Murine Models of Hematopoietic Disease: Pathologic Analysis and Characterization

  • Benjamin H. Lee
  • Jeffery L. Kutok


The pathologic evaluation of murine hematologic disease can be considerably more challenging than the assessment of human hematopoietic malignancies. Diagnoses in humans that may be difficult based solely on histology are often straightforward with careful review of the patient’s laboratory data or after specialized ancillary testing. Unfortunately, such luxuries do not always exist in the workup of a mouse. Obtaining important clinical and laboratory data for each mouse in a cohort is often difficult and costly. Peripheral blood counts and cytologic findings in the blood and marrow play a critical role in the diagnosis of disease in both mice and humans; however, quite often, a mouse is simply fixed in formalin enabling only histopathologic review. Immunophenotyping by flow cytometry or cytochemical studies require fresh cells and are necessary to confirm morphologic impressions. This testing should be a part of all murine hematopoietic workups but needs to be planned and...


Acute Myeloid Leukemia Chronic Myeloid Leukemia Polycythemia Vera Essential Thrombocythemia Noonan Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Araki, T., Mohi, M.G., Ismat, F.A., Bronson, R.T., Williams, I.R., Kutok, J.L., Yang, W., Pao, L.I., Gilliland, D.G., Epstein, J.A., and Neel, B.G. 2004. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med 10(8): 849–857.PubMedCrossRefGoogle Scholar
  2. Armstrong, S.A., Kung, A.L., Mabon, M.E., Silverman, L.B., Stam, R.W., Den Boer, M.L., Pieters, R., Kersey, J.H., Sallan, S.E., Fletcher, J.A., Golub, T.R., Griffin, J.D., and Korsmeyer, S.J. 2003. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3(2): 173–183.PubMedCrossRefGoogle Scholar
  3. Armstrong, S.A., Mabon, M.E., Silverman, L.B., Li, A., Gribben, J.G., Fox, E.A., Sallan, S.E., and Korsmeyer, S.J. 2004. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 103(9): 3544–3546.PubMedCrossRefGoogle Scholar
  4. Bansal, D., Scholl, C., Frohling, S., McDowell, E., Lee, B.H., Dohner, K., Ernst, P., Davidson, A.J., Daley, G.Q., Zon, L.I., Gilliland, D.G., and Huntly, B.J. 2006. Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc Natl Acad Sci USA 103(45): 16924–16929.PubMedCrossRefGoogle Scholar
  5. Bartram, C.R., de Klein, A., Hagemeijer, A., van Agthoven, T., Geurts van Kessel, A., Bootsma, D., Grosveld, G., Ferguson-Smith, M.A., Davies, T., Stone, M., and et al. 1983. Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306(5940): 277–280.Google Scholar
  6. Baxter, E.J., Scott, L.M., Campbell, P.J., East, C., Fourouclas, N., Swanton, S., Vassiliou, G.S., Bench, A.J., Boyd, E.M., Curtin, N., Scott, M.A., Erber, W.N., and Green, A.R. 2005. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464): 1054–1061.PubMedGoogle Scholar
  7. Bentires-Alj, M., Paez, J.G., David, F.S., Keilhack, H., Halmos, B., Naoki, K., Maris, J.M., Richardson, A., Bardelli, A., Sugarbaker, D.J., Richards, W.G., Du, J., Girard, L., Minna, J.D., Loh, M.L., Fisher, D.E., Velculescu, V.E., Vogelstein, B., Meyerson, M., Sellers, W.R., and Neel, B.G. 2004. Activating mutations of the noonan syndrome- associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64(24): 8816–8820.PubMedCrossRefGoogle Scholar
