Genetic Modeling of Human Blood Cancers in Mice

  • Yiguo Hu
  • Shaoguang Li


Acute Myeloid Leukemia Chronic Lymphocytic Leukemia Chronic Myeloid Leukemia Acute Promyelocytic Leukemia Internal Tandem Duplication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arron, J.R., Pewzner-Jung, Y., Walsh, M.C., Kobayashi, T., and Choi, Y. (2002). Regulation of the subcellular localization of tumor necrosis factor receptor-associated factor (TRAF)2 by TRAF1 reveals mechanisms of TRAF2 signaling. J Exp Med 196, 923–934.PubMedGoogle Scholar
  2. Bernardin, F., Yang, Y., Cleaves, R., Zahurak, M., Cheng, L., Civin, C.I., and Friedman, A.D. (2002). TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Res 62, 3904–3908.PubMedGoogle Scholar
  3. Bernardin-Fried, F., Kummalue, T., Leijen, S., Collector, M.I., Ravid, K., and Friedman, A.D. (2004). AML1/RUNX1 increases during G1 to S cell cycle progression independent of cytokine-dependent phosphorylation and induces cyclin D3 gene expression. J Biol Chem 279, 15678–15687.PubMedGoogle Scholar
  4. Bhatia, A., Dash, S., Varma, N., and Marwaha, R.K. (2007). Fanconi anemia presenting as acute myeloid leukemia: a case report. Indian J Pathol Microbiol 50, 441–443.Google Scholar
  5. Bichi, R., Shinton, S.A., Martin, E.S., Koval, A., Calin, G.A., Cesari, R., Russo, G., Hardy, R.R., and Croce, C.M. (2002). Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 99, 6955–6960.PubMedGoogle Scholar
  6. Borkhardt, A., Haas, O.A., Strobl, W., Repp, R., Mann, G., Gadner, H., and Lampert, F. (1995a). A novel type of MLL/AF10 fusion transcript in a child with acute megakaryocytic leukemia (AML-M7). Leukemia 9, 1796–1797.Google Scholar
  7. Borkhardt, A., Mitteis, M., Brettreich, S., Schlieben, S., Hammermann, J., Repp, R., Kreuder, J., Buchen, U., and Lampert, F. (1995b). Rapid synthesis of hybrid RNA molecules associated with leukemia-specific chromosomal translocations. Leukemia 9, 719–722.Google Scholar
  8. Borrow, J., Stanton, V.P., Jr., Andresen, J.M., Becher, R., Behm, F.G., Chaganti, R.S., Civin, C.I., Disteche, C., Dube, I., Frischauf, A.M., et al. (1996). The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14, 33–41.PubMedGoogle Scholar
  9. Bowen, D.T., Frew, M.E., Hills, R., Gale, R.E., Wheatley, K., Groves, M.J., Langabeer, S.E., Kottaridis, P.D., Moorman, A.V., Burnett, A.K., et al. (2005). RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 106, 2113–2119.PubMedGoogle Scholar
  10. Braun, B.S., Tuveson, D.A., Kong, N., Le, D.T., Kogan, S.C., Rozmus, J., Le Beau, M.M., Jacks, T.E., and Shannon, K.M. (2004). Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 101, 597–602.PubMedGoogle Scholar
  11. Buijs, A., Sherr, S., van Baal, S., van Bezouw, S., van der Plas, D., Geurts van Kessel, A., Riegman, P., Lekanne Deprez, R., Zwarthoff, E., Hagemeijer, A., et al. (1995). Translocation (12;22)(p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11. Oncogene 10, 1511–1519.PubMedGoogle Scholar
  12. Burel, S.A., Harakawa, N., Zhou, L., Pabst, T., Tenen, D.G., and Zhang, D.E. (2001). Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation. Mol Cell Biol 21, 5577–5590.PubMedGoogle Scholar
  13. Callens, C., Chevret, S., Cayuela, J.M., Cassinat, B., Raffoux, E., de Botton, S., Thomas, X., Guerci, A., Fegueux, N., Pigneux, A., et al. (2005). Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia 19, 1153–1160.PubMedGoogle Scholar
  14. Carapeti, M., Aguiar, R.C., Goldman, J.M., and Cross, N.C. (1998). A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91, 3127–3133.PubMedGoogle Scholar
  15. Castellanos, A., Pintado, B., Weruaga, E., Arevalo, R., Lopez, A., Orfao, A., and Sanchez-Garcia, I. (1997). A BCR-ABL(p190) fusion gene made by homologous recombination causes B-cell acute lymphoblastic leukemias in chimeric mice with independence of the endogenous bcr product. Blood 90, 2168–2174.PubMedGoogle Scholar
  16. Chaffanet, M., Gressin, L., Preudhomme, C., Soenen-Cornu, V., Birnbaum, D., and Pebusque, M.J. (2000). MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 28, 138–144.PubMedGoogle Scholar
