Immunobiology of Dendritic Cells in Cancer

  • Michael R. Shurin
  • Gurkamal S. Chatta


Dendritic Cell Antitumor Immune Response Plasmacytoid Dendritic Cell Human Dendritic Cell Dendritic Cell Subset 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalamian, M., Pirtskhalaishvili, G., Nunez, A., Esche, C., Shurin, G. V., Huland, E., Huland, H., and Shurin, M. R. (2001). Human prostate cancer regulates generation and maturation of monocyte-derived dendritic cells. Prostate 46:68–75.PubMedCrossRefGoogle Scholar
  2. Aalamian, M., Tourkova, I. L., Chatta, G. S., Lilja, H., Huland, E., Huland, H., Shurin, G. V., and Shurin, M. R. (2003). Inhibition of dendropoiesis by tumor derived and purified prostate specific antigen. J Urol 170:2026–2030.PubMedCrossRefGoogle Scholar
  3. Alcalay, J., Goldberg, L. H., Wolf, J. E., Jr, and Kripke, M. L. (1989). Variations in the number and morphology of Langerhans’ cells in the epidermal component of squamous cell carcinomas. Arch Dermatol 125:917–920.PubMedCrossRefGoogle Scholar
  4. Alcalay, J., and Kripke, M. L. (1991). Antigen-presenting activity of draining lymph node cells from mice painted with a contact allergen during ultraviolet carcinogenesis. J Immunol 146:1717–1721.PubMedGoogle Scholar
  5. Avila-Moreno, F., Lopez-Gonzalez, J. S., Galindo-Rodriguez, G., Prado-Garcia, H., Bajana, S., and Sanchez-Torres, C. (2006). Lung squamous cell carcinoma and adenocarcinoma cell lines use different mediators to induce comparable phenotypic and functional changes in human monocyte-derived dendritic cells. Cancer Immunol Immunother 55:598–611.PubMedCrossRefGoogle Scholar
  6. Balkir, L., Tourkova, I. L., Makarenkova, V. P., Shurin, G. V., Robbins, P. D., Yin, X. M., Chatta, G., and Shurin, M. R. (2004). Comparative analysis of dendritic cells transduced with different anti-apoptotic molecules: sensitivity to tumor-induced apoptosis. J Gene Med 6:537–544.PubMedCrossRefGoogle Scholar
  7. Bauer, M. E. (2005). Stress, glucocorticoids and ageing of the immune system. Stress 8: 69–83.PubMedCrossRefGoogle Scholar
  8. Beckebaum, S., Zhang, X., Chen, X., Yu, Z., Frilling, A., Dworacki, G., Grosse-Wilde, H., Broelsch, C. E., Gerken, G., and Cicinnati, V. R. (2004). Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 10: 7260–7269.PubMedCrossRefGoogle Scholar
  9. Becker, Y. (1992). Anticancer role of dendritic cells (DC) in human and experimental cancers—a review. Anticancer Res 12:511–520.PubMedGoogle Scholar
  10. Becker, Y. (1993). Dendritic cell activity against primary tumors: an overview. In Vivo 7:187–191.PubMedGoogle Scholar
  11. Bedoui, S., von Horsten, S., and Gebhardt, T. (2007). A role for neuropeptide Y (NPY) in phagocytosis: implications for innate and adaptive immunity. Peptides 28:373–376.PubMedCrossRefGoogle Scholar
  12. Bell, D., Chomarat, P., Broyles, D., Netto, G., Harb, G. M., Lebecque, S., Valladeau, J., Davoust, J., Palucka, K. A., and Banchereau, J. (1999). In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1426.PubMedCrossRefGoogle Scholar
  13. Belladonna, M. L., Grohmann, U., Guidetti, P., Volpi, C., Bianchi, R., Fioretti, M. C., Schwarcz, R., Fallarino, F., and Puccetti, P. (2006). Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 177:130–137.PubMedGoogle Scholar
  14. Bellik, L., Gerlini, G., Parenti, A., Ledda, F., Pimpinelli, N., Neri, B., and Pantalone, D. (2006). Role of conventional treatments on circulating and monocyte-derived dendritic cells in colorectal cancer. Clin Immunol 121:74–80.PubMedCrossRefGoogle Scholar
  15. Bellone, G., Carbone, A., Smirne, C., Scirelli, T., Buffolino, A., Novarino, A., Stacchini, A., Bertetto, O., Palestro, G., Sorio, C., Scarpa, A., Emanuelli, G., and Rodeck, U. (2006). Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 177:3448–3460.PubMedGoogle Scholar
  16. Brown, R. D., Pope, B., Murray, A., Esdale, W., Sze, D. M., Gibson, J., Ho, P. J., Hart, D., and Joshua, D. (2001). Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 98:2992–2998.PubMedCrossRefGoogle Scholar
  17. Cabillic, F., Bouet-Toussaint, F., Toutirais, O., Rioux-Leclercq, N., Fergelot, P., de la Pintiere, C. T., Genetet, N., Patard, J. J., and Catros-Quemener, V. (2006). Interleukin-6 and vascular endothelial growth factor release by renal cell carcinoma cells impedes lymphocyte-dendritic cell cross-talk. Clin Exp Immunol 146:518–523.PubMedCrossRefGoogle Scholar
  18. Cao, M. D., Chen, Z. D., and Xing, Y. (2004). Gamma irradiation of human dendritic cells influences proliferation and cytokine profile of T cells in autologous mixed lymphocyte reaction. Cell Biol Int 28:223–228.PubMedCrossRefGoogle Scholar
  19. Capobianco, A., Rovere-Querini, P., Rugarli, C., and Manfredi, A. A. (2006). Melanoma cells interfere with the interaction of dendritic cells with NK/LAK cells. Int J Cancer 119: 2861–2869.PubMedCrossRefGoogle Scholar
  20. Carlos, C. A., Dong, H. F., Howard, O. M., Oppenheim, J. J., Hanisch, F. G., and Finn, O. J. (2005). Human tumor antigen MUC1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Th1 type immunity. J Immunol175:1628–1635.PubMedGoogle Scholar