  8. Bogue, M.A., Grubb, S.C., Maddatu, T.P., and Bult, C.J. 2007. Mouse Phenome Database (MPD). Nucleic Acids Res 35(Database issue): D643–649.PubMedCrossRefGoogle Scholar
  9. Braun, B.S., Tuveson, D.A., Kong, N., Le, D.T., Kogan, S.C., Rozmus, J., Le Beau, M.M., Jacks, T.E., and Shannon, K.M. 2004. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 101(2): 597–602.PubMedCrossRefGoogle Scholar
  10. Brown, D., Kogan, S., Lagasse, E., Weissman, I., Alcalay, M., Pelicci, P.G., Atwater, S., and Bishop, J.M. 1997. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 94(6): 2551–2556.PubMedCrossRefGoogle Scholar
  11. Brunning, R.D., McKenna, R.W.1994. Tumors of the bone marrow. Normal Bone Marrow. In: Atlas of Tumor Pathology. Third series. Washington, D.C.: Armed Forces Institutes of Pathology. pp. 1–18.Google Scholar
  12. Bumm, T.G., Elsea, C., Corbin, A.S., Loriaux, M., Sherbenou, D., Wood, L., Deininger, J., Silver, R.T., Druker, B.J., and Deininger, M.W. 2006. Characterization of murine JAK2V617F- positive myeloproliferative disease. Cancer Res 66(23): 11156–11165.PubMedCrossRefGoogle Scholar
  13. Castilla, L.H., Garrett, L., Adya, N., Orlic, D., Dutra, A., Anderson, S., Owens, J., Eckhaus, M., Bodine, D., and Liu, P.P. 1999. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 23(2): 144–146.PubMedCrossRefGoogle Scholar
  14. Chan, I.T., Kutok, J.L., Williams, I.R., Cohen, S., Kelly, L., Shigematsu, H., Johnson, L., Akashi, K., Tuveson, D.A., Jacks, T., and Gilliland, D.G. 2004. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 113(4): 528–538.PubMedGoogle Scholar
  15. Chan, I.T., Kutok, J.L., Williams, I.R., Cohen, S., Moore, S., Shigematsu, H., Ley, T.J., Akashi, K., Le Beau, M.M., and Gilliland, D.G. 2006. Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 108(5): 1708–1715.PubMedCrossRefGoogle Scholar
  16. Chase, A., Reiter, A., Burci, L., Cazzaniga, G., Biondi, A., Pickard, J., Roberts, I.A., Goldman, J.M., and Cross, N.C. 1999. Fusion of ETV6 to the caudal-related homeobox gene CDX2 in acute myeloid leukemia with the t(12;13)(p13;q12). Blood 93(3): 1025–1031.PubMedGoogle Scholar
  17. Chen, J., Deangelo, D.J., Kutok, J.L., Williams, I.R., Lee, B.H., Wadleigh, M., Duclos, N., Cohen, S., Adelsperger, J., Okabe, R., Coburn, A., Galinsky, I., Huntly, B., Cohen, P.S., Meyer, T., Fabbro, D., Roesel, J., Banerji, L., Griffin, J.D., Xiao, S., Fletcher, J.A., Stone, R.M., and Gilliland, D.G. 2004. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci USA 101(40): 14479–14484.PubMedCrossRefGoogle Scholar
  18. Chen, J., Lee, B.H., Williams, I.R., Kutok, J.L., Mitsiades, C.S., Duclos, N., Cohen, S., Adelsperger, J., Okabe, R., Coburn, A., Moore, S., Huntly, B.J., Fabbro, D., Anderson, K.C., Griffin, J.D., and Gilliland, D.G. 2005. FGFR3 as a therapeutic target of the small molecule inhibitor PKC412 in hematopoietic malignancies. Oncogene 24(56): 8259–8267.PubMedCrossRefGoogle Scholar
  19. Cools, J., DeAngelo, D.J., Gotlib, J., Stover, E.H., Legare, R.D., Cortes, J., Kutok, J., Clark, J., Galinsky, I., Griffin, J.D., Cross, N.C., Tefferi, A., Malone, J., Alam, R., Schrier, S.L., Schmid, J., Rose, M., Vandenberghe, P., Verhoef, G., Boogaerts, M., Wlodarska, I., Kantarjian, H., Marynen, P., Coutre, S.E., Stone, R., and Gilliland, D.G. 2003a. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348(13): 1201–1214.CrossRefGoogle Scholar
