Advertisement

Mouse Models of Myeloproliferative Disease Associated with Mutant JAK2 Tyrosine Kinase: Insights into Pathophysiology and Therapy

  • Richard A. Van Etten
Chapter

Dysregulated Tyrosine Kinases are the Hallmark of Chronic Myeloproliferative-Like Syndromes

The classical myeloproliferative diseases (MPDs) include chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF, also known as myelofibrosis with myeloid metaplasia or agnogenic myeloid metaplasia). These diseases were first grouped together by Dr. William Dameshek of Tufts-New England Medical Center in a seminal paper in Blood in 1951 (Dameshek 1951). The MPDs are clonal disorders of hematopoiesis characterized by overproduction of mature myeloerythroid cells, abnormalities of hemostasis and thrombosis, and tendency to progress to acute leukemia (Van Etten and Shannon 2004). In the 2001 WHO classification, chronic eosinophilic leukemia (CEL) was included among the MPDs while a closely related group of diseases with mixed myelodysplastic/myeloproliferative features was also recognized (Vardiman et al. 2002). Over the last several...

Keywords

Chronic Myeloid Leukemia Polycythemia Vera Essential Thrombocythemia Erythroid Progenitor Chronic Myeloid Leukemia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ayton PM, Cleary ML (2003) Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 17:2298–2307PubMedCrossRefGoogle Scholar
  2. Barnes DJ, Schultheis B, Adedeji S, Melo JV (2005) Dose-dependent effects of Bcr-Abl in cell line models of different stages of chronic myeloid leukemia. Oncogene 24:6432–6440PubMedGoogle Scholar
  3. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N et al. (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061PubMedGoogle Scholar
  4. Bumm TG, Elsea C, Corbin AS, Loriaux M, Sherbenou D, Wood L, Deininger J, Silver RT, Druker BJ, Deininger MW (2006) Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 66:11156–11165PubMedCrossRefGoogle Scholar
  5. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Lagare RD, Cottes J, Kutok J, Clark J, Galinsky I, Griffin JD et al. (2003) A tyrosine kinase created by fusion of the PDGFA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348:1201–1214PubMedCrossRefGoogle Scholar
  6. Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830PubMedCrossRefGoogle Scholar
  7. Daley GQ, Van Etten RA, Baltimore D (1991) Blast crisis in a murine model of chronic myelogenous leukemia. Proc Natl Acad Sci USA 88:11335–11338PubMedCrossRefGoogle Scholar
  8. Dameshek W (1951) Some speculations on the myeloproliferative disorders. Blood 6:372–375PubMedGoogle Scholar
  9. Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K, Li S, Van Etten RA, Borrow J, Housman D et al. (2002) A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOX49. Proc Natl Acad Sci USA 99:7622–7627PubMedCrossRefGoogle Scholar
  10. Deininger MW, Goldman JM, Lydon N, Melo JV (1997) The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 90:3691–3698PubMedGoogle Scholar
  11. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566PubMedCrossRefGoogle Scholar
  12. Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U, Sugahara H, Butterfield JH, Ashman LK, Kanayama Y (1993) Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 92:1736–1744PubMedCrossRefGoogle Scholar
  13. Gavrilescu LC, Van Etten RA (2008). Applications of murine retroviral bone marrow transplantation models for the study of human myeloproliferative disorders. In: Enna SJ, Williams M, Ferkany JW, Kenakin T, Moser P, Ruggeri B (eds) Current protocols in pharmacology, John Wiley & Sons, Inc., Pagosa Springs, COGoogle Scholar
  14. Gishizky MI, Johnson-White J, Witte ON (1993) Efficient transplantation of BCR-ABL-induced chronic myelogenous leukemia-like syndrome in mice. Proc Natl Acad Sci USA 90:3755–3759PubMedCrossRefGoogle Scholar
  15. Golub TR, Barker GF, Lovett M, Gilliland DG (1994) Fusion of the PDGF receptor β to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77:307–316PubMedCrossRefGoogle Scholar
  16. Griffin JH, Leung J, Bruner RJ, Caligiuri MA, Briesewitz R (2003) Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci USA 100:7830–7835PubMedCrossRefGoogle Scholar
  17. Hao SX, Ren R (2000) Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and enforced coexpression of ICSBP inhibits Bcr-Abl induced myeloproliferative disorder. Mol Cell Biol 20:1149–1161PubMedCrossRefGoogle Scholar
  18. Heisterkamp N, Jenster G, Kioussis D, Pattengale PK, Groffen J (1991) Human bcr-abl gene has a lethal effect on embryogenesis. Transgenic Res 1:45–53PubMedCrossRefGoogle Scholar