  21. Chang, C. C., Ciubotariu, R., Manavalan, J. S., Yuan, J., Colovai, A. I., Piazza, F., Lederman, S., Colonna, M., Cortesini, R., Dalla-Favera, R., and Suciu-Foca, N. (2002). Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3:237–243.PubMedCrossRefGoogle Scholar
  22. Chaux, P., Moutet, M., Faivre, J., Martin, F., and Martin, M. (1996). Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab Invest 74:975–983.PubMedGoogle Scholar
  23. Colasante, A., Castrilli, G., Aiello, F. B., Brunetti, M., and Musiani, P. (1995). Role of cytokines in distribution and differentiation of dendritic cell/Langerhans’ cell lineage in human primary carcinomas of the lung. Hum Pathol 26:866–872.PubMedCrossRefGoogle Scholar
  24. Conejo-Garcia, J. R., Benencia, F., Courreges, M. C., Kang, E., Mohamed-Hadley, A., Buckanovich, R. J., Holtz, D. O., Jenkins, A., Na, H., Zhang, L., Wagner, D. S., Katsaros, D., Caroll, R., and Coukos, G. (2004). Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10:950–958.PubMedCrossRefGoogle Scholar
  25. Conejo-Garcia, J. R., Buckanovich, R. J., Benencia, F., Courreges, M. C., Rubin, S. C., Carroll, R. G., and Coukos, G. (2005). Vascular leukocytes contribute to tumor vascularization. Blood 105:679–681.PubMedCrossRefGoogle Scholar
  26. Corinti, S., Albanesi, C., la Sala, A., Pastore, S., and Girolomoni, G. (2001). Regulatory activity of autocrine IL-10 on dendritic cell functions. J Immunol 166:4312–4318.PubMedGoogle Scholar
  27. Corrales, J. J., Almeida, M., Burgo, R., Mories, M. T., Miralles, J. M., and Orfao, A. (2006). Androgen-replacement therapy depresses the ex vivo production of inflammatory cytokines by circulating antigen-presenting cells in aging type-2 diabetic men with partial androgen deficiency. J Endocrinol 189:595–604.PubMedCrossRefGoogle Scholar
  28. Cox, K., North, M., Burke, M., Singhal, H., Renton, S., Aqel, N., Islam, S., and Knight, S. C. (2005). Plasmacytoid dendritic cells (PDC) are the major DC subset innately producing cytokines in human lymph nodes. J Leukoc Biol 78:1142–1152.PubMedGoogle Scholar
  29. Curiel, T. J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., Wei, S., Zou, L., Kryczek, I., Hoyle, G., Lackner, A., Carmeliet, P., and Zou, W. (2004). Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64:5535–5538.PubMedCrossRefGoogle Scholar
  30. Curiel, T. J., Wei, S., Dong, H., Alvarez, X., Cheng, P., Mottram, P., Krzysiek, R., Knutson, K. L., Daniel, B., Zimmermann, M. C., David, O., Burow, M., Gordon, A., Dhurandhar, N., Myers, L., Berggren, R., Hemminki, A., Alvarez, R. D., Emilie, D., Curiel, D. T., Chen, L., and Zou, W. (2003). Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567.PubMedCrossRefGoogle Scholar
  31. Della Bella, S., Gennaro, M., Vaccari, M., Ferraris, C., Nicola, S., Riva, A., Clerici, M., Greco, M., and Villa, M. L. (2003). Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 89:1463–1472.PubMedCrossRefGoogle Scholar
  32. Della Porta, M., Danova, M., Rigolin, G. M., Brugnatelli, S., Rovati, B., Tronconi, C., Fraulini, C., Russo Rossi, A., Riccardi, A., and Castoldi, G. (2005). Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology 68:276–284.PubMedCrossRefGoogle Scholar
  33. Eisendle, K., Wolf, D., Gastl, G., and Kircher-Eibl, B. (2005). Dendritic cells from patients with chronic myeloid leukemia: functional and phenotypic features. Leuk Lymphoma 46:663–670.PubMedCrossRefGoogle Scholar
  34. Enk, A. H., Jonuleit, H., Saloga, J., and Knop, J. (1997). Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73:309–316.PubMedCrossRefGoogle Scholar
  35. Esche, C., Lokshin, A., Shurin, G. V., Gastman, B. R., Rabinowich, H., Watkins, S. C., Lotze, M. T., and Shurin, M. R. (1999). Tumor’s other immune targets: dendritic cells. J Leukoc Biol 66: 336–344.PubMedGoogle Scholar
  36. Esche, C., Shurin, G. V., Kirkwood, J. M., Wang, G. Q., Rabinowich, H., Pirtskhalaishvili, G., and Shurin, M. R. (2001). Tumor necrosis factor-alpha-promoted expression of Bcl-2 and inhibition of mitochondrial cytochrome c release mediate resistance of mature dendritic cells to melanoma-induced apoptosis. Clin Cancer Res 7:974s–979s.Google Scholar
  37. Evel-Kabler, K., Song, X. T., Aldrich, M., Huang, X. F., and Chen, S. Y. (2006). SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest 116:90–100.PubMedCrossRefGoogle Scholar
  38. Feijoo, E., Alfaro, C., Mazzolini, G., Serra, P., Penuelas, I., Arina, A., Huarte, E., Tirapu, I., Palencia, B., Murillo, O., Ruiz, J., Sangro, B., Richter, J. A., Prieto, J., and Melero, I. (2005). Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8. Int J Cancer 116:275–281.PubMedCrossRefGoogle Scholar
  39. Ferrari, S., Malugani, F., Rovati, B., Porta, C., Riccardi, A., and Danova, M. (2005). Flow cytometric analysis of circulating dendritic cell subsets and intracellular cytokine production in advanced breast cancer patients. Oncol Rep 14:113–120.PubMedGoogle Scholar
  40. Frey, A. B. (2006). Myeloid suppressor cells regulate the adaptive immune response to cancer. J Clin Invest 116:2587–2590.PubMedCrossRefGoogle Scholar
