Cancer-Induced Signaling Defects in Antitumor T Cells

  • Alan B. Frey


Lipid Raft Lytic Function Proximal Signaling Inhibitory Signaling Receptor Lytic Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsen, H., Baillie, G., Ngai, J., et al. (2004). TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol 173:4847–4858.PubMedGoogle Scholar
  2. Alarcon, B., Gil, D., Delgado, P., and Schamel, W. W. (2003). Initiation of TCR signaling: regulation within CD3 dimers. Immunol Rev 191:38–46.PubMedGoogle Scholar
  3. Alexander, J. P., Kudoh, S., Melsop, K. A., et al. (1993). T-cells infiltrating renal cell carcinoma display a poor proliferative response even though they can produce interleukin 2 and express interleukin 2 receptors. Cancer Res 53:1380–1387.PubMedGoogle Scholar
  4. Bennaceur, K., Popa, I., Portoukalian, J., Berthier-Vergnes, O., and Peguet-Navarro, J. (2006). Melanoma-derived gangliosides impair migratory and antigen-presenting function of human epidermal Langerhans cells and induce their apoptosis. Int Immunol 18: 879–886.PubMedGoogle Scholar
  5. Bergman, M., Mustelin, T., Oetken, C., et al. (1992). The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity. EMBO J 11: 2919–2924.PubMedGoogle Scholar
  6. Bharti, A. C., and Singh, S. M. (2001). Gangliosides derived from a T cell lymphoma inhibit bone marrow cell proliferation and differentiation. Int Immunopharmacol 1:155–165.PubMedGoogle Scholar
  7. Bharti, A. C., and Singh, S. M. (2003). Inhibition of macrophage nitric oxide production by gangliosides derived from a spontaneous T cell lymphoma: the involved mechanisms. Nitric Oxide 8:75–82.PubMedGoogle Scholar
  8. Birkeland, M. L., Johnson, P., Trowbridge, I. S., and Pure, E. (1989). Changes in CD45 isoform expression accompany antigen-induced murine T-cell activation. Proc Natl Acad Sci USA 86:6734–6738.PubMedGoogle Scholar
  9. Biswas, K., Richmond, A., Rayman, P., et al. (2006). GM2 expression in renal cell carcinoma: potential role in tumor-induced T-cell dysfunction. Cancer Res 66:6816–6825.PubMedGoogle Scholar
  10. Blackhall, F. H., and Shepherd, F. A. (2007). Small cell lung cancer and targeted therapies. Curr Opin Oncol 19:103–108.PubMedGoogle Scholar
  11. Blasioli, J., Paust, S., and Thomas, M. L. (1999). Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22. J Biol Chem 274:2303–2307.PubMedGoogle Scholar
  12. Boon, T., and Van Pel, A. (1989). T cell-recognized antigenic peptides derived from the cellular genome are not protein degradation products but can be generated directly by transcription and translation of short subgenic regions. A hypothesis. Immunogenetics 29:75–79.PubMedGoogle Scholar
  13. Brdicka, T., Pavlistova, D., Leo, A., et al. (2000). Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J Exp Med 191:1591–1604.PubMedGoogle Scholar
  14. Brdickova, N., Brdicka, T., Angelisova, P., et al. (2003). LIME: a new membrane Raft-associated adaptor protein involved in CD4 and CD8 coreceptor signaling. J Exp Med 198: 1453–1462.PubMedGoogle Scholar
  15. Bronte, V., Cingarlini, S., Marigo, I., et al. (2006). Leukocyte infiltration in cancer creates an unfavorable environment for antitumor immune responses: a novel target for therapeutic intervention. Immunol Invest 35:327–357.PubMedGoogle Scholar
  16. Bronte, V., Kasic, T., Gri, G., et al. (2005). Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201:1257–1268.PubMedGoogle Scholar