  20. Cools, J., Stover, E.H., Boulton, C.L., Gotlib, J., Legare, R.D., Amaral, S.M., Curley, D.P., Duclos, N., Rowan, R., Kutok, J.L., Lee, B.H., Williams, I.R., Coutre, S.E., Stone, R.M., DeAngelo, D.J., Marynen, P., Manley, P.W., Meyer, T., Fabbro, D., Neuberg, D., Weisberg, E., Griffin, J.D., and Gilliland, D.G. 2003b. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 3(5): 459–469.CrossRefGoogle Scholar
  21. Dahl, R., Walsh, J.C., Lancki, D., Laslo, P., Iyer, S.R., Singh, H., and Simon, M.C. 2003. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nature immunology 4(10): 1029–1036.PubMedCrossRefGoogle Scholar
  22. Daley, G.Q., Van Etten, R.A., and Baltimore, D. 1990. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247(4944): 824–830.PubMedCrossRefGoogle Scholar
  23. Darley, R.L., Hoy, T.G., Baines, P., Padua, R.A., and Burnett, A.K. 1997. Mutant N- RAS induces erythroid lineage dysplasia in human CD34+ cells. J Exp Med 185(7): 1337–1347.PubMedCrossRefGoogle Scholar
  24. Dash, A.B., Williams, I.R., Kutok, J.L., Tomasson, M.H., Anastasiadou, E., Lindahl, K., Li, S., Van Etten, R.A., Borrow, J., Housman, D., Druker, B., and Gilliland, D.G. 2002. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 99(11): 7622–7627.PubMedCrossRefGoogle Scholar
  25. Davidson, A.J., Ernst, P., Wang, Y., Dekens, M.P., Kingsley, P.D., Palis, J., Korsmeyer, S.J., Daley, G.Q., and Zon, L.I. 2003. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425(6955): 300–306.PubMedCrossRefGoogle Scholar
  26. Davidson, A.J. and Zon, L.I. 2006. The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Developmental biology 292(2): 506–518.PubMedCrossRefGoogle Scholar
  27. Deguchi, K. and Gilliland, D.G. 2002. Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML. Leukemia 16(4): 740–744.PubMedCrossRefGoogle Scholar
  28. Deguchi, K., Ayton, P.M., Carapeti, M., Kutok, J.L., Snyder, C.S., Williams, I.R., Cross, N.C., Glass, C.K., Cleary, M.L., and Gilliland, D.G. 2003. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3(3): 259–271.PubMedCrossRefGoogle Scholar
  29. DeKoter, R.P. and Singh, H. 2000. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288(5470): 1439–1441.PubMedCrossRefGoogle Scholar
  30. Dunbar, C.E., Crosier, P.S., and Nienhuis, A.W. 1991. Introduction of an activated RAS oncogene into murine bone marrow lymphoid progenitors via retroviral gene transfer results in thymic lymphomas. Oncogene research 6(1): 39–51.PubMedGoogle Scholar
  31. Elefanty, A.G. and Cory, S. 1992. Hematologic disease induced in BALB/c mice by a bcr-abl retrovirus is influenced by the infection conditions. Mol Cell Biol 12(4): 1755–1763.PubMedGoogle Scholar
  32. Fredrickson, T.N. and Harris, A.W. 2000. Atlas of Mouse Hematopathology. Harwood Academic Publishers, Amsterdam.Google Scholar
  33. Frohling, S., Scholl, C., Bansal, D., and Huntly, B.J.P. 2007. HOX Gene Regulation in Acute Myeloid Leukemia. Cell Cycle 6(18): e1–e5.CrossRefGoogle Scholar
  34. Golub, T.R., Barker, G.F., Lovett, M., and Gilliland, D.G. 1994. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77(2): 307–316.PubMedCrossRefGoogle Scholar