  41. Fricke, I., and Gabrilovich, D. I. (2006). Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Investig 35:459–483.CrossRefGoogle Scholar
  42. Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952.PubMedCrossRefGoogle Scholar
  43. Gabrilovich, D. I., Bronte, V., Chen, S. H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., and Schreiber, H. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Res 67:425; author reply 426.Google Scholar
  44. Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., Kavanaugh, D., and Carbone, D. P. (1996a). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2: 1096–1103.CrossRefGoogle Scholar
  45. Gabrilovich, D. I., Cheng, P., Fan, Y., Yu, B., Nikitina, E., Sirotkin, A., Shurin, M., Oyama, T., Adachi, Y., Nadaf, S., Carbone, D. P., and Skoultchi, A. I. (2002). H1(0) histone and differentiation of dendritic cells. A molecular target for tumor-derived factors. J Leukoc Biol 72: 285–296.PubMedGoogle Scholar
  46. Gabrilovich, D. I., Nadaf, S., Corak, J., Berzofsky, J. A., and Carbone, D. P. (1996b). Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 170:111–119.CrossRefGoogle Scholar
  47. Geissmann, F., Revy, P., Regnault, A., Lepelletier, Y., Dy, M., Brousse, N., Amigorena, S., Hermine, O., and Durandy, A. (1999). TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 162:4567–4575.PubMedGoogle Scholar
  48. Ghiringhelli, F., Apetoh, L., Housseau, F., Kroemer, G., and Zitvogel, L. (2007). Links between innate and cognate tumor immunity. Curr Opin Immunol 19:224–231.PubMedCrossRefGoogle Scholar
  49. Ghiringhelli, F., Puig, P. E., Roux, S., Parcellier, A., Schmitt, E., Solary, E., Kroemer, G., Martin, F., Chauffert, B., and Zitvogel, L. (2005). Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202:919–929.PubMedCrossRefGoogle Scholar
  50. Gottfried, E., Kunz-Schughart, L. A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., Mackensen, A., and Kreutz, M. (2006). Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013–2021.PubMedCrossRefGoogle Scholar
  51. Halliday, G. M., Lucas, A. D., and Barnetson, R. S. (1992). Control of Langerhans’ cell density by a skin tumour-derived cytokine. Immunology 77:13–18.PubMedGoogle Scholar
  52. Halliday, G. M., Reeve, V. E., and Barnetson, R. S. (1991). Langerhans cell migration into ultraviolet light-induced squamous skin tumors is unrelated to anti-tumor immunity. J Invest Dermatol 97:830–834.PubMedCrossRefGoogle Scholar
  53. Handley, M. E., Thakker, M., Pollara, G., Chain, B. M., and Katz, D. R. (2005). JNK activation limits dendritic cell maturation in response to reactive oxygen species by the induction of apoptosis. Free Radic Biol Med 38:1637–1652.PubMedCrossRefGoogle Scholar
  54. Hasebe, H., Nagayama, H., Sato, K., Enomoto, M., Takeda, Y., Takahashi, T. A., Hasumi, K., and Eriguchi, M. (2000). Dysfunctional regulation of the development of monocyte-derived dendritic cells in cancer patients. Biomed Pharmacother 54:291–298.PubMedCrossRefGoogle Scholar
  55. Hoffmann, T. K., Muller-Berghaus, J., Ferris, R. L., Johnson, J. T., Storkus, W. J., and Whiteside, T. L. (2002). Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res 8:1787–1793.PubMedGoogle Scholar
  56. Hou, D. Y., Muller, A. J., Sharma, M. D., DuHadaway, J., Banerjee, T., Johnson, M., Mellor, A. L., Prendergast, G. C., and Munn, D. H. (2007). Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 67:792–801.PubMedCrossRefGoogle Scholar
  57. Houot, R., Perrot, I., Garcia, E., Durand, I., and Lebecque, S. (2006). Human CD4+CD25high regulatory T cells modulate myeloid but not plasmacytoid dendritic cells activation. J Immunol 176:5293–5298.PubMedGoogle Scholar
  58. Huang, B., Lei, Z., Zhao, J., Gong, W., Liu, J., Chen, Z., Liu, Y., Li, D., Yuan, Y., Zhang, G. M., and Feng, Z. H. (2007). CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett 252:86–92.PubMedCrossRefGoogle Scholar
  59. Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., Divino, C. M., and Chen, S. H. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131.PubMedCrossRefGoogle Scholar
  60. Ishida, T., Oyama, T., Carbone, D. P., and Gabrilovich, D. I. (1998). Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. J Immunol 161:4842–4851.PubMedGoogle Scholar
  61. Ito, M., Minamiya, Y., Kawai, H., Saito, S., Saito, H., Nakagawa, T., Imai, K., Hirokawa, M., and Ogawa, J. (2006). Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J Immunol 176:5637–5643.PubMedGoogle Scholar
  62. Ito, T., Yang, M., Wang, Y. H., Lande, R., Gregorio, J., Perng, O. A., Qin, X. F., Liu, Y. J., and Gilliet, M. (2007). Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 204:105–115.PubMedCrossRefGoogle Scholar
  63. Jackson, S. H., Yu, C. R., Mahdi, R. M., Ebong, S., and Egwuagu, C. E. (2004). Dendritic cell maturation requires STAT1 and is under feedback regulation by suppressors of cytokine signaling. J Immunol 172:2307–2315.PubMedGoogle Scholar
  64. Kanto, T., Kalinski, P., Hunter, O. C., Lotze, M. T., and Amoscato, A. A. (2001). Ceramide mediates tumor-induced dendritic cell apoptosis. J Immunol 167:3773–3784.PubMedGoogle Scholar