  17. Brumell, J. H., Burkhardt, A. L., Bolen, J. B., and Grinstein, S. (1996). Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J Biol Chem 271: 1455–1461.PubMedGoogle Scholar
  18. Bukowski, R. M., Rayman, P., Uzzo, R., et al. (1998). Signal transduction abnormalities in T lymphocytes from patients with advanced renal carcinoma: clinical relevance and effects of cytokine therapy. Clin Cancer Res 4:2337–2347.PubMedGoogle Scholar
  19. Cardi, G., Heaney, J. A., Schned, A. R., Phillips, D. M., Branda, M. T., and Ernstoff, M. S. (1997). T-cell receptor zeta-chain expression on tumor-infiltrating lymphocytes from renal cell carcinoma. Cancer Res 57:3517–3519.PubMedGoogle Scholar
  20. Cherukuri, A., Dykstra, M., and Pierce, S. K. (2001). Floating the raft hypothesis: lipid rafts play a role in immune cell activation. Immunity 14:657–660.PubMedGoogle Scholar
  21. Chiang, G. G., and Sefton, B. M. (2001). Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase. J Biol Chem 276: 23173–23178.PubMedGoogle Scholar
  22. Choi, Y. B., Kim, C. K., and Yun, Y. (1999). Lad, an adapter protein interacting with the SH2 domain of p56lck, is required for T cell activation. J Immunol 163:5242–5249.PubMedGoogle Scholar
  23. Chung, C. D., Patel, V. P., Moran, M., Lewis, L. A., and Miceli, M. C. (2000). Galectin-1 induces partial TCR zeta-chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol 165:3722–3729.PubMedGoogle Scholar
  24. Clements, J. L., Boerth, N. J., Lee, J. R., and Koretzky, G. A. (1999). Integration of T cell receptor-dependent signaling pathways by adapter proteins. Annu Rev Immunol 17:89–108.PubMedGoogle Scholar
  25. Cochran, A. J., Huang, R. R., Lee, J., Itakura, E., Leong, S. P., and Essner, R. (2006). Tumour-induced immune modulation of sentinel lymph nodes. Nat Rev Immunol 6:659–670.PubMedGoogle Scholar
  26. Correa, M. R., Ochoa, A. C., Ghosh, P., Mizoguchi, H., Harvey, L., and Longo, D. L. (1997). Sequential development of structural and functional alterations in T cells from tumor-bearing mice. J Immunol 158:5292–5296.PubMedGoogle Scholar
  27. Coulie, P. G., Lehmann, F., Lethe, B., et al. (1995). A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 92:7976–7980.PubMedGoogle Scholar
  28. Cuenca, A., Cheng, F., Wang, H., et al. (2003). Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: dominant role of cross-tolerance to tumor antigens. Cancer Res 63:9007–9015.PubMedGoogle Scholar
  29. Curiel, T. J., Coukos, G., Zou, L., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942–949.PubMedGoogle Scholar
  30. D’Ambrosio, D., Hippen, K. L., Minskoff, S. A., et al. (1995). Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by Fc gamma RIIB1. Science 268:293–297.PubMedGoogle Scholar
  31. Davidson, D., Bakinowski, M., Thomas, M. L., Horejsi, V., and Veillette, A. (2003). Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol 23:2017–2028.PubMedGoogle Scholar
  32. Dix, A. R., Brooks, W. H., Roszman, T. L., and Morford, L. A. (1999). Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100:216–232.PubMedGoogle Scholar
  33. Dolcetti, R., Viel, A., Doglioni, C., et al. (1999). High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 154:1805–1813.PubMedGoogle Scholar
  34. Dukers, D. F., Oudejans, J. J., Jaspars, E. H., et al. (2000). All infiltrating T-lymphocytes in Hodgkin’s disease express immunohistochemically detectable T-cell receptor zeta-chains in situ. Histopathology 36:544–550.PubMedGoogle Scholar
