Skip to main content

Mechanisms of DNA Double-Strand Break Repair in Hematopoietic Homeostasis and Oncogenesis

  • Chapter
  • First Online:
Book cover Mouse Models of Human Blood Cancers

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AID:

Activation-induced cytidine deaminase

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

ART:

Artemis

AT:

Ataxia telangiectasia

ATM:

Ataxia telangiectasia mutated

ATR:

ATM and Rad3 related

B-ALL:

B-cell acute lymphoblastic leukemia

BFB:

Breakage–fusion–bridge

CHO:

Chinese hamster ovary

CML:

Chronic myelogenous leukemia

CSR:

Class switch recombination

DNA–PKcs:

DNA-dependent protein kinase catalytic subunit

DSB:

DNA double-strand break

FA:

Fanconi anemia

GC:

Gene conversion

H2AX:

Histone H2A variant X

HR:

Homologous recombination

ICL:

Interstrand crosslinking

Ig:

Immunoglobulin

IgH:

Immunoglobulin heavy chain

IR:

Ionizing radiation

Lig4:

Ligase IV

MDS:

Myelodysplastic syndrome

MEF:

Mouse embryonic fibroblast

MMC:

Mitomycin-C

MRN:

Mre11-Rad50-Nbs1 complex

NHEJ:

Nonhomologous end joining

Ph:

Philadelphia

Pre-T LBL:

Pre-T cell lymphoblastic leukemia

RAG:

Recombination-activating gene

RPA:

Replication protein A

RS:

Recombination signal sequences

RS-SCID:

Radiation-sensitive SCID

SCE:

Sister chromatid exchange

SCID:

Severe combined immunodeficiency

SDSA:

Synthesis-dependent strand annealing

SHM:

Somatic hypermutation

SSA:

Single-strand annealing

ssDNA:

Single-stranded DNA

T-ALL:

T-cell acute lymphoblastic leukemia or lymphoma

TCR:

T-cell receptor

TOPOIII:

Topoisomerase III

XLF:

XRCC4-like factor

References

  • Agarwal S, Tafel AA, Kanaar R (2006). DNA double-strand break repair and chromosome translocations. DNA Repair (Amst) 5: 1075–81.

    CAS  Google Scholar 

  • Ahnesorg P, Smith P, Jackson SP (2006). XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124: 301–13.

    PubMed  CAS  Google Scholar 

  • Akamatsu Y, Monroe R, Dudley DD, Elkin SK, Gartner F, Talukder SR et al. (2003). Deletion of the RAG2 C terminus leads to impaired lymphoid development in mice. Proc Natl Acad Sci U S A 100: 1209–14.

    PubMed  CAS  Google Scholar 

  • Aplan PD (2006). Causes of oncogenic chromosomal translocation. Trends Genet 22: 46–55.

    PubMed  CAS  Google Scholar 

  • Araujo FD, Pierce AJ, Stark JM, Jasin M (2002). Variant XRCC3 implicated in cancer is functional in homology-directed repair of double-strand breaks. Oncogene 21: 4176–80.

    PubMed  CAS  Google Scholar 

  • Arlt MF, Durkin SG, Ragland RL, Glover TW (2006). Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst) 5: 1126–35.

    CAS  Google Scholar 

  • Auranen A, Song H, Waterfall C, Dicioccio RA, Kuschel B, Kjaer SK et al. (2005). Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer 117: 611–8.

    PubMed  CAS  Google Scholar 

  • Bachrati CZ, Borts RH, Hickson ID (2006). Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase. Nucleic Acids Res 34: 2269–79.

    PubMed  CAS  Google Scholar 

  • Bachrati CZ, Hickson ID (2003). RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374: 577–606.

    PubMed  CAS  Google Scholar 

  • Bannister LA, Schimenti JC (2004). Homologous recombinational repair proteins in mouse meiosis. Cytogenet Genome Res 107: 191–200.

    PubMed  CAS  Google Scholar 

  • Barnes DE, Stamp G, Rosewell I, Denzel A, Lindahl T (1998). Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr Biol 8: 1395–8.

    PubMed  CAS  Google Scholar 

  • Bassing CH, Swat W, Alt FW (2002). The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 Suppl: S45–55.