  17. Chan, I.T., Kutok, J.L., Williams, I.R., Cohen, S., Kelly, L., Shigematsu, H., Johnson, L., Akashi, K., Tuveson, D.A., Jacks, T., et al. (2004). Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 113, 528–538.PubMedGoogle Scholar
  18. Chan, I.T., Kutok, J.L., Williams, I.R., Cohen, S., Moore, S., Shigematsu, H., Ley, T.J., Akashi, K., Le Beau, M.M., and Gilliland, D.G. (2006). Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 108, 1708–1715.PubMedGoogle Scholar
  19. Chen, W., Li, Q., Hudson, W.A., Kumar, A., Kirchhof, N., and Kersey, J.H. (2006). A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 108, 669–677.PubMedGoogle Scholar
  20. Chiarle, R., Gong, J.Z., Guasparri, I., Pesci, A., Cai, J., Liu, J., Simmons, W.J., Dhall, G., Howes, J., Piva, R., et al. (2003). NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101, 1919–1927.PubMedGoogle Scholar
  21. Collins, S.J., Robertson, K.A., and Mueller, L. (1990). Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-alpha). Mol Cell Biol 10, 2154–2163.PubMedGoogle Scholar
  22. Corral, J., Forster, A., Thompson, S., Lampert, F., Kaneko, Y., Slater, R., Kroes, W.G., van der Schoot, C.E., Ludwig, W.D., Karpas, A., et al. (1993). Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc Natl Acad Sci USA 90, 8538–8542.PubMedGoogle Scholar
  23. Dahia, P.L., Aguiar, R.C., Alberta, J., Kum, J.B., Caron, S., Sill, H., Marsh, D.J., Ritz, J., Freedman, A., Stiles, C., et al. (1999). PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet 8, 185–193.PubMedGoogle Scholar
  24. Daley, G.Q., Van Etten, R.A., and Baltimore, D. (1990). Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247, 824–830.PubMedGoogle Scholar
  25. Dawson, M.I., Elstner, E., Kizaki, M., Chen, D.L., Pakkala, S., Kerner, B., and Koeffler, H.P. (1994). Myeloid differentiation mediated through retinoic acid receptor/retinoic X receptor (RXR) not RXR/RXR pathway. Blood 84, 446–452.PubMedGoogle Scholar
  26. de Guzman, C.G., Warren, A.J., Zhang, Z., Gartland, L., Erickson, P., Drabkin, H., Hiebert, S.W., and Klug, C.A. (2002). Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 22, 5506–5517.PubMedGoogle Scholar
  27. Deguchi, K., Ayton, P.M., Carapeti, M., Kutok, J.L., Snyder, C.S., Williams, I.R., Cross, N.C., Glass, C.K., Cleary, M.L., and Gilliland, D.G. (2003). MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3, 259–271.PubMedGoogle Scholar
  28. Demarest, S.J., Martinez-Yamout, M., Chung, J., Chen, H., Xu, W., Dyson, H.J., Evans, R.M., and Wright, P.E. (2002). Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549–553.PubMedGoogle Scholar
  29. DiMartino, J.F., Miller, T., Ayton, P.M., Landewe, T., Hess, J.L., Cleary, M.L., and Shilatifard, A. (2000). A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood 96, 3887–3893.PubMedGoogle Scholar
  30. Ding, X.F., Anderson, C.M., Ma, H., Hong, H., Uht, R.M., Kushner, P.J., and Stallcup, M.R. (1998). Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol Endocrinol 12, 302–313.PubMedGoogle Scholar
  31. Dobson, C.L., Warren, A.J., Pannell, R., Forster, A., Lavenir, I., Corral, J., Smith, A.J., and Rabbitts, T.H. (1999). The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. Embo J 18, 3564–3574.PubMedGoogle Scholar
  32. Domer, P.H., Fakharzadeh, S.S., Chen, C.S., Jockel, J., Johansen, L., Silverman, G.A., Kersey, J.H., and Korsmeyer, S.J. (1993). Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc Natl Acad Sci USA 90, 7884–7888.PubMedGoogle Scholar
  33. Fenrick, R., Amann, J.M., Lutterbach, B., Wang, L., Westendorf, J.J., Downing, J.R., and Hiebert, S.W. (1999). Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol Cell Biol 19, 6566–6574.PubMedGoogle Scholar
  34. Fenske, T.S., Pengue, G., Mathews, V., Hanson, P.T., Hamm, S.E., Riaz, N., and Graubert, T.A. (2004). Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA 101, 15184–15189.PubMedGoogle Scholar
  35. Fischer, M., Schwieger, M., Horn, S., Niebuhr, B., Ford, A., Roscher, S., Bergholz, U., Greaves, M., Lohler, J., and Stocking, C. (2005). Defining the oncogenic function of the TEL/AML1 (ETV6/RUNX1) fusion protein in a mouse model. Oncogene 24, 7579–7591.PubMedGoogle Scholar