  35. Dumontet, C., Rebbaa, A., Bienvenu, J., and Portoukalian, J. (1994). Inhibition of immune cell proliferation and cytokine production by lipoprotein-bound gangliosides. Cancer Immunol Immunother 38:311–316.PubMedGoogle Scholar
  36. Fernandez-Miguel, G., Alarcon, B., Iglesias, A., et al. (1999). Multivalent structure of an alphabetaT cell receptor. Proc Natl Acad Sci USA 96:1547–1552.PubMedGoogle Scholar
  37. Finke, J. H., Zea, A. H., Stanley, J., et al. (1993). Loss of T-cell receptor zeta chain and p56lck in T-cells infiltrating human renal cell carcinoma. Cancer Res 53:5613–5616.PubMedGoogle Scholar
  38. Franco, J. L., Ghosh, P., Wiltrout, R. H., et al. (1995). Partial degradation of T-cell signal transduction molecules by contaminating granulocytes during protein extraction of splenic T cells from tumor-bearing mice. Cancer Res 55:3840–3846.PubMedGoogle Scholar
  39. Frey, A. B., and Monu, N. (2006). Effector-phase tolerance: another mechanism of how cancer escapes antitumor immune response. J Leukoc Biol 79:652–662.PubMedGoogle Scholar
  40. Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952.PubMedGoogle Scholar
  41. Gastman, B. R., Johnson, D. E., Whiteside, T. L., and Rabinowich, H. (1999). Caspase-mediated degradation of T-cell receptor zeta-chain. Cancer Res 59:1422–1427.PubMedGoogle Scholar
  42. Gattinoni, L., Powell, D. J., Jr, Rosenberg, S. A., and Restifo, N. P. (2006). Adoptive immuno-therapy for cancer: building on success. Nat Rev Immunol 6:383–393.PubMedGoogle Scholar
  43. Goodwin, J. S., Bromberg, S., and Messner, R. P. (1981). Studies on the cyclic AMP response to prostaglandin in human lymphocytes. Cell Immunol 60:298–307.PubMedGoogle Scholar
  44. Guilloux, Y., Lucas, S., Brichard, V. G., et al. (1996). A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J Exp Med 183:1173–1183.PubMedGoogle Scholar
  45. Hakomori, S. (1996). Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56:5309–5318.PubMedGoogle Scholar
  46. Hawash, I. Y., Kesavan, K. P., Magee, A. I., Geahlen, R. L., and Harrison, M. L. (2002). The Lck SH3 domain negatively regulates localization to lipid rafts through an interaction with c-Cbl. J Biol Chem 277:5683–5691.PubMedGoogle Scholar
  47. Hayashi, S., Witte, P. L., Shultz, L. D., and Kincade, P. W. (1988). Lymphohemopoiesis in culture is prevented by interaction with adherent bone marrow cells from mutant viable motheaten mice. J Immunol 140:2139–2147.PubMedGoogle Scholar
  48. Hernandez, J. D., and Baum, L. G. (2002). Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology 12:127R–136R.Google Scholar
  49. Horna, P., Cuenca, A., Cheng, F., et al. (2006). In vivo disruption of tolerogenic cross-presentation mechanisms uncovers an effective T-cell activation by B-cell lymphomas leading to antitumor immunity. Blood 107:2871–2878.PubMedGoogle Scholar
  50. Hur, E. M., Son, M., Lee, O. H., et al. (2003). LIME, a novel transmembrane adaptor protein, associates with p56lck and mediates T cell activation. J Exp Med 198:1463–1473.PubMedGoogle Scholar
  51. Ishikawa, T., Fujita, T., Suzuki, Y., et al. (2003). Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability. Cancer Res 63:5564–5572.PubMedGoogle Scholar
  52. Itoh, M., Yoshida, Y., Nishida, K., Narimatsu, M., Hibi, M., and Hirano, T. (2000). Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol 20: 3695–3704.PubMedGoogle Scholar