    PubMed  Google Scholar 

  • Benson FE, Baumann P, West SC (1998). Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391: 401–4.

    PubMed  CAS  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA et al. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34.

    PubMed  CAS  Google Scholar 

  • Bloomfield CD, Lawrence D, Byrd JC, Carroll A, Pettenati MJ, Tantravahi R et al. (1998). Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res 58: 4173–9.

    PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–52.

    PubMed  CAS  Google Scholar 

  • Bosma MJ, Carroll AM (1991). The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol 9: 323–50.

    PubMed  CAS  Google Scholar 

  • Braybrooke JP, Spink KG, Thacker J, Hickson ID (2000). The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2. J Biol Chem 275: 29100–6.

    PubMed  CAS  Google Scholar 

  • Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC et al. (2006). ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442: 466–70.

    PubMed  CAS  Google Scholar 

  • Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O et al. (2006). Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124: 287–99.

    PubMed  CAS  Google Scholar 

  • Callebaut I, Malivert L, Fischer A, Mornon JP, Revy P, de Villartay JP (2006). Cernunnos interacts with the XRCC4 x DNA-ligase IV complex and is homologous to the yeast nonhomologous end-joining factor Nej1. J Biol Chem 281: 13857–60.

    PubMed  CAS  Google Scholar 

  • Callebaut I, Moshous D, Mornon JP, de Villartay JP (2002). Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res 30: 3592–601.

    PubMed  CAS  Google Scholar 

  • Casper AM, Nghiem P, Arlt MF, Glover TW (2002). ATR regulates fragile site stability. Cell 111: 779–89.

    PubMed  CAS  Google Scholar 

  • Celli GB, Denchi EL, de Lange T (2006). Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8: 885–90.

    PubMed  Google Scholar 

  • Chaudhuri J, Alt FW (2004). Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4: 541–52.

    PubMed  CAS  Google Scholar 

  • Chaudhuri J, Khuong C, Alt FW (2004). Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430: 992–8.

    PubMed  CAS  Google Scholar 

  • Cheok CF, Bachrati CZ, Chan KL, Ralf C, Wu L, Hickson ID (2005). Roles of the Bloom's syndrome helicase in the maintenance of genome stability. Biochem Soc Trans 33: 1456–9.

    PubMed  CAS  Google Scholar 

  • Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ et al. (1999). p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97: 527–38.

    PubMed  CAS  Google Scholar 

  • Chissoe SL, Bodenteich A, Wang YF, Wang YP, Burian D, Clifton SW et al. (1995). Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. Genomics 27: 67–82.

    PubMed  CAS  Google Scholar 

  • Cortez D, Guntuku S, Qin J, Elledge SJ (2001). ATR and ATRIP: partners in checkpoint signaling. Science 294: 1713–6.

    PubMed  CAS  Google Scholar 

  • Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier J (2003). An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell 11: 203–13.

    PubMed  CAS  Google Scholar 

  • Couedel C, Mills KD, Barchi M, Shen L, Olshen A, Johnson RD et al. (2004). Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 18: 1293–304.

    PubMed  CAS  Google Scholar 

  • de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D et al. (1982). A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300: 765–7.

    PubMed  Google Scholar 

  • Dokal I (2000). The genetics of Fanconi's anaemia. Baillieres Best Pract Res Clin Haematol 13: 407–25.

    PubMed  CAS  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–7.

    PubMed  CAS  Google Scholar 

  • Dudas A, Chovanec M (2004). DNA double-strand break repair by homologous recombination. Mutat Res 566: 131–67.

    PubMed  CAS  Google Scholar 

  • Early P, Huang H, Davis M, Calame K, Hood L (1980). An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell 19: 981–92.

    PubMed  CAS  Google Scholar 

  • Ege M, Ma Y, Manfras B, Kalwak K, Lu H, Lieber MR et al. (2005). Omenn syndrome due to ARTEMIS mutations. Blood 105: 4179–86.

    PubMed  CAS  Google Scholar 

  • Elliott B, Jasin M (2002). Double-strand breaks and translocations in cancer. Cell Mol Life Sci 59: 373–85.