  36. Ford, A.M., Bennett, C.A., Price, C.M., Bruin, M.C., Van Wering, E.R., and Greaves, M. (1998). Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 95, 4584–4588.PubMedGoogle Scholar
  37. Glass, C.K., Rose, D.W., and Rosenfeld, M.G. (1997). Nuclear receptor coactivators. Curr Opin Cell Biol 9, 222–232.PubMedGoogle Scholar
  38. Golub, T.R., Barker, G.F., Bohlander, S.K., Hiebert, S.W., Ward, D.C., Bray-Ward, P., Morgan, E., Raimondi, S.C., Rowley, J.D., and Gilliland, D.G. (1995). Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 92, 4917–4921.PubMedGoogle Scholar
  39. Golub, T.R., Barker, G.F., Lovett, M., and Gilliland, D.G. (1994). Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77, 307–316.PubMedGoogle Scholar
  40. Grisolano, J.L., Wesselschmidt, R.L., Pelicci, P.G., and Ley, T.J. (1997). Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 89, 376–387.PubMedGoogle Scholar
  41. Heery, D.M., Kalkhoven, E., Hoare, S., and Parker, M.G. (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736.PubMedGoogle Scholar
  42. Hess, J.L., and Hug, B.A. (2004). Fusion-protein truncation provides new insights into leukemogenesis. Proc Natl Acad Sci USA 101, 16985–16986.PubMedGoogle Scholar
  43. Hess, M., Huggins, M.B., Mudzamiri, R., and Heincz, U. (2004). Avian metapneumovirus excretion in vaccinated and non-vaccinated specified pathogen free laying chickens. Avian Pathol 33, 35–40.PubMedGoogle Scholar
  44. Higuchi, M., O'Brien, D., Kumaravelu, P., Lenny, N., Yeoh, E.J., and Downing, J.R. (2002). Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1, 63–74.PubMedGoogle Scholar
  45. Honda, H., Inaba, T., Suzuki, T., Oda, H., Ebihara, Y., Tsuiji, K., Nakahata, T., Ishikawa, T., Yazaki, Y., and Hirai, H. (1999). Expression of E2A-HLF chimeric protein induced T-cell apoptosis, B-cell maturation arrest, and development of acute lymphoblastic leukemia. Blood 93, 2780–2790.PubMedGoogle Scholar
  46. Horwitz, K.B., Jackson, T.A., Bain, D.L., Richer, J.K., Takimoto, G.S., and Tung, L. (1996). Nuclear receptor coactivators and corepressors. Mol Endocrinol 10, 1167–1177.PubMedGoogle Scholar
  47. Hunger, S.P., Ohyashiki, K., Toyama, K., and Cleary, M.L. (1992). Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev 6, 1608–1620.PubMedGoogle Scholar
  48. Ichikawa, H., Shimizu, K., Hayashi, Y., and Ohki, M. (1994). An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 54, 2865–2868.PubMedGoogle Scholar
  49. Ida, K., Kitabayashi, I., Taki, T., Taniwaki, M., Noro, K., Yamamoto, M., Ohki, M., and Hayashi, Y. (1997). Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 90, 4699–4704.PubMedGoogle Scholar
  50. Imamura, T., Kakazu, N., Hibi, S., Morimoto, A., Fukushima, Y., Ijuin, I., Hada, S., Kitabayashi, I., Abe, T., and Imashuku, S. (2003). Rearrangement of the MOZ gene in pediatric therapy-related myelodysplastic syndrome with a novel chromosomal translocation t(2;8)(p23;p11). Genes Chromosomes Cancer 36, 413–419.PubMedGoogle Scholar
  51. Jackson, E.L., Willis, N., Mercer, K., Bronson, R.T., Crowley, D., Montoya, R., Jacks, T., and Tuveson, D.A. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15, 3243–3248.PubMedGoogle Scholar
  52. Jager, R., Hahne, J., Jacob, A., Egert, A., Schenkel, J., Wernert, N., Schorle, H., and Wellmann, A. (2005). Mice transgenic for NPM-ALK develop non-Hodgkin lymphomas. Anticancer Res 25, 3191–3196.PubMedGoogle Scholar
  53. Joh, T., Yamamoto, K., Kagami, Y., Kakuda, H., Sato, T., Yamamoto, T., Takahashi, T., Ueda, R., Kaibuchi, K., and Seto, M. (1997). Chimeric MLL products with a Ras binding cytoplasmic protein AF6 involved in t(6;11)(q27;q23) leukemia localize in the nucleus. Oncogene 15, 1681–1687.PubMedGoogle Scholar
  54. Kamps, M.P., Look, A.T., and Baltimore, D. (1991). The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev 5, 358–368.PubMedGoogle Scholar
  55. Katsumata, M., Siegel, R.M., Louie, D.C., Miyashita, T., Tsujimoto, Y., Nowell, P.C., Greene, M.I., and Reed, J.C. (1992). Differential effects of Bcl-2 on T and B cells in transgenic mice. Proc Natl Acad Sci USA 89, 11376–11380.PubMedGoogle Scholar
