Medicine (Elsevier), Burlington, MA. pp. 637–672.Google Scholar
  17. Gatza, C., Moore, L., Dumble, M., et al. 2007. Tumor suppressor dosage regulates stem cell dynamics during aging. Cell Cycle. 6:52–55.PubMedCrossRefGoogle Scholar
  18. Giordano, A., Fucito, A., Romano, G., et al. 2007. Carcinogenesis and environment: the cancer stem cell hypothesis and implications for the development of novel therapeutics and diagnostics. Front Biosci. 12:3475–3482.PubMedCrossRefGoogle Scholar
  19. Gonzalez, F. J., and Nebert, D. W. 1990. Evolution of the P450 gene superfamily: animal-plant ‘warfare', molecular drive and human genetic differences in drug oxidation. Trends Genet. 6:182–186.PubMedCrossRefGoogle Scholar
  20. Goodell, M. A. 1999. Introduction: Focus on hematology. CD34(+) or CD34(−): does it really matter? Blood. 94:2545–2547.PubMedGoogle Scholar
  21. Goodell, M. A., Brose, K., Paradis, G., et al. C. 1996. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 183:1797–1806.PubMedCrossRefGoogle Scholar
  22. Goodell, M. A., Rosenzweig, M., Kim, H., et al. 1997. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 3:1337–1345.PubMedCrossRefGoogle Scholar
  23. Guralnik, J. M., Eisenstaedt, R. S., Ferrucci, L., et al. 2004. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood. 104:2263–2268.PubMedCrossRefGoogle Scholar
  24. Harrison, D. E., Astle, C. M., and Stone, M. 1989. Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J Immunol. 142:3833–3840.PubMedGoogle Scholar
  25. Harrison, D. E., and Zhong, R. K. 1992. The same exhaustible multilineage precursor produces both myeloid and lymphoid cells as early as 3–4 weeks after marrow transplantation. Proc Nat Acad Sci USA. 89:10134–10138.PubMedCrossRefGoogle Scholar
  26. Harrison, D. E., Jordan, C. T., Zhong, R. K., et al. 1993. Primitive hematopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol. 21:206–219.PubMedGoogle Scholar
  27. Hayflick, L. 1965. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 37:614–636.PubMedCrossRefGoogle Scholar
  28. Ishida, A., Zeng, H., and Ogawa, M. 2002. Expression of lineage markers by CD34+ hematopoietic stem cells of adult mice. Exp Hematol. 30:361–365.PubMedCrossRefGoogle Scholar
  29. Janzen, V., Forkert, R., Fleming, H. E., et al. 2006. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 443:421–426.PubMedGoogle Scholar
  30. Kiel, M. J., Yilmaz, O. H., Iwashita, T., et al. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. 2005;121:1109–1121.Google Scholar
  31. Krishnamurthy, J., Ramsey, M. R., Ligon, K. L., et al. 2006. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 443:453–457.PubMedCrossRefGoogle Scholar
  32. Krivtsov, A. V., Twomey, D., Feng, Z., et al. 2006. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 442:818–822.PubMedCrossRefGoogle Scholar
  33. Liang, Y., Van Zant, G., and Szilvassy, S. J. 2005. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood. 106:1479–1487.PubMedCrossRefGoogle Scholar
  34. Lin, K. K., and Goodell, M. A. 2006. Purification of hematopoietic stem cells using the side population. Methods Enzymol. 420:255–264.PubMedCrossRefGoogle Scholar
  35. Luan. X., Zhao, W., Chandrasekar, B., et al. 1995. G. Calorie restriction modulates lymphocyte subset phenotype and increases apoptosis in MRL/lpr mice. Immunol Lett. 47:181–186.PubMedCrossRefGoogle Scholar
  36. Maier, B., Gluba, W., Bernier, B., et al. 2004. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18:306–319.PubMedCrossRefGoogle Scholar
  37. Mallette, F.A., and Ferbeyre, G. 2007. The DNA damage signaling pathway connects oncogenic stress to cellular senescence. Cell Cycle. 6:1831–1836.PubMedCrossRefGoogle Scholar
  38. Masoro, E. J. 1993. Dietary restriction and aging. J Am Geriatr Soc. 41:994–999.PubMedGoogle Scholar
  39. Miller, R. A., and Harrison, D. E. 1985. Delayed reduction in T cell precursor frequencies accompanies diet-induced lifespan extension. J Immunol. 134:1426–1429.PubMedGoogle Scholar
  40. Min, H., Montecino-Rodriguez, E., and Dorshkind, K. 2006. Effects of aging on the common lymphoid progenitor to pro-B cell transition. J Immunol. 176:1007–1012.PubMedGoogle Scholar
  41. Molofsky, A. V., He, S., Bydon, M., et al. 2005. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19:1432–1437.PubMedCrossRefGoogle Scholar