  35. Grisolano, J.L., O'Neal, J., Cain, J., and Tomasson, M.H. 2003. An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 100(16): 9506–9511.PubMedCrossRefGoogle Scholar
  36. Grisolano, J.L., Wesselschmidt, R.L., Pelicci, P.G., and Ley, T.J. 1997. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 89(2): 376–387.PubMedGoogle Scholar
  37. Grundler, R., Miething, C., Thiede, C., Peschel, C., and Duyster, J. 2005. FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 105(12): 4792–4799.PubMedCrossRefGoogle Scholar
  38. Hawley, R.G., Fong, A.Z., Ngan, B.Y., and Hawley, T.S. 1995. Hematopoietic transforming potential of activated ras in chimeric mice. Oncogene 11(6): 1113–1123.PubMedGoogle Scholar
  39. Harmening D.M. 2002. Clinical Hematology and Fundamentals of Hemostasis. F.A. Davis Co. Philadelphia, PAGoogle Scholar
  40. Higuchi, M., O'Brien, D., Kumaravelu, P., Lenny, N., Yeoh, E.J., and Downing, J.R. 2002. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1(1): 63–74.PubMedCrossRefGoogle Scholar
  41. Hoff, J. 2000. Methods of blood collection in the mouse. Lab Animal 29(10): 47–53.Google Scholar
  42. Honda, H, Hideaki, O, Suzuki, T, Takahashi, T, Witte, ON, Ozawa, K, Ishikawa, T, Yazaki, Y, Hirai, H. 1998. Development of acute lymphoblastic leukemia and myeloproliferative disorder in transgenic mice expressing p210bcr/abl: A novel transgenic model for human Ph1-Positive leukemias. Blood, 91(6) pp. 2067–2075.Google Scholar
  43. Hu, Y., Swerdlow, S., Duffy, T.M., Weinmann, R., Lee, F.Y., and Li, S. 2006. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad Sci USA 103(45): 16870–16875.PubMedCrossRefGoogle Scholar
  44. Jaffe, E.S., Harris, N.L., Stein, H., and Vardiman, J. 2001. WHO Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyons, France.Google Scholar
  45. James, C., Ugo, V., Le Couedic, J.P., Staerk, J., Delhommeau, F., Lacout, C., Garcon, L., Raslova, H., Berger, R., Bennaceur-Griscelli, A., Villeval, J.L., Constantinescu, S.N., Casadevall, N., and Vainchenker, W. 2005. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037): 1144–1148.PubMedCrossRefGoogle Scholar
  46. Kelly, L.M. and Gilliland, D.G. 2002. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 3: 179–198.PubMedCrossRefGoogle Scholar
  47. Kelly, L.M., Kutok, J.L., Williams, I.R., Boulton, C.L., Amaral, S.M., Curley, D.P., Ley, T.J., and Gilliland, D.G. 2002a. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 99(12): 8283–8288.CrossRefGoogle Scholar
  48. Kelly, L.M., Liu, Q., Kutok, J.L., Williams, I.R., Boulton, C.L., and Gilliland, D.G. 2002b. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 99(1): 310–318.CrossRefGoogle Scholar
  49. Kelly, L.M., Yu, J.C., Boulton, C.L., Apatira, M., Li, J., Sullivan, C.M., Williams, I., Amaral, S.M., Curley, D.P., Duclos, N., Neuberg, D., Scarborough, R.M., Pandey, A., Hollenbach, S., Abe, K., Lokker, N.A., Gilliland, D.G., and Giese, N.A. 2002c. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 1(5): 421–432.CrossRefGoogle Scholar
  50. Kogan, S.C., Ward, J.M., Anver, M.R., Berman, J.J., Brayton, C., Cardiff, R.D., Carter, J.S., de Coronado, S., Downing, J.R., Fredrickson, T.N., Haines, D.C., Harris, A.W., Harris, N.L., Hiai, H., Jaffe, E.S., MacLennan, I.C., Pandolfi, P.P., Pattengale, P.K., Perkins, A.S., Simpson, R.M., Tuttle, M.S., Wong, J.F., and Morse, H.C., 3rd. 2002. Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100(1): 238–245.PubMedCrossRefGoogle Scholar