  56. Kelly, L.M., Kutok, J.L., Williams, I.R., Boulton, C.L., Amaral, S.M., Curley, D.P., Ley, T.J., and Gilliland, D.G. (2000a). PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 99, 8283–8288.Google Scholar
  57. Kelly, L.M., Liu, Q., Kutok, J.L., Williams, I.R., Boulton, C.L., and Gilliland, D.G. (2002b). FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 99, 310–318.Google Scholar
  58. Kitabayashi, I., Aikawa, Y., Nguyen, L.A., Yokoyama, A., and Ohki, M. (2001a). Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. Embo J 20, 7184–7196.Google Scholar
  59. Kitabayashi, I., Aikawa, Y., Yokoyama, A., Hosoda, F., Nagai, M., Kakazu, N., Abe, T., and Ohki, M. (2001b). Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia 15, 89–94.Google Scholar
  60. Kitabayashi, I., Yokoyama, A., Shimizu, K., and Ohki, M. (1998). Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. Embo J 17, 2994–3004.PubMedGoogle Scholar
  61. Kong, X.T., Ida, K., Ichikawa, H., Shimizu, K., Ohki, M., Maseki, N., Kaneko, Y., Sako, M., Kobayashi, Y., Tojou, A., et al. (1997). Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood 90, 1192–1199.PubMedGoogle Scholar
  62. Koschmieder, S., Gottgens, B., Zhang, P., Iwasaki-Arai, J., Akashi, K., Kutok, J.L., Dayaram, T., Geary, K., Green, A.R., Tenen, D.G., et al. (2005). Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 105, 324–334.PubMedGoogle Scholar
  63. Kottaridis, P.D., Gale, R.E., Frew, M.E., Harrison, G., Langabeer, S.E., Belton, A.A., Walker, H., Wheatley, K., Bowen, D.T., Burnett, A.K., et al. (2001). The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98, 1752–1759.PubMedGoogle Scholar
  64. Kroon, E., Thorsteinsdottir, U., Mayotte, N., Nakamura, T., and Sauvageau, G. (2001). NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. Embo J 20, 350–361.PubMedGoogle Scholar
  65. Kuefer, M.U., Look, A.T., Pulford, K., Behm, F.G., Pattengale, P.K., Mason, D.Y., and Morris, S.W. (1997). Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 90, 2901–2910.PubMedGoogle Scholar
  66. Kuhn, R., Schwenk, F., Aguet, M., and Rajewsky, K. (1995). Inducible gene targeting in mice. Science 269, 1427–1429.PubMedGoogle Scholar
  67. Kulkarni, S., Heath, C., Parker, S., Chase, A., Iqbal, S., Pocock, C.F., Kaeda, J., Cwynarski, K., Goldman, J.M., and Cross, N.C. (2000). Fusion of H4/D10S170 to the platelet-derived growth factor receptor beta in BCR-ABL-negative myeloproliferative disorders with a t(5;10)(q33;q21). Cancer Res 60, 3592–3598.PubMedGoogle Scholar
  68. Kuo, Y.H., Landrette, S.F., Heilman, S.A., Perrat, P.N., Garrett, L., Liu, P.P., Le Beau, M.M., Kogan, S.C., and Castilla, L.H. (2006). Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 9, 57–68.PubMedGoogle Scholar
  69. La Starza, R., Sambani, C., Crescenzi, B., Matteucci, C., Martelli, M.F., and Mecucci, C. (2001). AML1/MTG16 fusion gene from a t(16;21)(q24;q22) translocation in treatment-induced leukemia after breast cancer. Haematologica 86, 212–213.PubMedGoogle Scholar
  70. Lacronique, V., Boureux, A., Valle, V.D., Poirel, H., Quang, C.T., Mauchauffe, M., Berthou, C., Lessard, M., Berger, R., Ghysdael, J., et al. (1997). A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312.PubMedGoogle Scholar
  71. Landis, S.H., Murray, T., Bolden, S., and Wingo, P.A. (1998). Cancer statistics, 1998. CA Cancer J Clin 48, 6–29.PubMedGoogle Scholar
  72. Lee, S.Y., Reichlin, A., Santana, A., Sokol, K.A., Nussenzweig, M.C., and Choi, Y. (1997). TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival. Immunity 7, 703–713.PubMedGoogle Scholar
  73. Leo, C., and Chen, J.D. (2000). The SRC family of nuclear receptor coactivators. Gene 245, 1–11.PubMedGoogle Scholar
  74. Lessard, J., and Sauvageau, G. (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260.PubMedGoogle Scholar
  75. Levanon, D., Goldstein, R.E., Bernstein, Y., Tang, H., Goldenberg, D., Stifani, S., Paroush, Z., and Groner, Y. (1998). Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA 95, 11590–11595.PubMedGoogle Scholar
  76. Li, D.M., and Sun, H. (1998). PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA 95, 15406–15411.PubMedGoogle Scholar