    PubMed  CAS  Google Scholar 

  • Farah JA, Cromie G, Steiner WW, Smith GR (2005). A novel recombination pathway initiated by the Mre11/Rad50/Nbs1 complex eliminates palindromes during meiosis in Schizosaccharomyces pombe. Genetics 169: 1261–74.

    PubMed  CAS  Google Scholar 

  • Ferguson DO, Alt FW (2001). DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20: 5572–9.

    PubMed  CAS  Google Scholar 

  • Figueiredo JC, Knight JA, Briollais L, Andrulis IL, Ozcelik H (2004). Polymorphisms XRCC1-R399Q and XRCC3-T241M and the risk of breast cancer at the Ontario site of the Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev 13: 583–91.

    PubMed  CAS  Google Scholar 

  • Franco S, Alt FW, Manis JP (2006). Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations. DNA Repair (Amst) 5: 1030–41.

    CAS  Google Scholar 

  • Frank KM, Sekiguchi JM, Seidl KJ, Swat W, Rathbun GA, Cheng HL et al. (1998). Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396: 173–7.

    PubMed  CAS  Google Scholar 

  • Frost BM, Forestier E, Gustafsson G, Nygren P, Hellebostad M, Jonsson OG et al. (2004). Translocation t(12;21) is related to in vitro cellular drug sensitivity to doxorubicin and etoposide in childhood acute lymphoblastic leukemia. Blood 104: 2452–7.

    PubMed  CAS  Google Scholar 

  • Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG (2000). The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 18: 495–527.

    PubMed  CAS  Google Scholar 

  • Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW (1998a). A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 9: 367–76.

    CAS  Google Scholar 

  • Gao Y, Sun Y, Frank KM, Dikkes P, Fujiwara Y, Seidl KJ et al. (1998b). A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95: 891–902.

    CAS  Google Scholar 

  • Gennery AR, Hodges E, Williams AP, Harris S, Villa A, Angus B et al. (2005). Omenn's syndrome occurring in patients without mutations in recombination activating genes. Clin Immunol 116: 246–56.

    PubMed  CAS  Google Scholar 

  • Gottlich B, Reichenberger S, Feldmann E, Pfeiffer P (1998). Rejoining of DNA double-strand breaks in vitro by single-strand annealing. Eur J Biochem 258: 387–95.

    PubMed  CAS  Google Scholar 

  • Gu Y, Seidl KJ, Rathbun GA, Zhu C, Manis JP, van der Stoep N et al. (1997). Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7: 653–65.

    PubMed  CAS  Google Scholar 

  • Han J, Colditz GA, Samson LD, Hunter DJ (2004). Polymorphisms in DNA double-strand break repair genes and skin cancer risk. Cancer Res 64: 3009–13.

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Nakagawa Y, Morikawa H, Niki M, Egashira Y, Hirata I et al. (2001). Co-overexpression of DEAD box protein rck/p54 and c-myc protein in human colorectal adenomas and the relevance of their expression in cultured cell lines. Carcinogenesis 22: 1965–70.

    PubMed  CAS  Google Scholar 

  • Helleday T, Lo J, van Gent DC, Engelward BP (2007). DNA double-strand break repair: From mechanistic understanding to cancer treatment. DNA Repair (Amst) 6: 923–35.

    CAS  Google Scholar 

  • Heyer WD, Li X, Rolfsmeier M, Zhang XP (2006). Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 34: 4115–25.

    PubMed  CAS  Google Scholar 

  • Hickson ID (2003). RecQ helicases: caretakers of the genome. Nat Rev Cancer 3: 169–78.

    PubMed  CAS  Google Scholar 

  • Hikida M, Mori M, Takai T, Tomochika K, Hamatani K, Ohmori H (1996). Reexpression of RAG-1 and RAG-2 genes in activated mature mouse B cells. Science 274: 2092–4.

    PubMed  CAS  Google Scholar 

  • Hsu HL, Gilley D, Blackburn EH, Chen DJ (1999). Ku is associated with the telomere in mammals. Proc Natl Acad Sci U S A 96: 12454–8.

    PubMed  CAS  Google Scholar 

  • Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH et al. (2000). Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14: 2807–12.