  51. Kralovics, R., Passamonti, F., Buser, A.S., Teo, S.S., Tiedt, R., Passweg, J.R., Tichelli, A., Cazzola, M., and Skoda, R.C. 2005. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17): 1779–1790.PubMedCrossRefGoogle Scholar
  52. Kuo, Y.H., Landrette, S.F., Heilman, S.A., Perrat, P.N., Garrett, L., Liu, P.P., Le Beau, M.M., Kogan, S.C., and Castilla, L.H. 2006. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 9(1): 57–68.PubMedCrossRefGoogle Scholar
  53. Lacout, C., Pisani, D.F., Tulliez, M., Gachelin, F.M., Vainchenker, W., and Villeval, J.L. 2006. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108(5): 1652–1660.PubMedCrossRefGoogle Scholar
  54. Lacronique, V., Boureux, A., Valle, V.D., Poirel, H., Quang, C.T., Mauchauffe, M., Berthou, C., Lessard, M., Berger, R., Ghysdael, J., and Bernard, O.A. 1997. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278(5341): 1309–1312.PubMedCrossRefGoogle Scholar
  55. Lee, B.H., Tothova, Z., Levine, R.L., Anderson, K., Buza-Vidas, N., Cullen, D.E., McDowell, E.P., Adelsperger, J., Fröhling, S., Huntly, B.J., Beran, M., Jacobsen, S.E., and Gilliland, D.G. 2007. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 12(4): 367–380.Google Scholar
  56. Lee, B.H., Williams, I.R., Anastasiadou, E., Boulton, C.L., Joseph, S.W., Amaral, S.M., Curley, D.P., Duclos, N., Huntly, B.J., Fabbro, D., Griffin, J.D., and Gilliland, D.G. 2005. FLT3 internal tandem duplication mutations induce myeloproliferative or lymphoid disease in a transgenic mouse model. Oncogene 24(53): 7882–7892.PubMedCrossRefGoogle Scholar
  57. Levine, R.L., Wadleigh, M., Cools, J., Ebert, B.L., Wernig, G., Huntly, B.J., Boggon, T.J., Wlodarska, I., Clark, J.J., Moore, S., Adelsperger, J., Koo, S., Lee, J.C., Gabriel, S., Mercher, T., D'Andrea, A., Frohling, S., Dohner, K., Marynen, P., Vandenberghe, P., Mesa, R.A., Tefferi, A., Griffin, J.D., Eck, M.J., Sellers, W.R., Meyerson, M., Golub, T.R., Lee, S.J., and Gilliland, D.G. 2005. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4): 387–397.PubMedCrossRefGoogle Scholar
  58. Levine, R.L., Pardanani, A., Tefferi, A., and Gilliland, D.G. 2007. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 7(9): 673–683.PubMedCrossRefGoogle Scholar
  59. Liao, A.H., Li, C.H., Li, P.C., and Cheng, W.F. 2005. Non-Invasive Imaging of Small-Animal Tumors: High-Frequency Ultrasound vs. MicroPET. Conf Proc IEEE Eng Med Biol Soc 6: 5695–5698.PubMedGoogle Scholar
  60. Loh, M.L., Vattikuti, S., Schubbert, S., Reynolds, M.G., Carlson, E., Lieuw, K.H., Cheng, J.W., Lee, C.M., Stokoe, D., Bonifas, J.M., Curtiss, N.P., Gotlib, J., Meshinchi, S., Le Beau, M.M., Emanuel, P.D., and Shannon, K.M. 2004. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 103(6): 2325–2331.PubMedCrossRefGoogle Scholar
  61. Longley, B.J., Tyrrell, L., Lu, S.Z., Ma, Y.S., Langley, K., Ding, T.G., Duffy, T., Jacobs, P., Tang, L.H., and Modlin, I. 1996. Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet 12(3): 312–314.PubMedCrossRefGoogle Scholar