  77. Li, S., Ilaria, R.L., Jr., Million, R.P., Daley, G.Q., and Van Etten, R.A. (1999). The P190, P210, and p230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 189, 1399–1412.PubMedGoogle Scholar
  78. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947.PubMedGoogle Scholar
  79. Liang, J., Prouty, L., Williams, B.J., Dayton, M.A., and Blanchard, K.L. (1998). Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92, 2118–2122.PubMedGoogle Scholar
  80. Lin, Y., Ryan, J., Lewis, J., Wani, M.A., Lingrel, J.B., and Liu, Z.G. (2003). TRAF2 exerts its antiapoptotic effect by regulating the expression of Kruppel-like factor LKLF. Mol Cell Biol 23, 5849–5856.PubMedGoogle Scholar
  81. Liu, P., Tarle, S.A., Hajra, A., Claxton, D.F., Marlton, P., Freedman, M., Siciliano, M.J., and Collins, F.S. (1993). Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 261, 1041–1044.PubMedGoogle Scholar
  82. Liu, P.P., Wijmenga, C., Hajra, A., Blake, T.B., Kelley, C.A., Adelstein, R.S., Bagg, A., Rector, J., Cotelingam, J., Willman, C.L., et al. (1996). Identification of the chimeric protein product of the CBFβ-MYH11 fusion gene in inv(16) leukemia cells. Genes Chromosomes Cancer 16, 77–87.PubMedGoogle Scholar
  83. Lou, J., Cao, W., Bernardin, F., Ayyanathan, K., Rauscher, I.F., and Friedman, A.D. (2000). Exogenous cdk4 overcomes reduced cdk4 RNA and inhibition of G1 progression in hematopoietic cells expressing a dominant-negative CBF – a model for overcoming inhibition of proliferation by CBF oncoproteins. Oncogene 19, 2695–2703.PubMedGoogle Scholar
  84. Lutterbach, B., Westendorf, J.J., Linggi, B., Patten, A., Moniwa, M., Davie, J.R., Huynh, K.D., Bardwell, V.J., Lavinsky, R.M., Rosenfeld, M.G., et al. (1998). ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 18, 7176–7184.PubMedGoogle Scholar
  85. Ma, Z., Morris, S.W., Valentine, V., Li, M., Herbrick, J.A., Cui, X., Bouman, D., Li, Y., Mehta, P.K., Nizetic, D., et al. (2001). Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 28, 220–221.PubMedGoogle Scholar
  86. Maki, K., Yamagata, T., Asai, T., Yamazaki, I., Oda, H., Hirai, H., and Mitani, K. (2005). Dysplastic definitive hematopoiesis in AML1/EVI1 knock-in embryos. Blood 106, 2147–2155.PubMedGoogle Scholar
  87. Mercher, T., Coniat, M.B., Monni, R., Mauchauffe, M., Nguyen Khac, F., Gressin, L., Mugneret, F., Leblanc, T., Dastugue, N., Berger, R., et al. (2001). Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc Natl Acad Sci USA 98, 5776–5779.PubMedGoogle Scholar
  88. Meyers, S., Downing, J.R., and Hiebert, S.W. (1993). Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the Runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 13, 6336–6345.PubMedGoogle Scholar
  89. Miething, C., Grundler, R., Fend, F., Hoepfl, J., Mugler, C., von Schilling, C., Morris, S.W., Peschel, C., and Duyster, J. (2003). The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) induces two distinct malignant phenotypes in a murine retroviral transplantation model. Oncogene 22, 4642–4647.PubMedGoogle Scholar
  90. Munzert, G., Kirchner, D., Stobbe, H., Bergmann, L., Schmid, R.M., Dohner, H., and Heimpel, H. (2002). Tumor necrosis factor receptor-associated factor 1 gene overexpression in B-cell chronic lymphocytic leukemia: analysis of NF-kappa B/Rel-regulated inhibitors of apoptosis. Blood 100, 3749–3756.PubMedGoogle Scholar
  91. Murray, R.J., O’ReillyR.J., Cannell, P, French, M.A. (1999). B-cell acute lymphoblastic leukaemia in HIV infection. Annu Conf Australas Soc HIV Med, 11.Google Scholar
  92. Nakamura, T., Largaespada, D.A., Lee, M.P., Johnson, L.A., Ohyashiki, K., Toyama, K., Chen, S.J., Willman, C.L., Chen, I.M., Feinberg, A.P., et al. (1996). Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 12, 154–158.PubMedGoogle Scholar
  93. Nakazato, H., Shiozaki, H., Zhou, M., Nakatsu, M., Motoji, T., Mizoguchi, H., Miyawaki, S., and Sato, Y. (2001). TEL/MN1 fusion in a de novo acute myeloid leukaemia-M2 patient who showed strong resistance to treatment. Br J Haematol 113, 1079–1081.PubMedGoogle Scholar