    PubMed  CAS  Google Scholar 

  • Jager U, Bocskor S, Le T, Mitterbauer G, Bolz I, Chott A et al. (2000). Follicular lymphomas' BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 95: 3520–9.

    PubMed  CAS  Google Scholar 

  • Jeffs AR, Benjes SM, Smith TL, Sowerby SJ, Morris CM (1998). The BCR gene recombines preferentially with Alu elements in complex BCR-ABL translocations of chronic myeloid leukaemia. Hum Mol Genet 7: 767–76.

    PubMed  CAS  Google Scholar 

  • Jeffs AR, Wells E, Morris CM (2001). Nonrandom distribution of interspersed repeat elements in the BCR and ABL1 genes and its relation to breakpoint cluster regions. Genes Chromosomes Cancer 32: 144–54.

    PubMed  CAS  Google Scholar 

  • Jung D, Alt FW (2004). Unraveling V(D)J recombination; insights into gene regulation. Cell 116: 299–311.

    PubMed  CAS  Google Scholar 

  • Karanjawala ZE, Adachi N, Irvine RA, Oh EK, Shibata D, Schwarz K et al. (2002). The embryonic lethality in DNA ligase IV-deficient mice is rescued by deletion of Ku: implications for unifying the heterogeneous phenotypes of NHEJ mutants. DNA Repair (Amst) 1: 1017–26.

    CAS  Google Scholar 

  • Karran P (2000). DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10: 144–50.

    PubMed  CAS  Google Scholar 

  • Khakhar RR, Cobb JA, Bjergbaek L, Hickson ID, Gasser SM (2003). RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol 13: 493–501.

    PubMed  CAS  Google Scholar 

  • Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K (2004). NBS1 and its functional role in the DNA damage response. DNA Repair (Amst) 3: 855–61.

    CAS  Google Scholar 

  • Krishna S, Wagener BM, Liu HP, Lo YC, Sterk R, Petrini JH et al. (2007). Mre11 and Ku regulation of double-strand break repair by gene conversion and break-induced replication. DNA Repair (Amst) 6: 797–808.

    CAS  Google Scholar 

  • Kuppers R, Dalla-Favera R (2001). Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20: 5580–94.

    PubMed  CAS  Google Scholar 

  • Kurimasa A, Kumano S, Boubnov NV, Story MD, Tung CS, Peterson SR et al. (1999). Requirement for the kinase activity of human DNA-dependent protein kinase catalytic subunit in DNA strand break rejoining. Mol Cell Biol 19: 3877–84.

    PubMed  CAS  Google Scholar 

  • Kurumizaka H, Ikawa S, Nakada M, Eda K, Kagawa W, Takata M et al. (2001). Homologous-pairing activity of the human DNA-repair proteins Xrcc3.Rad51C. Proc Natl Acad Sci U S A 98: 5538–43.

    PubMed  CAS  Google Scholar 

  • Kurumizaka H, Ikawa S, Nakada M, Enomoto R, Kagawa W, Kinebuchi T et al. (2002). Homologous pairing and ring and filament structure formation activities of the human Xrcc2∗Rad51D complex. J Biol Chem 277: 14315–20.

    PubMed  CAS  Google Scholar 

  • Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, Lipscombe JM et al. (2002). Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11: 1399–407.

    PubMed  CAS  Google Scholar 

  • Landree MA, Wibbenmeyer JA, Roth DB (1999). Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev 13: 3059–69.

    PubMed  CAS  Google Scholar 

  • Lee J, Desiderio S (1999). Cyclin A/CDK2 regulates V(D)J recombination by coordinating RAG-2 accumulation and DNA repair. Immunity 11: 771–81.

    PubMed  CAS  Google Scholar 

  • Lim DS, Hasty P (1996). A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16: 7133–43.

    PubMed  CAS  Google Scholar 

  • Lio YC, Mazin AV, Kowalczykowski SC, Chen DJ (2003). Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro. J Biol Chem 278: 2469–78.

    PubMed  CAS  Google Scholar 

  • Liu N, Lamerdin JE, Tebbs RS, Schild D, Tucker JD, Shen MR et al. (1998). XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell 1: 783–93.