  65. Katsenelson, N. S., Shurin, G. V., Bykovskaia, S. N., Shogan, J., and Shurin, M. R. (2001). Human small cell lung carcinoma and carcinoid tumor regulate dendritic cell maturation and function. Mod Pathol 14:40–45.PubMedCrossRefGoogle Scholar
  66. Kichler-Lakomy, C., Budinsky, A. C., Wolfram, R., Hellan, M., Wiltschke, C., Brodowicz, T., Viernstein, H., and Zielinski, C. C. (2006). Deficiences in phenotype expression and function of dentritic cells from patients with early breast cancer. Eur J Med Res 11:7–12.PubMedGoogle Scholar
  67. Kiertscher, S. M., Luo, J., Dubinett, S. M., and Roth, M. D. (2000). Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J Immunol 164:1269–1276.PubMedGoogle Scholar
  68. Kim, R., Emi, M., and Tanabe, K. (2006a). Functional roles of immature dendritic cells in impaired immunity of solid tumour and their targeted strategies for provoking tumour immunity. Clin Exp Immunol 146:189–196.CrossRefGoogle Scholar
  69. Kim, R., Emi, M., Tanabe, K., and Arihiro, K. (2006b). Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66:5527–5536.CrossRefGoogle Scholar
  70. Kim, R., Emi, M., Tanabe, K., and Arihiro, K. (2007). Potential functional role of plasmacytoid dendritic cells in cancer immunity. Immunology 121:149–157.PubMedCrossRefGoogle Scholar
  71. Lambert, R. W., and Granstein, R. D. (1998). Neuropeptides and Langerhans cells. Exp Dermatol 7:73–80.PubMedCrossRefGoogle Scholar
  72. Lan, Y. Y., Wang, Z., Raimondi, G., Wu, W., Colvin, B. L., de Creus, A., and Thomson, A. W. (2006). “Alternatively activated” dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol 177:5868–5877.PubMedGoogle Scholar
  73. Larmonier, N., Marron, M., Zeng, Y., Cantrell, J., Romanoski, A., Sepassi, M., Thompson, S., Chen, X., Andreansky, S., and Katsanis, E. (2007). Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol Immunother 56:48–59.PubMedCrossRefGoogle Scholar
  74. Lemaoult, J., Caumartin, J., Daouya, M., Favier, B., Rond, S. L., Gonzalez, A., and Carosella, E. D. (2007). Immune regulation by pretenders: cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood 109:2040–2048.PubMedCrossRefGoogle Scholar
  75. Lissoni, P., Bolis, S., Mandala, M., Viviani, S., Pogliani, E., and Barni, S. (1999). Blood concentrations of tumor necrosis factor-alpha in malignant lymphomas and their decrease as a predictor of disease control in response to low-dose subcutaneous immunotherapy with interleukin-2. Int J Biol Markers 14:167–171.PubMedGoogle Scholar
  76. Lizee, G., Radvanyi, L. G., Overwijk, W. W., and Hwu, P. (2006). Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms. Clin Cancer Res 12:4794–4803.PubMedCrossRefGoogle Scholar
  77. Lopez, A. S., Alegre, E., LeMaoult, J., Carosella, E., and Gonzalez, A. (2006). Regulatory role of tryptophan degradation pathway in HLA-G expression by human monocyte-derived dendritic cells. Mol Immunol 43:2151–2160.PubMedCrossRefGoogle Scholar
  78. Lopez-Lazaro, M. (2007). Excessive superoxide anion generation plays a key role in carcinogenesis. Int J Cancer 120:1378–1380.PubMedCrossRefGoogle Scholar
  79. Maecker, B., Mougiakakos, D., Zimmermann, M., Behrens, M., Hollander, S., Schrauder, A., Schrappe, M., Welte, K., and Klein, C. (2006). Dendritic cell deficiencies in pediatric acute lymphoblastic leukemia patients. Leukemia 20:645–649.PubMedCrossRefGoogle Scholar
  80. Maestroni, G. J. (2000). Dendritic cell migration controlled by alpha 1b-adrenergic receptors. J Immunol 165:6743–6747.PubMedGoogle Scholar
  81. Maestroni, G. J. (2005). Adrenergic modulation of dendritic cells function: relevance for the immune homeostasis. Curr Neurovasc Res 2:169–173.PubMedCrossRefGoogle Scholar
  82. Maestroni, G. J., and Mazzola, P. (2003). Langerhans cells beta 2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. J Neuroimmunol 144:91–99.PubMedCrossRefGoogle Scholar
  83. Mahnke, K., and Enk, A. H. (2005). Dendritic cells: key cells for the induction of regulatory T cells? Curr Top Microbiol Immunol 293:133–150.PubMedGoogle Scholar
  84. Makarenkova, V. P., Esche, C., Kost, N. V., Shurin, G. V., Rabin, B. S., Zozulya, A. A., and Shurin, M. R. (2001). Identification of delta- and mu-type opioid receptors on human and murine dendritic cells. J Neuroimmunol 117:68–77.PubMedCrossRefGoogle Scholar
  85. Makarenkova, V. P., Shurin, G. V., Tourkova, I. L., Balkir, L., Pirtskhalaishvili, G., Perez, L., Gerein, V., Siegfried, J. M., and Shurin, M. R. (2003). Lung cancer-derived bombesin-like peptides down-regulate the generation and function of human dendritic cells. J Neuroimmunol 145:55–67.PubMedCrossRefGoogle Scholar
  86. Marriott, I., and Bost, K. L. (2001). Expression of authentic substance P receptors in murine and human dendritic cells. J Neuroimmunol 114:131–141.PubMedCrossRefGoogle Scholar
  87. Matera, L., Mori, M., and Galetto, A. (2001). Effect of prolactin on the antigen presenting function of monocyte-derived dendritic cells. Lupus 10:728–734.PubMedCrossRefGoogle Scholar
  88. Melichar, B., Savary, C., Kudelka, A. P., Verschraegen, C., Kavanagh, J. J., Edwards, C. L., Platsoucas, C. D., and Freedman, R. S. (1998). Lineage-negative human leukocyte antigen-DR+ cells with the phenotype of undifferentiated dendritic cells in patients with carcinoma of the abdomen and pelvis. Clin Cancer Res 4:799–809.PubMedGoogle Scholar