  62. MacKenzie, K.L., Dolnikov, A., Millington, M., Shounan, Y., and Symonds, G. 1999. Mutant N-ras induces myeloproliferative disorders and apoptosis in bone marrow repopulated mice. Blood 93(6): 2043–2056.PubMedGoogle Scholar
  63. Mebius, R.E. and Kraal, G. 2005. Structure and function of the spleen. Nat Rev 5(8): 606–616.CrossRefGoogle Scholar
  64. Mercher, T., Wernig, G., Moore, S.A., Levine, R.L., Gu, T.L., Frohling, S., Cullen, D., Polakiewicz, R.D., Bernard, O.A., Boggon, T.J., Lee, B.H., and Gilliland, D.G. 2006. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 108(8): 2770–2779.PubMedCrossRefGoogle Scholar
  65. Mohi, M.G., Williams, I.R., Dearolf, C.R., Chan, G., Kutok, J.L., Cohen, S., Morgan, K., Boulton, C., Shigematsu, H., Keilhack, H., Akashi, K., Gilliland, D.G., and Neel, B.G. 2005. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 7(2): 179–191.PubMedCrossRefGoogle Scholar
  66. Moreau-Gachelin, F., Tavitian, A., and Tambourin, P. 1988. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331(6153): 277–280.PubMedCrossRefGoogle Scholar
  67. Moreau-Gachelin, F., Wendling, F., Molina, T., Denis, N., Titeux, M., Grimber, G., Briand, P., Vainchenker, W., and Tavitian, A. 1996. Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol Cell Biol 16(5): 2453–2463.PubMedGoogle Scholar
  68. Morse, H.C., 3rd, Anver, M.R., Fredrickson, T.N., Haines, D.C., Harris, A.W., Harris, N.L., Jaffe, E.S., Kogan, S.C., MacLennan, I.C., Pattengale, P.K., and Ward, J.M. 2002. Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 100(1): 246–258.PubMedCrossRefGoogle Scholar
  69. Nerlov, C. 2004. C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer 4(5): 394–400.PubMedCrossRefGoogle Scholar
  70. Paietta, E., Ferrando, A.A., Neuberg, D., Bennett, J.M., Racevskis, J., Lazarus, H., Dewald, G., Rowe, J.M., Wiernik, P.H., Tallman, M.S., and Look, A.T. 2004. Activating FLT3 Mutations in CD117/KIT PositiveT-Cell Acute Lymphoblastic Leukemias. Blood 104(2): 558–60.Google Scholar
  71. Pardanani, A.D., Levine, R.L., Lasho, T., Pikman, Y., Mesa, R.A., Wadleigh, M., Steensma, D.P., Elliott, M.A., Wolanskyj, A.P., Hogan, W.J., McClure, R.F., Litzow, M.R., Gilliland, D.G., and Tefferi, A. 2006. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108(10): 3472–3476.PubMedCrossRefGoogle Scholar
  72. Peeters, P., Raynaud, S.D., Cools, J., Wlodarska, I., Grosgeorge, J., Philip, P., Monpoux, F., Van Rompaey, L., Baens, M., Van den Berghe, H., and Marynen, P. 1997. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90(7): 2535–2540.PubMedGoogle Scholar
  73. Peng, C., Brain, J., Hu, Y., Goodrich, A., Kong, L., Grayzel, D., Pak, R., Read, M., and Li, S. 2007. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL- T315I-induced leukemia and suppresses leukemic stem cells. Blood 110(2): 678–685.PubMedCrossRefGoogle Scholar
  74. Pikman, Y., Lee, B.H., Mercher, T., McDowell, E., Ebert, B.L., Gozo, M., Cuker, A., Wernig, G., Moore, S., Galinsky, I., Deangelo, D.J., Clark, J.J., Lee, S.J., Golub, T.R., Wadleigh, M., Gilliland, D.G., and Levine, R.L. 2006. MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia. PLoS Med 3(7): e270.PubMedCrossRefGoogle Scholar
  75. Rawat, V.P., Cusan, M., Deshpande, A., Hiddemann, W., Quintanilla-Martinez, L., Humphries, R.K., Bohlander, S.K., Feuring-Buske, M., and Buske, C. 2004. Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia. Proc Natl Acad Sci USA 101(3): 817–822.PubMedCrossRefGoogle Scholar