    PubMed  CAS  Google Scholar 

  • Liu N, Schild D, Thelen MP, Thompson LH (2002). Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Nucleic Acids Res 30: 1009–15.

    PubMed  CAS  Google Scholar 

  • Liu Y, Masson JY, Shah R, O'Regan P, West SC (2004). RAD51C is required for Holliday junction processing in mammalian cells. Science 303: 243–6.

    PubMed  CAS  Google Scholar 

  • Liu Y, Tarsounas M, O'Regan P, West SC (2007). Role of RAD51C and XRCC3 in genetic recombination and DNA repair. J Biol Chem 282: 1973–9.

    PubMed  CAS  Google Scholar 

  • Longerich S, Basu U, Alt F, Storb U (2006). AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 18: 164–74.

    PubMed  CAS  Google Scholar 

  • Lumsden JM, McCarty T, Petiniot LK, Shen R, Barlow C, Wynn TA et al. (2004). Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J Exp Med 200: 1111–21.

    PubMed  Google Scholar 

  • Masson JY, Stasiak AZ, Stasiak A, Benson FE, West SC (2001a). Complex formation by the human RAD51C and XRCC3 recombination repair proteins. Proc Natl Acad Sci U S A 98: 8440–6.

    CAS  Google Scholar 

  • Masson JY, Tarsounas MC, Stasiak AZ, Stasiak A, Shah R, McIlwraith MJ et al. (2001b). Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 15: 3296–307.

    CAS  Google Scholar 

  • Matei IR, Guidos CJ, Danska JS (2006). ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 209: 142–58.

    PubMed  CAS  Google Scholar 

  • Mathew CG (2006). Fanconi anaemia genes and susceptibility to cancer. Oncogene 25: 5875–84.

    PubMed  CAS  Google Scholar 

  • Max EE, Seidman JG, Leder P (1979). Sequences of five potential recombination sites encoded close to an immunoglobulin kappa constant region gene. Proc Natl Acad Sci U S A 76: 3450–4.

    PubMed  CAS  Google Scholar 

  • McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Gellert M et al. (1995). Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83: 387–95.

    Google Scholar 

  • McCormack WT, Tjoelker LW, Carlson LM, Petryniak B, Barth CF, Humphries EH et al. (1989). Chicken IgL gene rearrangement involves deletion of a circular episome and addition of single nonrandom nucleotides to both coding segments. Cell 56: 785–91.

    PubMed  CAS  Google Scholar 

  • McGowan CH, Russell P (2004). The DNA damage response: sensing and signaling. Curr Opin Cell Biol 16: 629–33.

    PubMed  CAS  Google Scholar 

  • Migliore L, Coppede F (2002). Genetic and environmental factors in cancer and neurodegenerative diseases. Mutat Res 512: 135–53.

    PubMed  CAS  Google Scholar 

  • Mills KD, Ferguson DO, Alt FW (2003). The role of DNA breaks in genomic instability and tumorigenesis. Immunol Rev 194: 77–95.

    PubMed  CAS  Google Scholar 

  • Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW (2004). Rad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 18: 1283–92.

    PubMed  CAS  Google Scholar 

  • Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE (1992). RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68: 869–77.

    PubMed  CAS  Google Scholar 

  • Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F et al. (2001). Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105: 177–86.

    PubMed  CAS  Google Scholar 

  • Moshous D, Callebaut I, de Chasseval R, Poinsignon C, Villey I, Fischer A et al. (2003a). The V(D)J recombination/DNA repair factor artemis belongs to the metallo-beta-lactamase family and constitutes a critical developmental checkpoint of the lymphoid system. Ann N Y Acad Sci 987: 150–7.

    CAS  Google Scholar 

  • Moshous D, Pannetier C, Chasseval Rd R, Deist Fl F, Cavazzana-Calvo M, Romana S et al. (2003b). Partial T and B lymphocyte immunodeficiency and predisposition to lymphoma in patients with hypomorphic mutations in Artemis. J Clin Invest 111: 381–7.

    CAS  Google Scholar 

  • Murnane JP, Sabatier L (2004). Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. Bioessays 26: 1164–74.