  89. Mellor, A. L., Baban, B., Chandler, P. R., Manlapat, A., Kahler, D. J., and Munn, D. H. (2005). Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J Immunol 175:5601–5605.PubMedGoogle Scholar
  90. Menetrier-Caux, C., Montmain, G., Dieu, M. C., Bain, C., Favrot, M. C., Caux, C., and Blay, J. Y. (1998). Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92: 4778–4791.PubMedGoogle Scholar
  91. Mihalyo, M. A., Hagymasi, A. T., Slaiby, A. M., Nevius, E. E., and Adler, A. J. (2007). Dendritic cells program non-immunogenic prostate-specific T cell responses beginning at early stages of prostate tumorigenesis. Prostate 67:536–546.PubMedCrossRefGoogle Scholar
  92. Mouillot, G., Marcou, C., Zidi, I., Guillard, C., Sangrouber, D., Carosella, E. D., and Moreau, P. (2007). Hypoxia modulates HLA-G gene expression in tumor cells. Hum Immunol 68:277–285.PubMedCrossRefGoogle Scholar
  93. Munn, D. H. (2006). Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Curr Opin Immunol 18:220–225.PubMedCrossRefGoogle Scholar
  94. Munn, D. H., and Mellor, A. L. (2006). The tumor-draining lymph node as an immune-privileged site. Immunol Rev 213:146–158.PubMedCrossRefGoogle Scholar
  95. Nefedova, Y., and Gabrilovich, D. I. (2007). Targeting of Jak/STAT pathway in antigen presenting cells in cancer. Curr Cancer Drug Targets 7:71–77.PubMedCrossRefGoogle Scholar
  96. Nefedova, Y., Huang, M., Kusmartsev, S., Bhattacharya, R., Cheng, P., Salup, R., Jove, R., and Gabrilovich, D. (2004). Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464–474.PubMedGoogle Scholar
  97. Nestle, F. O., Burg, G., Fah, J., Wrone-Smith, T., and Nickoloff, B. J. (1997). Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am J Pathol 150:641–651.PubMedGoogle Scholar
  98. Neves, A. R., Ensina, L. F., Anselmo, L. B., Leite, K. R., Buzaid, A. C., Camara-Lopes, L. H., and Barbuto, J. A. (2005). Dendritic cells derived from metastatic cancer patients vaccinated with allogeneic dendritic cell-autologous tumor cell hybrids express more CD86 and induce higher levels of interferon-gamma in mixed lymphocyte reactions. Cancer Immunol Immunother 54:61–66.PubMedCrossRefGoogle Scholar
  99. Ninomiya, T., Akbar, S. M., Masumoto, T., Horiike, N., and Onji, M. (1999). Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. J Hepatol 31:323–331.PubMedCrossRefGoogle Scholar
  100. Ochoa, A. C., Zea, A. H., Hernandez, C., and Rodriguez, P. C. (2007). Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13:721s–726s.PubMedCrossRefGoogle Scholar
  101. Ogden, A. T., Horgan, D., Waziri, A., Anderson, D., Louca, J., McKhann, G. M., Sisti, M. B., Parsa, A. T., and Bruce, J. N. (2006). Defective receptor expression and dendritic cell differentiation of monocytes in glioblastomas. Neurosurgery 59:902–909; discussion 909–910.PubMedCrossRefGoogle Scholar
  102. Onishi, H., Morisaki, T., Baba, E., Kuga, H., Kuroki, H., Matsumoto, K., Tanaka, M., and Katano, M. (2002). Dysfunctional and short-lived subsets in monocyte-derived dendritic cells from patients with advanced cancer. Clin Immunol 105:286–295.PubMedCrossRefGoogle Scholar
  103. Ormandy, L. A., Farber, A., Cantz, T., Petrykowska, S., Wedemeyer, H., Horning, M., Lehner, F., Manns, M. P., Korangy, F., and Greten, T. F. (2006). Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol 12:3275–3282.PubMedGoogle Scholar
  104. Park, S. J., Nakagawa, T., Kitamura, H., Atsumi, T., Kamon, H., Sawa, S., Kamimura, D., Ueda, N., Iwakura, Y., Ishihara, K., Murakami, M., and Hirano, T. (2004). IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol 173:3844–3854.PubMedGoogle Scholar
  105. Pedersen, A. E., Thorn, M., Gad, M., Walter, M. R., Johnsen, H. E., Gaarsdal, E., Nikolajsen, K., Buus, S., Claesson, M. H., and Svane, I. M. (2005). Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination. Scand J Immunol 61:147–156.PubMedCrossRefGoogle Scholar
  106. Peguet-Navarro, J., Sportouch, M., Popa, I., Berthier, O., Schmitt, D., and Portoukalian, J. (2003). Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J Immunol 170:3488–3494.PubMedGoogle Scholar
  107. Perrot, I., Blanchard, D., Freymond, N., Isaac, S., Guibert, B., Pacheco, Y., and Lebecque, S. (2007). Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol 178:2763–2769.PubMedGoogle Scholar
  108. Piemonti, L., Monti, P., Allavena, P., Sironi, M., Soldini, L., Leone, B. E., Socci, C., and Di Carlo, V. (1999). Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol 162:6473–6481.PubMedGoogle Scholar
  109. Pinzon-Charry, A., Ho, C. S., Laherty, R., Maxwell, T., Walker, D., Gardiner, R. A., O’Connor, L., Pyke, C., Schmidt, C., Furnival, C., and Lopez, J. A. (2005a). A population of HLA-DR+ immature cells accumulates in the blood dendritic cell compartment of patients with different types of cancer. Neoplasia 7:1112–1122.CrossRefGoogle Scholar
  110. Pinzon-Charry, A., Maxwell, T., and Lopez, J. A. (2005b). Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83:451–461.CrossRefGoogle Scholar