  76. Rhoades, K.L., Hetherington, C.J., Harakawa, N., Yergeau, D.A., Zhou, L., Liu, L.Q., Little, M.T., Tenen, D.G., and Zhang, D.E. 2000. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 96(6): 2108–2115.PubMedGoogle Scholar
  77. Rosenbauer, F., Wagner, K., Kutok, J.L., Iwasaki, H., Le Beau, M.M., Okuno, Y., Akashi, K., Fiering, S., and Tenen, D.G. 2004. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36(6): 624–630.PubMedCrossRefGoogle Scholar
  78. Sakaki K. 1961. Hematological comparison of the mouse blood taken from the eye and the tail. Exp Anim 10:14–19.Google Scholar
  79. Schessl, C., Rawat, V.P., Cusan, M., Deshpande, A., Kohl, T.M., Rosten, P.M., Spiekermann, K., Humphries, R.K., Schnittger, S., Kern, W., Hiddemann, W., Quintanilla-Martinez, L., Bohlander, S.K., Feuring-Buske, M., and Buske, C. 2005. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 115(8): 2159–2168.PubMedCrossRefGoogle Scholar
  80. Scholl, C., Bansal, D., Dohner, K., Eiwen, K., Huntly, B.J., Lee, B.H., Rucker, F.G., Schlenk, R.F., Bullinger, L., Dohner, H., Gilliland, D.G., and Frohling, S. 2007. The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J Clin Invest 117(4): 1037–1048.PubMedCrossRefGoogle Scholar
  81. Schwaller, J., Frantsve, J., Aster, J., Williams, I.R., Tomasson, M.H., Ross, T.S., Peeters, P., Van Rompaey, L., Van Etten, R.A., Ilaria, R., Jr., Marynen, P., and Gilliland, D.G. 1998. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. Embo J 17(18): 5321–5333.PubMedCrossRefGoogle Scholar
  82. Scott, L.M., Tong, W., Levine, R.L., Scott, M.A., Beer, P.A., Stratton, M.R., Futreal, P.A., Erber, W.N., McMullin, M.F., Harrison, C.N., Warren, A.J., Gilliland, D.G., Lodish, H.F., and Green, A.R. 2007. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356(5): 459–468.PubMedCrossRefGoogle Scholar
  83. Socolovsky, M., Nam, H., Fleming, M.D., Haase, V.H., Brugnara, C., and Lodish, H.F. 2001. Ineffective erythropoiesis in Stat5a(–/–)5b(–/–) mice due to decreased survival of early erythroblasts. Blood 98(12): 3261–3273.PubMedCrossRefGoogle Scholar
  84. Sohal, J., Phan, V.T., Chan, P.V., Davis, E.M., Patel, B., Kelly, L.M., Abrams, T.J., O'Farrell, A.M., Gilliland, D.G., Le Beau, M.M., and Kogan, S.C. 2003. A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood 101(8): 3188–3197.PubMedCrossRefGoogle Scholar
  85. Stover, E.H., Chen, J., Lee, B.H., Cools, J., McDowell, E., Adelsperger, J., Cullen, D., Coburn, A., Moore, S.A., Okabe, R., Fabbro, D., Manley, P.W., Griffin, J.D., and Gilliland, D.G. 2005. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL- PDGFRbeta and FIP1L1-PDGFRalpha in vitro and in vivo. Blood 106(9): 3206–3213.PubMedCrossRefGoogle Scholar
  86. Tartaglia, M., Martinelli, S., Cazzaniga, G., Cordeddu, V., Iavarone, I., Spinelli, M., Palmi, C., Carta, C., Pession, A., Arico, M., Masera, G., Basso, G., Sorcini, M., Gelb, B.D., and Biondi, A. 2004. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 104(2): 307–313.PubMedCrossRefGoogle Scholar
  87. Tatsumi, T., Huang, J., Gooding, W.E., Gambotto, A., Robbins, P.D., Vujanovic, N.L., Alber, S.M., Watkins, S.C., Okada, H., and Storkus, W.J. 2003. Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 63(19): 6378–6386.PubMedGoogle Scholar