    PubMed  CAS  Google Scholar 

  • Nagel S, Kaufmann M, Drexler HG, MacLeod RA (2003). The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 63: 5329–34.

    PubMed  CAS  Google Scholar 

  • New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC (1998). Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391: 407–10.

    PubMed  CAS  Google Scholar 

  • Nicolas N, Moshous D, Cavazzana-Calvo M, Papadopoulo D, de Chasseval R, Le Deist F et al. (1998). A human severe combined immunodeficiency (SCID) condition with increased sensitivity to ionizing radiations and impaired V(D)J rearrangements defines a new DNA recombination/repair deficiency. J Exp Med 188: 627–34.

    PubMed  CAS  Google Scholar 

  • Nussenzweig A, Chen C, da Costa Soares V, Sanchez M, Sokol K, Nussenzweig MC et al. (1996). Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382: 551–5.

    PubMed  CAS  Google Scholar 

  • O'Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B et al. (2001). DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 8: 1175–85.

    PubMed  Google Scholar 

  • Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990). RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248: 1517–23.

    PubMed  CAS  Google Scholar 

  • Ouyang H, Nussenzweig A, Kurimasa A, Soares VC, Li X, Cordon-Cardo C et al. (1997). Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination in vivo. J Exp Med 186: 921–9.

    PubMed  CAS  Google Scholar 

  • Padilla-Nash HM, Barenboim-Stapleton L, Difilippantonio MJ, Ried T (2006). Spectral karyotyping analysis of human and mouse chromosomes. Nat Protoc 1: 3129–42.

    PubMed  CAS  Google Scholar 

  • Pages V, Fuchs RP (2002). How DNA lesions are turned into mutations within cells? Oncogene 21: 8957–66.

    PubMed  CAS  Google Scholar 

  • Papadopoulos PC, Greenstein AM, Gaffney RA, Westbrook CA, Wiedemann LM (1990). Characterization of the translocation breakpoint sequences in Philadelphia-positive acute lymphoblastic leukemia. Genes Chromosomes Cancer 1: 233–9.

    PubMed  CAS  Google Scholar 

  • Pastink A, Eeken JC, Lohman PH (2001). Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481: 37–50.

    PubMed  Google Scholar 

  • Plank JL, Wu J, Hsieh TS (2006). Topoisomerase IIIalpha and Bloom's helicase can resolve a mobile double Holliday junction substrate through convergent branch migration. Proc Natl Acad Sci U S A 103: 11118–23.

    PubMed  CAS  Google Scholar 

  • Rafii S, O'Regan P, Xinarianos G, Azmy I, Stephenson T, Reed M et al. (2002). A potential role for the XRCC2 R188H polymorphic site in DNA-damage repair and breast cancer. Hum Mol Genet 11: 1433–8.

    PubMed  CAS  Google Scholar 

  • Raynard S, Bussen W, Sung P (2006). A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem 281: 13861–4.

    PubMed  CAS  Google Scholar 

  • Reaban ME, Griffin JA (1990). Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348: 342–4.

    PubMed  CAS  Google Scholar 

  • Reaban ME, Lebowitz J, Griffin JA (1994). Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin alpha switch region. J Biol Chem 269: 21850–7.

    PubMed  CAS  Google Scholar 

  • Reina-San-Martin B, Chen HT, Nussenzweig A, Nussenzweig MC (2004). ATM is required for efficient recombination between immunoglobulin switch regions. J Exp Med 200: 1103–10.

    PubMed  CAS  Google Scholar 

  • Richardson C, Jasin M (2000). Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405: 697–700.

    PubMed  CAS  Google Scholar 

  • Richardson C, Moynahan ME, Jasin M (1998). Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 12: 3831–42.

    PubMed  CAS  Google Scholar 

  • Richardson C, Moynahan ME, Jasin M (1999). Homologous recombination between heterologs during repair of a double-strand break. Suppression of translocations in normal cells. Ann N Y Acad Sci 886: 183–6.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Lopez R, Osorio A, Ribas G, Pollan M, Sanchez-Pulido L, de la Hoya M et al. (2004). The variant E233G of the RAD51D gene could be a low-penetrance allele in high-risk breast cancer families without BRCA1/2 mutations. Int J Cancer 110: 845–9.