  94. Narducci, M.G., Pescarmona, E., Lazzeri, C., Signoretti, S., Lavinia, A.M., Remotti, D., Scala, E., Baroni, C.D., Stoppacciaro, A., Croce, C.M., et al. (2000). Regulation of TCL1 expression in B- and T-cell lymphomas and reactive lymphoid tissues. Cancer Res 60, 2095–2100.PubMedGoogle Scholar
  95. Narducci, M.G., Stoppacciaro, A., Imada, K., Uchiyama, T., Virgilio, L., Lazzeri, C., Croce, C.M., and Russo, G. (1997). TCL1 is overexpressed in patients affected by adult T-cell leukemias. Cancer Res 57, 5452–5456.PubMedGoogle Scholar
  96. Odero, M.D., Vizmanos, J.L., Roman, J.P., Lahortiga, I., Panizo, C., Calasanz, M.J., Zeleznik-Le, N.J., Rowley, J.D., and Novo, F.J. (2002). A novel gene, MDS2, is fused to ETV6/TEL in a t(1;12)(p36.1;p13) in a patient with myelodysplastic syndrome. Genes Chromosomes Cancer 35, 11–19.PubMedGoogle Scholar
  97. Okuda, T., Cai, Z., Yang, S., Lenny, N., Lyu, C.J., van Deursen, J.M., Harada, H., and Downing, J.R. (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 91, 3134–3143.PubMedGoogle Scholar
  98. Okuda, T., Takeda, K., Fujita, Y., Nishimura, M., Yagyu, S., Yoshida, M., Akira, S., Downing, J.R., and Abe, T. (2000). Biological characteristics of the leukemia-associated transcriptional factor AML1 disclosed by hematopoietic rescue of AML1-deficient embryonic stem cells by using a knock-in strateby. Mol Cell Biol 20, 319–328.PubMedGoogle Scholar
  99. Onodera, M., Kunisada, T., Nishikawa, S., Sakiyama, Y., Matsumoto, S., and Nishikawa, S. (1995). Overexpression of retinoic acid receptor alpha suppresses myeloid cell differentiation at the promyelocyte stage. Oncogene 11, 1291–1298.PubMedGoogle Scholar
  100. Pabst, T., Mueller, B.U., Harakawa, N., Schoch, C., Haferlach, T., Behre, G., Hiddemann, W., Zhang, D.E., and Tenen, D.G. (2001). AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 7, 444–451.PubMedGoogle Scholar
  101. Panagopoulos, I., Aman, P., Fioretos, T., Hoglund, M., Johansson, B., Mandahl, N., Heim, S., Behrendtz, M., and Mitelman, F. (1994). Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 11, 256–262.PubMedGoogle Scholar
  102. Panagopoulos, I., Fioretos, T., Isaksson, M., Samuelsson, U., Billstrom, R., Strombeck, B., Mitelman, F., and Johansson, B. (2001). Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10, 395–404.PubMedGoogle Scholar
  103. Papadopoulos, P., Ridge, S.A., Boucher, C.A., Stocking, C., and Wiedemann, L.M. (1995). The novel activation of ABL by fusion to an ets-related gene, TEL. Cancer Res 55, 34–38.PubMedGoogle Scholar
  104. Park, I.K., Qian, D., Kiel, M., Becker, M.W., Pihalja, M., Weissman, I.L., Morrison, S.J., and Clarke, M.F. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305.PubMedGoogle Scholar
  105. Poiesz, B.J., Papsidero, L.D., Ehrlich, G., Sherman, M., Dube, S., Poiesz, M., Dillon, K., Ruscetti, F.W., Slamon, D., Fang, C., et al. (2001). Prevalence of HTLV-I-associated T-cell lymphoma. Am J Hematol 66, 32–38.PubMedGoogle Scholar
  106. Poirel, H., Rack, K., Delabesse, E., Radford-Weiss, I., Troussard, X., Debert, C., Leboeuf, D., Bastard, C., Picard, F., Veil-Buzyn, A., et al. (1996). Incidence and characterization of MLL gene (11q23) rearrangements in acute myeloid leukemia M1 and M5. Blood 87, 2496–2505.PubMedGoogle Scholar
  107. Raynaud, S.D., Baens, M., Grosgeorge, J., Rodgers, K., Reid, C.D., Dainton, M., Dyer, M., Fuzibet, J.G., Gratecos, N., Taillan, B., et al. (1996). Fluorescence in situ hybridization analysis of t(3; 12)(q26; p13): a recurring chromosomal abnormality involving the TEL gene (ETV6) in myelodysplastic syndromes. Blood 88, 682–689.PubMedGoogle Scholar
  108. Rego, E.M., Ruggero, D., Tribioli, C., Cattoretti, G., Kogan, S., Redner, R.L., and Pandolfi, P.P. (2006). Leukemia with distinct phenotypes in transgenic mice expressing PML/RAR alpha, PLZF/RAR alpha or NPM/RAR alpha. Oncogene 25, 1974–1979.PubMedGoogle Scholar
  109. Rhoades, K.L., Hetherington, C.J., Harakawa, N., Yergeau, D.A., Zhou, L., Liu, L.Q., Little, M.T., Tenen, D.G., and Zhang, D.E. (2000). Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 96, 2108–2115.PubMedGoogle Scholar