  111. Pinzon-Charry, A., Maxwell, T., McGuckin, M. A., Schmidt, C., Furnival, C., and Lopez, J. A. (2006). Spontaneous apoptosis of blood dendritic cells in patients with breast cancer. Breast Cancer Res 8:R5.PubMedCrossRefGoogle Scholar
  112. Pirtskhalaishvili, G., Shurin, G. V., Esche, C., Cai, Q., Salup, R. R., Bykovskaia, S. N., Lotze, M. T., and Shurin, M. R. (2000a). Cytokine-mediated protection of human dendritic cells from prostate cancer-induced apoptosis is regulated by the Bcl-2 family of proteins. Br J Cancer 83:506–513.CrossRefGoogle Scholar
  113. Pirtskhalaishvili, G., Shurin, G. V., Gambotto, A., Esche, C., Wahl, M., Yurkovetsky, Z. R., Robbins, P. D., and Shurin, M. R. (2000b). Transduction of dendritic cells with Bcl-xL increases their resistance to prostate cancer-induced apoptosis and antitumor effect in mice. J Immunol 165:1956–1964.Google Scholar
  114. Ratta, M., Fagnoni, F., Curti, A., Vescovini, R., Sansoni, P., Oliviero, B., Fogli, M., Ferri, E., Della Cuna, G. R., Tura, S., Baccarani, M., and Lemoli, R. M. (2002). Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100:230–237.PubMedCrossRefGoogle Scholar
  115. Remmel, E., Terracciano, L., Noppen, C., Zajac, P., Heberer, M., Spagnoli, G. C., and Padovan, E. (2001). Modulation of dendritic cell phenotype and mobility by tumor cells in vitro. Hum Immunol 62:39–49.PubMedCrossRefGoogle Scholar
  116. Ristich, V., Liang, S., Zhang, W., Wu, J., and Horuzsko, A. (2005). Tolerization of dendritic cells by HLA-G. Eur J Immunol 35:1133–1142.PubMedCrossRefGoogle Scholar
  117. Rughetti, A., Pellicciotta, I., Biffoni, M., Backstrom, M., Link, T., Bennet, E. P., Clausen, H., Noll, T., Hansson, G. C., Burchell, J. M., Frati, L., Taylor-Papadimitriou, J., and Nuti, M. (2005). Recombinant tumor-associated MUC1 glycoprotein impairs the differentiation and function of dendritic cells. J Immunol 174:7764–7772.PubMedGoogle Scholar
  118. Rutella, S., Danese, S., and Leone, G. (2006). Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108:1435–1440.PubMedCrossRefGoogle Scholar
  119. Saint-Mezard, P., Chavagnac, C., Bosset, S., Ionescu, M., Peyron, E., Kaiserlian, D., Nicolas, J. F., and Berard, F. (2003). Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo. J Immunol 171:4073–4080.PubMedGoogle Scholar
  120. Sakakura, K., Chikamatsu, K., Takahashi, K., Whiteside, T. L., and Furuya, N. (2006). Maturation of circulating dendritic cells and imbalance of T-cell subsets in patients with squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 55:151–159.PubMedCrossRefGoogle Scholar
  121. Sato, K., Yamashita, N., Baba, M., and Matsuyama, T. (2003). Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 18:367–379.PubMedCrossRefGoogle Scholar
  122. Satthaporn, S., Robins, A., Vassanasiri, W., El-Sheemy, M., Jibril, J. A., Clark, D., Valerio, D., and Eremin, O. (2004). Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother 53:510–518.PubMedCrossRefGoogle Scholar
  123. Savary, C. A., Grazziutti, M. L., Melichar, B., Przepiorka, D., Freedman, R. S., Cowart, R. E., Cohen, D. M., Anaissie, E. J., Woodside, D. G., McIntyre, B. W., Pierson, D. L., Pellis, N. R., and Rex, J. H. (1998). Multidimensional flow-cytometric analysis of dendritic cells in peripheral blood of normal donors and cancer patients. Cancer Immunol Immunother 45: 234–240.PubMedCrossRefGoogle Scholar
  124. Schmidt, J., Jager, D., Hoffmann, K., Buchler, M. W., and Marten, A. (2007). Impact of interferon-alpha in combined chemoradioimmunotherapy for pancreatic adenocarcinoma (CapRI): first data from the immunomonitoring. J Immunother 30:108–115.PubMedCrossRefGoogle Scholar
  125. Schwaab, T., Schned, A. R., Heaney, J. A., Cole, B. F., Atzpodien, J., Wittke, F., and Ernstoff, M. S. (1999). In vivo description of dendritic cells in human renal cell carcinoma. J Urol 162: 567–573.PubMedCrossRefGoogle Scholar
  126. Seiffert, K., and Granstein, R. D. (2006). Neuroendocrine regulation of skin dendritic cells. Ann N Y Acad Sci 1088:195–206.PubMedCrossRefGoogle Scholar
  127. Serafini, P., Borrello, I., and Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16: 53–65.PubMedCrossRefGoogle Scholar
  128. Sharma, S., Stolina, M., Yang, S. C., Baratelli, F., Lin, J. F., Atianzar, K., Luo, J., Zhu, L., Lin, Y., Huang, M., Dohadwala, M., Batra, R. K., and Dubinett, S. M. (2003). Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968.PubMedGoogle Scholar
  129. Shurin, G. V., Aalamian, M., Pirtskhalaishvili, G., Bykovskaia, S., Huland, E., Huland, H., and Shurin, M. R. (2001a). Human prostate cancer blocks the generation of dendritic cells from CD34+ hematopoietic progenitors. Eur Urol 39(Suppl 4):37–40.CrossRefGoogle Scholar
  130. Shurin, G. V., Ferris, R. L., Tourkova, I. L., Perez, L., Lokshin, A., Balkir, L., Collins, B., Chatta, G. S., and Shurin, M. R. (2005). Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo. J Immunol 174:5490–5498.PubMedGoogle Scholar
  131. Shurin, G. V., Shurin, M. R., Bykovskaia, S., Shogan, J., Lotze, M. T., and Barksdale, E. M., Jr (2001b). Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369.Google Scholar