  19. Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D, Hallek M, Van Etten RA, Li S (2004) Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 36:453–461PubMedCrossRefGoogle Scholar
  20. Huettner CS, Zhang P, Van Etten RA, Tenen DG (2000) Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 24:57–60PubMedCrossRefGoogle Scholar
  21. Ingley E, McCarthy DJ, Pore JR, Sarna MK, Adenan AS, Wright MJ, Erber W, Tilbrook PA, Klinken SP (2005) Lyn deficiency reduces GATA-1, EKLF and STAT5, and induces extramedullary stress erythropoiesis. Oncogene 24:336–343PubMedCrossRefGoogle Scholar
  22. Jaiswal S, Traver D, Miyamoto T, Akashi K, Lagasse E, Weissman IL (2003) Expression of BCR/ABL and BCL2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA 100:10002–10007PubMedCrossRefGoogle Scholar
  23. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, Garcon L, Raslova H, Berger R, Bennaceur-Griscelli A et al. (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148PubMedCrossRefGoogle Scholar
  24. Jiang X, Stuible M, Chalandon Y, Li A, Chan WY, Eisterer W, Krystal G, Eaves A, Eaves C (2003) Evidence for a positive role of SHIP in BCR-ABL-mediated transformation of primitive murine hematopoietic cells and in human chronic myeloid leukemia. Blood 102:2976–2984PubMedCrossRefGoogle Scholar
  25. Jones AV, Cross NC (2004) Oncogenic derivatives of platelet-derived growth factor receptors. Cell Mol Life Sci 61:2912–2923PubMedCrossRefGoogle Scholar
  26. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, Score J, Seear R, Chase AJ, Grand FH et al. (2005a) Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 106:2162–2168CrossRefGoogle Scholar
  27. Jones AV, Silver RT, Waghorn K, Curtis C, Kreil S, Zoi K, Hochhaus A, Oscier D, Metzgeroth G, Lengfelder E et al. (2005b) Minimal molecular response in polycythemia vera patients treated with imatinib or interferon alpha. Blood 107:3339–3341CrossRefGoogle Scholar
  28. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N (1990) Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and bcr/abl. Proc Natl Acad Sci USA 87:6649–6653PubMedCrossRefGoogle Scholar
  29. Kralovics R, Indrak K, Stopka T, Berman BW, Prchal JF, Prchal JT (1997) Two new EPO receptor mutations: truncated EPO receptors are most frequently associated with primary familial and congenital polycythemias. Blood 90:2057–2061PubMedGoogle Scholar
  30. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790PubMedCrossRefGoogle Scholar
  31. Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A, Skoda RC (2006) Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 108:1377–1380PubMedCrossRefGoogle Scholar
  32. Krause DS, Van Etten RA (2004) Adoptive immunotherapy of BCR-ABL-induced chronic myeloid leukemia-like myeloproliferative disease in a murine model. Blood 104:4236–4244PubMedCrossRefGoogle Scholar
  33. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353:172–187PubMedCrossRefGoogle Scholar
  34. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL (2006) JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108:1652–1660PubMedCrossRefGoogle Scholar
  35. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S et al. (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397PubMedCrossRefGoogle Scholar
  36. Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA (1999) The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 189:1399–1412PubMedCrossRefGoogle Scholar
  37. Macdonald D, Reiter A, Cross NCP (2002) The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol 107:101–107PubMedCrossRefGoogle Scholar
  38. Meng F, Lowell CA (1997) Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med 185:1661–1670PubMedCrossRefGoogle Scholar
  39. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A et al. (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379:645–648PubMedCrossRefGoogle Scholar
  40. Million RP, Aster J, Gilliland DG, Van Etten RA (2002) The Tel-Abl (ETV6-Abl) tyrosine kinase, product of complex (9;12) translocations in human leukemia, induces distinct myeloproliferative disease in mice. Blood 99:4568–4577PubMedCrossRefGoogle Scholar
  41. Moliterno AR, Hankins WD, Spivak JL (1998) Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N Engl J Med 338:572–580PubMedCrossRefGoogle Scholar
  42. Pardanani A (2008) JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia 22:23–30Google Scholar
  43. Pardanani A, Hood J, Lasho T, Levine RL, Martin MB, Noronha G, Finke C, Mak CC, Mesa R, Zhu H et al. (2007) TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 21:1658–1668PubMedCrossRefGoogle Scholar