    PubMed  CAS  Google Scholar 

  • Rooney S, Sekiguchi J, Whitlow S, Eckersdorff M, Manis JP, Lee C et al. (2004). Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci U S A 101: 2410–5.

    PubMed  CAS  Google Scholar 

  • Rooney S, Sekiguchi J, Zhu C, Cheng HL, Manis J, Whitlow S et al. (2002). Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol Cell 10: 1379–90.

    PubMed  CAS  Google Scholar 

  • Sakano H, Huppi K, Heinrich G, Tonegawa S (1979). Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280: 288–94.

    PubMed  CAS  Google Scholar 

  • Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000). Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1: 244–52.

    PubMed  CAS  Google Scholar 

  • Schatz DG, Oettinger MA, Baltimore D (1989). The V(D)J recombination activating gene, RAG-1. Cell 59: 1035–48.

    PubMed  CAS  Google Scholar 

  • Sharma S, Sommers JA, Wu L, Bohr VA, Hickson ID, Brosh RM, Jr. (2004). Stimulation of flap endonuclease-1 by the Bloom's syndrome protein. J Biol Chem 279: 9847–56.

    PubMed  CAS  Google Scholar 

  • Sharples GJ (2001). The X philes: structure-specific endonucleases that resolve Holliday junctions. Mol Microbiol 39: 823–34.

    PubMed  CAS  Google Scholar 

  • Shechter D, Costanzo V, Gautier J (2004). ATR and ATM regulate the timing of DNA replication origin firing. Nat Cell Biol 6: 648–55.

    PubMed  CAS  Google Scholar 

  • Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M et al. (1992). RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68: 855–67.

    PubMed  CAS  Google Scholar 

  • Shinohara A, Ogawa T (1998). Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391: 404–7.

    PubMed  CAS  Google Scholar 

  • Sigurdsson S, Van Komen S, Bussen W, Schild D, Albala JS, Sung P (2001). Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev 15: 3308–18.

    PubMed  CAS  Google Scholar 

  • Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006). Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5: 1021–9.

    CAS  Google Scholar 

  • Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H et al. (1998). Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. Embo J 17: 598–608.

    PubMed  CAS  Google Scholar 

  • Sugimoto J, Hatakeyama T, Narducci MG, Russo G, Isobe M (1999). Identification of the TCL1/MTCP1-like 1 (TML1) gene from the region next to the TCL1 locus. Cancer Res 59: 2313–7.

    PubMed  CAS  Google Scholar 

  • Sung P (1997). Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272: 28194–7.

    PubMed  CAS  Google Scholar 

  • Swanson PC (2001). The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterification steps of V(D)J recombination. Mol Cell Biol 21: 449–58.

    PubMed  CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983). The double-strand-break repair model for recombination. Cell 33: 25–35.

    PubMed  CAS  Google Scholar 

  • Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI et al. (1998). Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9: 355–66.

    PubMed  CAS  Google Scholar 

  • Taccioli GE, Cheng HL, Varghese AJ, Whitmore G, Alt FW (1994). A DNA repair defect in Chinese hamster ovary cells affects V(D)J recombination similarly to the murine scid mutation. J Biol Chem 269: 7439–42.

    PubMed  CAS  Google Scholar 

  • Takahashi A, Ohnishi T (2005). Does gammaH2AX foci formation depend on the presence of DNA double strand breaks? Cancer Lett 229: 171–9.

    PubMed  CAS  Google Scholar 

  • Taylor AM, Byrd PJ (2005). Molecular pathology of ataxia telangiectasia. J Clin Pathol 58: 1009–15.

    PubMed  CAS  Google Scholar 

  • Taylor AM, Metcalfe JA, Thick J, Mak YF (1996). Leukemia and lymphoma in ataxia telangiectasia. Blood 87: 423–38.

    PubMed  CAS  Google Scholar 

  • Thacker J (2005). The RAD51 gene family, genetic instability and cancer. Cancer Lett 219: 125–35.

    PubMed  CAS  Google Scholar 

  • Tian M, Alt FW (2000). Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem 275: 24163–72.

    PubMed  CAS  Google Scholar 

  • Tischkowitz M, Dokal I (2004). Fanconi anaemia and leukaemia – clinical and molecular aspects. Br J Haematol 126: 176–91.