  110. Ritchie, K.A., Aprikyan, A.A., Bowen-Pope, D.F., Norby-Slycord, C.J., Conyers, S., Bartelmez, S., Sitnicka, E.H., and Hickstein, D.D. (1999). The Tel-PDGFRbeta fusion gene produces a chronic myeloproliferative syndrome in transgenic mice. Leukemia 13, 1790–1803.PubMedGoogle Scholar
  111. Rubnitz, J.E., Camitta, B.M., Mahmoud, H., Raimondi, S.C., Carroll, A.J., Borowitz, M.J., Shuster, J.J., Link, M.P., Pullen, D.J., Downing, J.R., et al. (1999). Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol 17, 191–196.PubMedGoogle Scholar
  112. Salomon-Nguyen, F., Busson-Le Coniat, M., Lafage Pochitaloff, M., Mozziconacci, J., Berger, R., and Bernard, O.A. (2000a). AML1-MTG16 fusion gene in therapy-related acute leukemia with t(16;21)(q24;q22): two new cases. Leukemia 14, 1704–1705.PubMedGoogle Scholar
  113. Salomon-Nguyen, F., Della-Valle, V., Mauchauffe, M., Busson-Le Coniat, M., Ghysdael, J., Berger, R., and Bernard, O.A. (2000b). The t(1;12)(q21;p13) translocation of human acute myeloblastic leukemia results in a TEL-ARNT fusion. Proc Natl Acad Sci USA 97, 6757–6762.Google Scholar
  114. Satake, N., Ishida, Y., Otoh, Y., Hinohara, S., Kobayashi, H., Sakashita, A., Maseki, N., and Kaneko, Y. (1997). Novel MLL-CBP fusion transcript in therapy-related chronic myelomonocytic leukemia with a t(11;16)(q23;p13) chromosome translocation. Genes Chromosomes Cancer 20, 60–63.PubMedGoogle Scholar
  115. Sawyers, C.L., and Denny, C.T. (1994). Chronic myelomonocytic leukemia: Tel-a-kinase what Ets all about. Cell 77, 171–173.PubMedGoogle Scholar
  116. Schwaller, J., Anastasiadou, E., Cain, D., Kutok, J., Wojiski, S., Williams, I.R., LaStarza, R., Crescenzi, B., Sternberg, D.W., Andreasson, P., et al. (2001). H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood 97, 3910–3918.PubMedGoogle Scholar
  117. Schwaller, J., Frantsve, J., Aster, J., Williams, I.R., Tomasson, M.H., Ross, T.S., Peeters, P., Van Rompaey, L., Van Etten, R.A., Ilaria, R., Jr., et al. (1998). Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. Embo J 17, 5321–5333.PubMedGoogle Scholar
  118. Schwaller, J., Parganas, E., Wang, D., Cain, D., Aster, J.C., Williams, I.R., Lee, C.K., Gerthner, R., Kitamura, T., Frantsve, J., et al. (2000). Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 6, 693–704.PubMedGoogle Scholar
  119. Sherr, C.J. (2004). Principles of tumor suppression. Cell 116, 235–246.PubMedGoogle Scholar
  120. Sobulo, O.M., Borrow, J., Tomek, R., Reshmi, S., Harden, A., Schlegelberger, B., Housman, D., Doggett, N.A., Rowley, J.D., and Zeleznik-Le, N.J. (1997). MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA 94, 8732–8737.PubMedGoogle Scholar
  121. Soekarman, D., von Lindern, M., Daenen, S., de Jong, B., Fonatsch, C., Heinze, B., Bartram, C., Hagemeijer, A., and Grosveld, G. (1992). The translocation (6;9)(p23;q34) shows consistent rearrangement of two genes and defines a myeloproliferative disorder with specific clinical features. Blood 79, 2990–2997.PubMedGoogle Scholar
  122. Stegmaier, K., Pendse, S., Barker, G.F., Bray-Ward, P., Ward, D.C., Montgomery, K.T., Krauter, K.S., Reynolds, C., Sklar, J., Donnelly, M., et al. (1995). Frequent loss of heterozygosity at the TEL gene locus in acute lymphoblastic leukemia of childhood. Blood 86, 38–44.PubMedGoogle Scholar
  123. Stirewalt, D.L., Kopecky, K.J., Meshinchi, S., Appelbaum, F.R., Slovak, M.L., Willman, C.L., and Radich, J.P. (2001). FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 97, 3589–3595.PubMedGoogle Scholar
  124. Strasser, A., Harris, A.W., and Cory, S. (1993). E mu-bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells. Oncogene 8, 1–9.PubMedGoogle Scholar
  125. Suzukawa, K., Shimizu, S., Nemoto, N., Takei, N., Taki, T., and Nagasawa, T. (2005). Identification of a chromosomal breakpoint and detection of a novel form of an MLL-AF17 fusion transcript in acute monocytic leukemia with t(11;17)(q23;q21). Int J Hematol 82, 38–41.PubMedGoogle Scholar
  126. Taki, T., Sako, M., Tsuchida, M., and Hayashi, Y. (1997). The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 89, 3945–3950.PubMedGoogle Scholar