  132. Shurin, G. V., Yurkovetsky, Z. R., and Shurin, M. R. (2003). Tumor-induced dendritic cell dysfunction. In: A. Ochoa (ed.) Mechanisms of Tumor Escape from the Immune Response. London: Taylor and Francis, pp. 112–138.Google Scholar
  133. Shurin, M. R. (1999). Regulation of dendropoiesis in cancer. Clin Immunol Newslett 19:135–139.CrossRefGoogle Scholar
  134. Shurin, M. R., Chatta, G. S., and Shurin, G. V. (2007). Aging and the dendritic cell system: implications for cancer. Crit Rev Oncol Hematol. 64:90–105.PubMedGoogle Scholar
  135. Shurin, M. R., and Gabrilovich, D. I. (2001). Regulation of dendritic cell system by tumor. Cancer Res Ther Control 11:65–78.Google Scholar
  136. Shurin, M. R., Shurin, G. V., Lokshin, A., Yurkovetsky, Z. R., Gutkin, D. W., Chatta, G., Zhong, H., Han, B., and Ferris, R. L. (2006). Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356.PubMedCrossRefGoogle Scholar
  137. Shurin, M. R., Yurkovetsky, Z. R., Tourkova, I. L., Balkir, L., and Shurin, G. V. (2002). Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 101:61–68.PubMedCrossRefGoogle Scholar
  138. Sombroek, C. C., Stam, A. G., Masterson, A. J., Lougheed, S. M., Schakel, M. J., Meijer, C. J., Pinedo, H. M., van den Eertwegh, A. J., Scheper, R. J., and de Gruijl, T. D. (2002). Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168:4333–4343.PubMedGoogle Scholar
  139. Song, E. Y., Shurin, M. R., Tourkova, I. L., Chatta, G., and Shurin, G. V. (2004). Human renal cell carcinoma inhibits dendritic cell maturation and functions. Urologe A 43(Suppl 3):128–130.PubMedGoogle Scholar
  140. Stanford, A., Chen, Y., Zhang, X. R., Hoffman, R., Zamora, R., and Ford, H. R. (2001). Nitric oxide mediates dendritic cell apoptosis by downregulating inhibitors of apoptosis proteins and upregulating effector caspase activity. Surgery 130:326–332.PubMedCrossRefGoogle Scholar
  141. Starnes, T., Rasila, K. K., Robertson, M. J., Brahmi, Z., Dahl, R., Christopherson, K., and Hromas, R. (2006). The chemokine CXCL14 (BRAK) stimulates activated NK cell migration: implications for the downregulation of CXCL14 in malignancy. Exp Hematol 34:1101–1105.PubMedCrossRefGoogle Scholar
  142. Stene, M. A., Babajanians, M., Bhuta, S., and Cochran, A. J. (1988). Quantitative alterations in cutaneous Langerhans cells during the evolution of malignant melanoma of the skin. J Invest Dermatol 91:125–128.PubMedCrossRefGoogle Scholar
  143. Suciu-Foca, N., Manavalan, J. S., Scotto, L., Kim-Schulze, S., Galluzzo, S., Naiyer, A. J., Fan, J., Vlad, G., and Cortesini, R. (2005). Molecular characterization of allospecific T suppressor and tolerogenic dendritic cells: review. Int Immunopharmacol 5:7–11.PubMedCrossRefGoogle Scholar
  144. Szatrowski, T. P., and Nathan, C. F. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798.PubMedGoogle Scholar
  145. Taieb, J., Chaput, N., Menard, C., Apetoh, L., Ullrich, E., Bonmort, M., Pequignot, M., Casares, N., Terme, M., Flament, C., Opolon, P., Lecluse, Y., Metivier, D., Tomasello, E., Vivier, E., Ghiringhelli, F., Martin, F., Klatzmann, D., Poynard, T., Tursz, T., Raposo, G., Yagita, H., Ryffel, B., Kroemer, G., and Zitvogel, L. (2006). A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 12:214–219.PubMedCrossRefGoogle Scholar
  146. Takahashi, K., Toyokawa, H., Takai, S., Satoi, S., Yanagimoto, H., Terakawa, N., Araki, H., Kwon, A. H., and Kamiyama, Y. (2006). Surgical influence of pancreatectomy on the function and count of circulating dendritic cells in patients with pancreatic cancer. Cancer Immunol Immunother 55:775–784.PubMedCrossRefGoogle Scholar
  147. Tarazona, R., Solana, R., Ouyang, Q., and Pawelec, G. (2002). Basic biology and clinical impact of immunosenescence. Exp. Gerontol 37:183–189.PubMedCrossRefGoogle Scholar
  148. Tas, M. P., Simons, P. J., Balm, F. J., and Drexhage, H. A. (1993). Depressed monocyte polarization and clustering of dendritic cells in patients with head and neck cancer: in vitro restoration of this immunosuppression by thymic hormones. Cancer Immunol Immunother 36:108–114.PubMedCrossRefGoogle Scholar
  149. Thomachot, M. C., Bendriss-Vermare, N., Massacrier, C., Biota, C., Treilleux, I., Goddard, S., Caux, C., Bachelot, T., Blay, J. Y., and Menetrier-Caux, C. (2004). Breast carcinoma cells promote the differentiation of CD34+ progenitors towards 2 different subpopulations of dendritic cells with CD1a(high)CD86(-)Langerin- and CD1a(+)CD86(+)Langerin+ phenotypes. Int J Cancer 110:710–720.PubMedCrossRefGoogle Scholar
  150. Tourkova, I. L., Shurin, G. V., Chatta, G. S., Perez, L., Finke, J., Whiteside, T. L., Ferrone, S., and Shurin, M. R. (2005). Restoration by IL-15 of MHC class I antigen-processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol 175:3045–3052.PubMedGoogle Scholar
  151. Tourkova, I. L., Shurin, G. V., Wei, S., and Shurin, M. R. (2007). Small Rho GTPases mediate tumor-induced Inhibition of endocytic activity of dendritic cells. J Immunol 178:7787–7793.PubMedGoogle Scholar