  42. Molofsky, A. V., Slutsky, S. G., Joseph, N. M., et al. 2006. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature. 443:448–452.Google Scholar
  43. Morrison, S. J., and Weissman, I. L. 1994. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1:661–673.PubMedCrossRefGoogle Scholar
  44. Morrison, S. J., Wandycz, A. M., Akashi, K., et al. 1996. The aging of hematopoietic stem cells. Nat Med. 2:1011–1016.PubMedCrossRefGoogle Scholar
  45. Muller, F. L., Lustgarten, M. S., Jang, Y., et al. 2007. Trends in oxidative aging theories. Free Radic Biol Med. 43:477–503.PubMedCrossRefGoogle Scholar
  46. Pardal, R., Clarke, M. F., and Morrison, S. J. 2003. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 3:895–902.PubMedCrossRefGoogle Scholar
  47. Pardal, R., Molofsky, A. V., He, S., et al. 2005. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb Symp Quant Biol. 70:177–185.PubMedCrossRefGoogle Scholar
  48. Pearce, D. J., Anjos-Afonso, F., Ridler, C. M., et al. 2007. Age dependent increase in SP distribution within Hematopoiesis: implications for our understanding of the mechanism of aging. Stem Cells. 25:828–835.PubMedCrossRefGoogle Scholar
  49. Penninx, B.W., Pahor, M., Cesari, M., et al. 2004. Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J Am Geriatr Soc. 52:719–724.PubMedCrossRefGoogle Scholar
  50. Robinson, B. 2003. Cost of anemia in the elderly. J Am Geriatr Soc. 51:S14–S17.PubMedCrossRefGoogle Scholar
  51. Rossi, D. J., Bryder, D., Zahn, J. M., et al. 2005. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Nat Acad Sci USA. 102:9194–9199.PubMedCrossRefGoogle Scholar
  52. Rossi, D. J., Bryder, D., and Weissman, I. L. 2007. Hematopoeitic stem cell aging: Mechanism and consequence. Exp Gerontol. 42:385–390.PubMedCrossRefGoogle Scholar
  53. Sharma, Y., Flurkey, K., Astle, C. M., et al. 2005. Mice severely deficient in growth hormone have normal hemaotopoiesis. Exp Hematol. 33:776–783.PubMedCrossRefGoogle Scholar
  54. Smith, J. R., and Pereira-Smith, O.M. 1996. Replicative senescence: implications for in vivo aging and tumor suppression. Science. 273:63–67.PubMedCrossRefGoogle Scholar
  55. Spangrude, G.J., and Brooks, D. M. 1993. Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood. 82:3327–3332.PubMedGoogle Scholar
  56. Spangrude, G. J., Heimfeld, S., and Weissman, I. L. 1988. Purification and characterization of mouse hematopoietic stem cells. Science. 241:58–62. [Erratum in Science. 1989;244:1030].PubMedCrossRefGoogle Scholar
  57. The Staff of The Jackson Laboratory. 1997. Handbook on Genetically Standardized JAX® Mice. Bar Harbor, ME: The Jackson Laboratory.Google Scholar
  58. Sudo, K., Ema, H., Morita, Y., et al. 2000. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 192:1273–1280.PubMedCrossRefGoogle Scholar
  59. TeKippe, M., Harrison, D. E., and Chen, J. 2003. Expansion of hematopoietic stem cell phenotype and activity in Trp53-null mice. Exp Hematol. 31:521–527.PubMedCrossRefGoogle Scholar
  60. Turturro, A., Duffy, P., Hass, B., et al. 2002. Survival characteristics and age-adjusted disease incidences in C57BL/6 mice fed a commonly used cereal-based diet modulated by dietary restriction. J Gerontol A Biol Sci Med Sci. 57:B379–B389.PubMedCrossRefGoogle Scholar
  61. Tyner, S. D., Venkatachalam, S., Choi, J., et al. 2002. p53 mutant mice that display early ageing-associated phenotypes. Nature. 415:45–53.PubMedCrossRefGoogle Scholar
  62. Van Zant, G., Holland, B. P., Eldridge, P. W., et al. 1990. Genotype-restricted growth and aging patterns in hematopoietic stem cell populations of allophenic mice. J Exp Med. 171:1547–1565.PubMedCrossRefGoogle Scholar
  63. Wiesner, R. J., Zsurka, G., and Kunz, W. S. 2006. Mitochondrial DNA damage and the aging process: facts and imaginations. Free Radic Res. 40:1284–1294.PubMedCrossRefGoogle Scholar
  64. Yilmaz, O. H., Kiel, M. J., and Morrison, S. J. 2006. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood. 107:924–930.PubMedCrossRefGoogle Scholar
  65. Yuan, R., Astle, C. M., Chen, J., et al. 2005. Genetic regulation of hematopoietic stem cell exhaustion during development and growth. Exp Hematol. 33:243–250.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Robin P. Ertl
  • David E. Harrison
    • 1
  1. 1.The Jackson LaboratoryUSA

Personalised recommendations