  44. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, Steensma DP, Elliott MA, Wolanskyj AP, Hogan WJ et al. (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108:3472–3476PubMedCrossRefGoogle Scholar
  45. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM et al. (1998) Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93:385–395PubMedCrossRefGoogle Scholar
  46. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, Pendergast AM, Bronson R, Aster JC, Scott ML, Baltimore D (1998) Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92:3780–3792PubMedGoogle Scholar
  47. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, Cuker A, Wernig G, Moore S, Galinsky I et al. (2006) MPLW515L Is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3:e270PubMedCrossRefGoogle Scholar
  48. Prchal JF, Axelrad AA (1974) Letter: bone-marrow responses in polycythemia vera. N Engl J Med 290:1382PubMedGoogle Scholar
  49. Richmond TD, Chohan M, Barber DL (2005) Turning cells red: signal transduction mediated by erythropoietin. Trends Biochem Sci 15:146–155Google Scholar
  50. Roumiantsev S, de Aos I, Varticovski L, Ilaria RL, Van Etten RA (2001) The Src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood 97:4–13PubMedCrossRefGoogle Scholar
  51. Roumiantsev S, Krause DS, Neumann CA, Dimitri CA, Asiedu F, Cross NC, Van Etten RA (2004) Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11 translocations. Cancer Cell 5:287–298PubMedCrossRefGoogle Scholar
  52. Scott LM, Campbell PJ, Baxter EJ, Todd T, Stephens P, Edkins S, Wooster R, Stratton MR, Futreal PA, Green AR (2005) The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood 106:2920–2921PubMedCrossRefGoogle Scholar
  53. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN et al. (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356:459–468PubMedCrossRefGoogle Scholar
  54. Spivak JL (2002) Polycythemia vera: myths, mechanisms, and management. Blood 100:4272–4290PubMedCrossRefGoogle Scholar
  55. Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL, Gilliland DG, Tefferi A (2005) The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 106:1207–1209PubMedCrossRefGoogle Scholar
  56. Tefferi A, Vardiman JW (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22:14–22Google Scholar
  57. Temerinac S, Klippel S, Strunck E, Roder S, Lubbert M, Lange W, Azemar M, Meinhardt G, Schaefer HE, Pahl HL (2000) Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in polycythemia rubra vera. Blood 95:2569–2576PubMedGoogle Scholar
  58. Tiedt R, Hao-Shen H, Looser R, Dirnhofer S, Schwaller J, Skoda RC (2008) Ratio of mutant JAK2-V617F to wild type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111:3931–3940Google Scholar
  59. Ugo V, Marzac C, Teyssandier I, Larbret F, Lecluse Y, Debili N, Vainchenker W, Casadevall N (2004) Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 32:179–187PubMedCrossRefGoogle Scholar
  60. Van Etten RA (2001) Models of chronic myeloid leukemia. Curr Oncol Rep 3:228–237PubMedCrossRefGoogle Scholar
  61. Van Etten RA (2002) Studying the pathogenesis of BCR-ABL + leukemia in mice. Oncogene 21:8643–8651PubMedCrossRefGoogle Scholar
  62. Van Etten RA, Shannon KM (2004) Focus on myeloproliferative diseases and myelodysplastic syndromes. Cancer Cell 6:547–552PubMedCrossRefGoogle Scholar
  63. Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100:2292–2302PubMedCrossRefGoogle Scholar
  64. Weinstein IB (2002) Addiction to oncogenes-the Achilles heal of cancer. Science 297:63–64PubMedCrossRefGoogle Scholar
  65. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG (2006) Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107:4274–4281PubMedCrossRefGoogle Scholar
  66. Wolff NC, Ilaria RL Jr (2001) Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 98:2808–2816PubMedCrossRefGoogle Scholar
  67. Xiao S, Nalabolu SR, Aster JC, Ma J, Abruzzo L, Jaffe ES, Stone R, Weissman SM, Hudson TJ, Fletcher JA (1998) FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nature Genet 18:84–87PubMedCrossRefGoogle Scholar
  68. Zaleskas VM, Krause DS, Lazarides K, Patel N, Hu Y, Li S, Van Etten RA (2006) Molecular Pathogenesis and Therapy of Polycythemia Induced in Mice by JAK2 V617F. PLoS ONE 1:e18PubMedCrossRefGoogle Scholar
  69. Zhang X, Ren R (1998) Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 92:3829–3840PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Richard A. Van Etten
    • 1
  1. 1.Molecular Oncology Research Institute and Division of Hematology/OncologyTufts Medical CenterBostonUSA

Personalised recommendations