  88. Tomasson, M.H., Williams, I.R., Hasserjian, R., Udomsakdi, C., McGrath, S.M., Schwaller, J., Druker, B., and Gilliland, D.G. 1999. TEL/PDGFbetaR induces hematologic malignancies in mice that respond to a specific tyrosine kinase inhibitor. Blood 93(5): 1707–1714.PubMedGoogle Scholar
  89. Tomasson, M.H., Williams, I.R., Li, S., Kutok, J., Cain, D., Gillessen, S., Dranoff, G., Van Etten, R.A., and Gilliland, D.G. 2001. Induction of myeloproliferative disease in mice by tyrosine kinase fusion oncogenes does not require granulocyte-macrophage colony-stimulating factor or interleukin-3. Blood 97(5): 1435–1441.PubMedCrossRefGoogle Scholar
  90. Wagner, K., Zhang, P., Rosenbauer, F., Drescher, B., Kobayashi, S., Radomska, H.S., Kutok, J.L., Gilliland, D.G., Krauter, J., and Tenen, D.G. 2006. Absence of the transcription factor CCAAT enhancer binding protein alpha results in loss of myeloid identity in bcr/abl-induced malignancy. Proc Natl Acad Sci USA 103(16): 6338–6343.PubMedCrossRefGoogle Scholar
  91. Weisberg, E., Boulton, C., Kelly, L.M., Manley, P., Fabbro, D., Meyer, T., Gilliland, D.G., and Griffin, J.D. 2002. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1(5): 433–443.PubMedCrossRefGoogle Scholar
  92. Weisberg, E., Manley, P.W., Breitenstein, W., Bruggen, J., Cowan-Jacob, S.W., Ray, A., Huntly, B., Fabbro, D., Fendrich, G., Hall-Meyers, E., Kung, A.L., Mestan, J., Daley, G.Q., Callahan, L., Catley, L., Cavazza, C., Azam, M., Neuberg, D., Wright, R.D., Gilliland, D.G., and Griffin, J.D. 2005. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7(2): 129–141.PubMedCrossRefGoogle Scholar
  93. Wernig, G., Mercher, T., Okabe, R., Levine, R.L., Lee, B.H., and Gilliland, D.G. 2006. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107(11): 4274–4281.PubMedCrossRefGoogle Scholar
  94. Westervelt, P., Lane, A.A., Pollock, J.L., Oldfather, K., Holt, M.S., Zimonjic, D.B., Popescu, N.C., DiPersio, J.F., and Ley, T.J. 2003. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 102(5): 1857–1865.PubMedCrossRefGoogle Scholar
  95. Wolff, N.C. and Ilaria, R.L., Jr. 2001. Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 98(9): 2808–2816.PubMedCrossRefGoogle Scholar
  96. Wong, S. and Witte, O.N. 2001. Modeling Philadelphia chromosome positive leukemias. Oncogene 20(40): 5644–5659.PubMedCrossRefGoogle Scholar
  97. Yamada, Y., Rothenberg, M.E., Lee, A.W., Akei, H.S., Brandt, E.B., Williams, D.A., and Cancelas, J.A. 2006. The FIP1L1-PDGFRA fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease. Blood 107(10): 4071–4079.PubMedCrossRefGoogle Scholar
  98. Zaleskas, V.M., Krause, D.S., Lazarides, K., Patel, N., Hu, Y., Li, S., and Van Etten, R.A. 2006. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE 1: e18.PubMedCrossRefGoogle Scholar
  99. Zhang, D.E., Zhang, P., Wang, N.D., Hetherington, C.J., Darlington, G.J., and Tenen, D.G. 1997. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 94(2): 569–574.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Benjamin H. Lee
  • Jeffery L. Kutok
    • 1
  1. 1.Brigham and Women’s Hospital, Harvard Medical SchoolDepartment of PathologyBostonUSA

Personalised recommendations