Advertisement

DGL Global Strategies in DNA Microarray Gene Expression Analysis and Data Mining for Human Blood Cancers

  • Dongguang Li
Chapter

Introduction

Computation is required to extract meaningful information from the large amount of data generated by gene expression profiling [1, 2, 3]. Most of the algorithms commonly applied to microarray data analysis have been correlation-based approaches named cluster analysis [4]. For example, an efficient two-way clustering algorithm was applied to a colon cancer data set consisting of the expression patterns of different cell types. Gene expression in 40 tumour and 22 normal colon tissue samples was analysed across 2000 genes [4]. Cluster analysis groups the genes involved in microarray data. Those clustered genes are likely to be functionally linked and need to be looked into closely. Although cluster analysis has widely been accepted in analysing the patterns of gene expression, the methods developed may not be able to fully extract the information from the microarray data corrupted by high-dimensional noise. If the noise from the genes that are irrelevant is not sufficiently...

Keywords

Acute Myeloid Leukaemia Acute Lymphoblastic Leukaemia Microarray Gene Expression Gene Subset Microarray Expression Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bassett Jr, D.E.B., Eisen, M.B., and Boguski, M.S., (1999) Gene expression informatics—it's all in your mine, 21 (suppl.), Nature Genetics, 51–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Aittokallio, T., Kurki, M., Nevalainen, O., Nikula, T., West, A., and Lahesmaa, R., (2003) Computational strategies for analyzing data in gene expression microarray experiments, Journal of Bioinformatics and Computational Biology, 1(3), 541–586.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang, S. and Gant, T.W., (2004) A statistical framework for the design of microarray experiments and effective detection of differential gene expression, Bioinformatics, 20(16), 2821–2828.PubMedCrossRefGoogle Scholar
  4. 4.
    Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S. Mack, D., and Levine, A.J., (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proc. Natl Acad. Sci. USA, 96, 6745–6750.CrossRefGoogle Scholar
  5. 5.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., and Lander, E.S., (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 531–537.PubMedCrossRefGoogle Scholar
  6. 6.
    Li, L., Darden, T.A., Weinberg, C.R., Levine, A.J., and Pedersen, L.G., (2001) Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbour method, Combinatorial Chemistry & High Throughput Screening, 4, No. 8, 727–739.Google Scholar
  7. 7.
    Li, L., Weinberg, C.R., Darden, T.A., and Pedersen, L.G., (2001) Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method, Bioinformatics, 17, No. 12, 1131–1142.PubMedCrossRefGoogle Scholar
  8. 8.
    Horst, R. and Pardalos, P.M., (1995) Handbook of Global Optimization, Kluwer Academic Publishers, Netherlands.Google Scholar
  9. 9.
    Li, D. and Nathan, B., (1996) Global optimization advances multivariable thin-film design, Laser Focus World, No. 5, 135–136.Google Scholar
  10. 10.
    Li, D. and Smith, C., (1996) A new global optimization algorithm based on Latin Square theory, Proceedings of 1996IEEE International Conference on Evolutionary Computation, ISBN: 0-7803-2902-3, 628–630.Google Scholar
  11. 11.
    Han J. and Kamber, M., (2001) Data Mining: Concepts and Techniques. San Diego: Academic Press.Google Scholar
  12. 12.
    Mitra, S., Pal, S.K., and Mitra, P., (2002) “Data mining in soft computing framework: A survey,” IEEE Transactions on Neural Networks, vol. 13, pp. 3–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Hand, D., Mannila, H., and P. Smyth, (2001) Principles of Data Mining. London: MIT Press.Google Scholar
  14. 14.
    Kantardzic, M., (2002) Data Mining: Models, Methods, and Algorithms. Hoboken, NJ: Wiley Interscience, IEEE Press.Google Scholar
  15. 15.
    Schena, M., Shalon, D., Davis, R.W., and Brown, P.O., (1995) “Quantitative monitoring of gene expression patterns with a complementary DNA microarray”, Science, 270, 467–470.PubMedCrossRefGoogle Scholar
  16. 16.
    Alizadeh, A.A., et al., (2000) “Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling”, Nature, 403, 503–511.PubMedCrossRefGoogle Scholar
  17. 17.
    Brown, M.P.S., Grundy, W.N., Lin, D., Critianini, N., Sungnet, C., Furey, T.S., Ares, M., Haussler, D., (2000) “Knowledge-Based analysis of microarray gene expression data using support vector machines”, Proceedings of National Academy of Sciences, 97, 262–267.CrossRefGoogle Scholar
  18. 18.
    Deutsch, J.M., (2003) “Evolutionary algorithms for finding optimal gene sets in microarray prediction”, Bioinformatics, 19, 45–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Khan, J., Wei J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S., (2001) “Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks”, Nature Medicine, 7, 673–679.PubMedCrossRefGoogle Scholar
  20. 20.
    “Special Issue on Bioinformatics”, IEEE Computer, vol. 35, July 2002.Google Scholar
  21. 21.
    Mitra, S. and Acharya, T., (2005) Data mining: Multimedia, Soft Computing, and Bioinformatics, John Wiley & Sons Inc., Newark, ISBN:0471474886.Google Scholar
  22. 22.
    Draghici, S., (2002) Statistical intelligence: effective analysis of high-density microarray data. Drug Discov Today, 7(11 Suppl).: S55–S63.PubMedCrossRefGoogle Scholar
  23. 23.
    Tou, J.T. and Gonzalez, R.C. (1974) Pattern Recognition Principles. London: Addison-Wesley.Google Scholar
  24. 24.
    Cho, S.B. and Ryu, J. (2002) “Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features”, Proceedings of the IEEE, vol. 90, pp. 1744–1753.CrossRefGoogle Scholar
  25. 25.
    Wang, L. and Fu, X., (2005) Data mining with computational intelligence, Springer, Germany.Google Scholar
  26. 26.
    Li D, (2004) “Global Optimisation for Optical Coating Design”, Proceedings of 2004 Conferences in Internet Technologies and Applications, ISBN 86-7466-117-3, Purdue, Indiana, USA, July 8–11.Google Scholar
  27. 27.
    Peng, S., Xu, Q., Ling, X.B., Peng, X., Du, W., and Chen, L., (2003) Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines, FEBS Letters, 555, 358–362.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu, J.J., Cutler. G., Li, W., Pan, Z., Peng, S., Hoey T., Chen, L., and Ling., X.B., (2005) Multiclass cancer classification and biomarker discovery using GA-based algorithms, Bioinformatics, 21, No. 11, 2691–2697.PubMedCrossRefGoogle Scholar
  29. 29.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dongguang Li
    • 1
  1. 1.School of Computer and Information Science, Faculty of Computing, Health and ScienceEdith Cowan UniversityMount LawleyAustralia

Personalised recommendations