  127. Takizawa, J., Suzuki, R., Kuroda, H., Utsunomiya, A., Kagami, Y., Joh, T., Aizawa, Y., Ueda, R., and Seto, M. (1998). Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia. Jpn J Cancer Res 89, 712–718.PubMedGoogle Scholar
  128. Tenen, D.G., Hromas, R., Licht, J.D., and Zhang, D.E. (1997). Transcription factors, normal myeloid development, and leukemia. Blood 90, 489–519.PubMedGoogle Scholar
  129. Thick, J., Metcalfe, J.A., Mak, Y.F., Beatty, D., Minegishi, M., Dyer, M.J., Lucas, G., and Taylor, A.M. (1996). Expression of either the TCL1 oncogene, or transcripts from its homologue MTCP1/c6.1B, in leukaemic and non-leukaemic T cells from ataxia telangiectasia patients. Oncogene 12, 379–386.PubMedGoogle Scholar
  130. Tomasson, M.H., Sternberg, D.W., Williams, I.R., Carroll, M., Cain, D., Aster, J.C., Ilaria, R.L., Jr., Van Etten, R.A., and Gilliland, D.G. (2000). Fatal myeloproliferation, induced in mice by TEL/PDGFbetaR expression, depends on PDGFbetaR tyrosines 579/581. J Clin Invest 105, 423–432.PubMedGoogle Scholar
  131. Torchia, J., Rose, D.W., Inostroza, J., Kamei, Y., Westin, S., Glass, C.K., and Rosenfeld, M.G. (1997). The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684.PubMedGoogle Scholar
  132. Tsai, S., and Collins, S.J. (1993). A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage. Proc Natl Acad Sci USA 90, 7153–7157.PubMedGoogle Scholar
  133. Tsuzuki, S., Seto, M., Greaves, M., and Enver, T. (2004). Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci USA 101, 8443–8448.PubMedGoogle Scholar
  134. Virgilio, L., Narducci, M.G., Isobe, M., Billips, L.G., Cooper, M.D., Croce, C.M., and Russo, G. (1994). Identification of the TCL1 gene involved in T-cell malignancies. Proc Natl Acad Sci USA 91, 12530–12534.PubMedGoogle Scholar
  135. von Lindern, M., Fornerod, M., van Baal, S., Jaegle, M., de Wit, T., Buijs, A., and Grosveld, G. (1992). The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 12, 1687–1697.Google Scholar
  136. Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V., and Baldwin, A.S., Jr. (1998). NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683.PubMedGoogle Scholar
  137. Westervelt, P., Lane, A.A., Pollock, J.L., Oldfather, K., Holt, M.S., Zimonjic, D.B., Popescu, N.C., DiPersio, J.F., and Ley, T.J. (2003). High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 102, 1857–1865.PubMedGoogle Scholar
  138. Wlodarska, I., Mecucci, C., Marynen, P., Guo, C., Franckx, D., La Starza, R., Aventin, A., Bosly, A., Martelli, M.F., Cassiman, J.J., et al. (1995). TEL gene is involved in myelodysplastic syndromes with either the typical t(5;12)(q33;p13) translocation or its variant t(10;12)(q24;p13). Blood 85, 2848–2852.PubMedGoogle Scholar
  139. Yamamoto, Y., Kiyoi, H., Nakano, Y., Suzuki, R., Kodera, Y., Miyawaki, S., Asou, N., Kuriyama, K., Yagasaki, F., Shimazaki, C., et al. (2001). Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97, 2434–2439.PubMedGoogle Scholar
  140. Yan, M., Burel, S.A., Peterson, L.F., Kanbe, E., Iwasaki, H., Boyapati, A., Hines, R., Akashi, K., and Zhang, D.E. (2004). Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci USA 101, 17186–17191.PubMedGoogle Scholar
  141. Yokota, S., Kiyoi, H., Nakao, M., Iwai, T., Misawa, S., Okuda, T., Sonoda, Y., Abe, T., Kahsima, K., Matsuo, Y., et al. (1997). Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 11, 1605–1609.PubMedGoogle Scholar
  142. Yuan, Y., Zhou, L., Miyamoto, T., Iwasaki, H., Harakawa, N., Hetherington, C.J., Burel, S.A., Lagasse, E., Weissman, I.L., Akashi, K., et al. (2001). AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 98, 10398–10403.PubMedGoogle Scholar
  143. Zapata, J.M., Krajewska, M., Krajewski, S., Kitada, S., Welsh, K., Monks, A., McCloskey, N., Gordon, J., Kipps, T.J., Gascoyne, R.D., et al. (2000). TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. J Immunol 165, 5084–5096.PubMedGoogle Scholar
  144. Zhang, J., Grindley, J.C., Yin, T., Jayasinghe, S., He, X.C., Ross, J.T., Haug, J.S., Rupp, D., Porter-Westpfahl, K.S., Wiedemann, L.M., et al. (2006). PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yiguo Hu
  • Shaoguang Li
    • 1
  1. 1.The Jackson LaboratoryBar HarborUSA

Personalised recommendations