  152. Tourkova, I. L., Yamabe, K., Foster, B., Chatta, G., Perez, L., Shurin, G. V., and Shurin, M. R. (2004). Murine prostate cancer inhibits both in vivo and in vitro generation of dendritic cells from bone marrow precursors. Prostate 59:203–213.PubMedCrossRefGoogle Scholar
  153. Ueno, A., Cho, S., Cheng, L., Wang, J., Hou, S., Nakano, H., Santamaria, P., and Yang, Y. (2007). Transient upregulation of IDO in dendritic cells by human chorionic gonadotropin downregulates autoimmune diabetes. Diabetes 56:1686–1693.PubMedCrossRefGoogle Scholar
  154. Ureta, G., Osorio, F., Morales, J., Rosemblatt, M., Bono, M. R., and Fierro, J. A. (2007). Generation of dendritic cells with regulatory properties. Transplant Proc 39:633–637.PubMedCrossRefGoogle Scholar
  155. Vakkila, J., Thomson, A. W., Vettenranta, K., Sariola, H., and Saarinen-Pihkala, U. M. (2004). Dendritic cell subsets in childhood and in children with cancer: relation to age and disease prognosis. Clin Exp Immunol 135:455–461.PubMedCrossRefGoogle Scholar
  156. Valenti, R., Huber, V., Filipazzi, P., Pilla, L., Sovena, G., Villa, A., Corbelli, A., Fais, S., Parmiani, G., and Rivoltini, L. (2006). Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298.PubMedCrossRefGoogle Scholar
  157. Valenti, R., Huber, V., Iero, M., Filipazzi, P., Parmiani, G., and Rivoltini, L. (2007). Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915.PubMedCrossRefGoogle Scholar
  158. Vicari, A. P., Caux, C., and Trinchieri, G. (2002). Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12:33–42.PubMedCrossRefGoogle Scholar
  159. Walker, S. R., Aboka, A., Ogagan, P. D., and Barksdale, E. M., Jr (2005). Murine neuroblastoma attenuates dendritic cell cysteine cysteine receptor 7 (CCR7) expression. J Pediatr Surg 40: 983–987.PubMedCrossRefGoogle Scholar
  160. Walker, S. R., Ogagan, P. D., DeAlmeida, D., Aboka, A. M., and Barksdale, E. M., Jr (2006). Neuroblastoma impairs chemokine-mediated dendritic cell migration in vitro. J Pediatr Surg 41:260–265.PubMedCrossRefGoogle Scholar
  161. Wang, S., Yang, J., Qian, J., Wezeman, M., Kwak, L. W., and Yi, Q. (2006). Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 107:2432–2439.PubMedCrossRefGoogle Scholar
  162. Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., Bhattacharya, R., Gabrilovich, D., Heller, R., Coppola, D., Dalton, W., Jove, R., Pardoll, D., and Yu, H. (2004). Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54.PubMedCrossRefGoogle Scholar
  163. Weber, F., Byrne, S. N., Le, S., Brown, D. A., Breit, S. N., Scolyer, R. A., and Halliday, G. M. (2005). Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother 54: 898–906.PubMedCrossRefGoogle Scholar
  164. Wei, S., Kryczek, I., Zou, L., Daniel, B., Cheng, P., Mottram, P., Curiel, T., Lange, A., and Zou, W. (2005). Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 65:5020–5026.PubMedCrossRefGoogle Scholar
  165. Wertel, F., Polak, G., Rolinski, J., Barczynski, B., and Kotarski, J. (2006). Myeloid and lymphoid dendritic cells in the peritoneal fluid of women with ovarian cancer. Adv Med Sci 51:174–177.PubMedGoogle Scholar
  166. Whiteside, T. L., Stanson, J., Shurin, M. R., and Ferrone, S. (2004). Antigen-processing machinery in human dendritic cells: up-regulation by maturation and down-regulation by tumor cells. J Immunol 173:1526–1534.PubMedGoogle Scholar
  167. Wilczynski, J. R. (2006). Cancer and pregnancy share similar mechanisms of immunological escape. Chemotherapy 52:107–110.PubMedCrossRefGoogle Scholar
  168. Wojas, K., Tabarkiewicz, J., Jankiewicz, M., and Rolinski, J. (2004). Dendritic cells in peripheral blood of patients with breast and lung cancer—a pilot study. Folia Histochem Cytobiol 42: 45–48.PubMedGoogle Scholar
  169. Yanagimoto, H., Takai, S., Satoi, S., Toyokawa, H., Takahashi, K., Terakawa, N., Kwon, A. H., and Kamiyama, Y. (2005). Impaired function of circulating dendritic cells in patients with pancreatic cancer. Clin Immunol 114:52–60.PubMedCrossRefGoogle Scholar
  170. Yang, A. S., and Lattime, E. C. (2003). Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res 63:2150–2157.PubMedGoogle Scholar
  171. Yang, L., and Carbone, D. P. (2004). Tumor–host immune interactions and dendritic cell dysfunction. Adv Cancer Res 92:13–27.PubMedGoogle Scholar
  172. Yang, L., Yamagata, N., Yadav, R., Brandon, S., Courtney, R. L., Morrow, J. D., Shyr, Y., Boothby, M., Joyce, S., Carbone, D. P., and Breyer, R. M. (2003). Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 111:727–735.PubMedCrossRefGoogle Scholar
  173. Yang, T., Witham, T. F., Villa, L., Erff, M., Attanucci, J., Watkins, S., Kondziolka, D., Okada, H., Pollack, I. F., and Chambers, W. H. (2002). Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomas. Cancer Res 62:2583–2591.PubMedGoogle Scholar
  174. Zou, W., Machelon, V., Coulomb-L’Hermin, A., Borvak, J., Nome, F., Isaeva, T., Wei, S., Krzysiek, R., Durand-Gasselin, I., Gordon, A., Pustilnik, T., Curiel, D. T., Galanaud, P., Capron, F., Emilie, D., and Curiel, T. J. (2001). Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7: 1339–1346.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael R. Shurin
    • 1
  • Gurkamal S. Chatta
  1. 1.Clinical ImmunopathologyPittsburghUSA

Personalised recommendations