    PubMed  CAS  Google Scholar 

  • Tremblay A, Jasin M, Chartrand P (2000). A double-strand break in a chromosomal LINE element can be repaired by gene conversion with various endogenous LINE elements in mouse cells. Mol Cell Biol 20: 54–60.

    PubMed  CAS  Google Scholar 

  • Treuner K, Helton R, Barlow C (2004). Loss of Rad52 partially rescues tumorigenesis and T-cell maturation in Atm-deficient mice. Oncogene 23: 4655–61.

    PubMed  CAS  Google Scholar 

  • Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M et al. (1996). Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci U S A 93: 6236–40.

    PubMed  CAS  Google Scholar 

  • Valerie K, Povirk LF (2003). Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22: 5792–812.

    PubMed  CAS  Google Scholar 

  • Villa A, Santagata S, Bozzi F, Giliani S, Frattini A, Imberti L et al. (1998). Partial V(D)J recombination activity leads to Omenn syndrome. Cell 93: 885–96.

    PubMed  CAS  Google Scholar 

  • Waldmann TA, Broder S, Goldman CK, Frost K, Korsmeyer SJ, Medici MA (1983). Disorders of B cells and helper T cells in the pathogenesis of the immunoglobulin deficiency of patients with ataxia telangiectasia. J Clin Invest 71: 282–95.

    PubMed  CAS  Google Scholar 

  • Walker JR, Corpina RA, Goldberg J (2001). Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412: 607–14.

    PubMed  CAS  Google Scholar 

  • Wang WW, Spurdle AB, Kolachana P, Bove B, Modan B, Ebbers SM et al. (2001). A single nucleotide polymorphism in the 5´ untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomarkers Prev 10: 955–60.

    PubMed  CAS  Google Scholar 

  • Weinert BT, Rio DC (2007). DNA strand displacement, strand annealing and strand swapping by the Drosophila Bloom's syndrome helicase. Nucleic Acids Res 35: 1367–76.

    PubMed  CAS  Google Scholar 

  • Weinstock DM, Elliott B, Jasin M (2006a). A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 107: 777–80.

    CAS  Google Scholar 

  • Weinstock DM, Richardson CA, Elliott B, Jasin M (2006b). Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amst) 5: 1065–74.

    CAS  Google Scholar 

  • Welzel N, Le T, Marculescu R, Mitterbauer G, Chott A, Pott C et al. (2001). Templated nucleotide addition and immunoglobulin JH-gene utilization in t(11;14) junctions: implications for the mechanism of translocation and the origin of mantle cell lymphoma. Cancer Res 61: 1629–36.

    PubMed  CAS  Google Scholar 

  • Woo Y, Wright SM, Maas SA, Alley TL, Caddle LB, Kamdar S et al. (2007). The nonhomologous end joining factor Artemis suppresses multi-tissue tumor formation and prevents loss of heterozygosity. Oncogene.

    Google Scholar 

  • Wu L, Hickson ID (2003). The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426: 870–4.

    PubMed  CAS  Google Scholar 

  • Zha S, Alt FW, Cheng HL, Brush JW, Li G (2007). Defective DNA repair and increased genomic instability in Cernunnos-XLF-deficient murine ES cells. Proc Natl Acad Sci U S A 104: 4518–23.

    PubMed  CAS  Google Scholar 

  • Zhang JG, Goldman JM, Cross NC (1995). Characterization of genomic BCR-ABL breakpoints in chronic myeloid leukaemia by PCR. Br J Haematol 90: 138–46.

    PubMed  CAS  Google Scholar 

  • Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J et al. (2002). Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109: 811–21.

    PubMed  CAS  Google Scholar 

  • Zou L, Cortez D, Elledge SJ (2002). Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 16: 198–208.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sophie La Salle for critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maas, S.A., Caddle, L.B., Mills, K.D. (2008). Mechanisms of DNA Double-Strand Break Repair in Hematopoietic Homeostasis and Oncogenesis. In: Li, S. (eds) Mouse Models of Human Blood Cancers. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69132-9_4

Download citation

Publish with us

Policies and ethics