  53. Joung, I., Kim, T., Stolz, L. A., et al. (1995). Modification of Ser59 in the unique N-terminal region of tyrosine kinase p56lck regulates specificity of its Src homology 2 domain. Proc Natl Acad Sci USA 92:5778–5782.PubMedGoogle Scholar
  54. Kabouridis, P. S., Magee, A. I., and Ley, S. C. (1997). S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J 16:4983–4998.PubMedGoogle Scholar
  55. Kagi, D., Ledermann, B., Burki, K., Zinkernagel, R. M., and Hengartner, H. (1996). Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu Rev Immunol 14:207–232.PubMedGoogle Scholar
  56. Kammer, G. M. (1988). The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol Today 9:222–229.PubMedGoogle Scholar
  57. Kane, L. P., Lin, J., and Weiss, A. (2000). Signal transduction by the TCR for antigen. Curr Opin Immunol 12:242–249.PubMedGoogle Scholar
  58. Kautz, B., Kakar, R., David, E., and Eklund, E. A. (2001). SHP1 protein-tyrosine phosphatase inhibits gp91PHOX and p67PHOX expression by inhibiting interaction of PU.1, IRF1, interferon consensus sequence-binding protein, and CREB-binding protein with homologous Cis elements in the CYBB and NCF2 genes. J Biol Chem 276:37868–37878.PubMedGoogle Scholar
  59. Kiessling, R., Wasserman, K., Horiguchi, S., et al. (1999). Tumor-induced immune dysfunction. Cancer Immunol Immunother 48:353–362.PubMedGoogle Scholar
  60. Kolenko, V., Wang, Q., Riedy, M. C., et al. (1997). Tumor-induced suppression of T lymphocyte proliferation coincides with inhibition of Jak3 expression and IL-2 receptor signaling: role of soluble products from human renal cell carcinomas. J Immunol 159:3057–3067.PubMedGoogle Scholar
  61. Koneru, M., Monu, N., Schaer, D., Barletta, J., and Frey, A. B. (2006). Defective adhesion in tumor infiltrating CD8+ T cells. J Immunol 176:6103–6111.PubMedGoogle Scholar
  62. Koneru, M., Schaer, D., Monu, N., Ayala, A., and Frey, A. B. (2005). Defective proximal TCR signaling inhibits CD8+ tumor-infiltrating lymphocyte lytic function. J Immunol 174: 1830–1840.PubMedGoogle Scholar
  63. Kong, Y., Li, R., and Ladisch, S. (1998). Natural forms of shed tumor gangliosides. Biochim Biophys Acta 1394:43–56.PubMedGoogle Scholar
  64. Kono, K., Salazar-Onfray, F., Petersson, M., et al. (1996). Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 26: 1308–1313.PubMedGoogle Scholar
  65. Kopitz, J., von Reitzenstein, C., Burchert, M., Cantz, M., and Gabius, H. J. (1998). Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem 273: 11205–11211.PubMedGoogle Scholar
  66. Ladisch, S., Ulsh, L., Gillard, B., and Wong, C. (1984). Modulation of the immune response by gangliosides. Inhibition of adherent monocyte accessory function in vitro. J Clin Invest 74:2074–2081.PubMedGoogle Scholar
  67. Ledbetter, J. A., Parsons, M., Martin, P. J., Hansen, J. A., Rabinovitch, P. S., and June, C. H. (1986). Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP-mediated suppression. J Immunol 137: 3299–3305.PubMedGoogle Scholar
  68. Lee, P. P., Yee, C., Savage, P. A., et al. (1999). Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–685.PubMedGoogle Scholar
  69. Levey, D. L., and Srivastava, P. K. (1995). T cells from late tumor-bearing mice express normal levels of p56lck, p59fyn, ZAP-70, and CD3 zeta despite suppressed cytolytic activity. J Exp Med 182:1029–1036.PubMedGoogle Scholar
  70. Levy, F. O., Rasmussen, A. M., Tasken, K., et al. (1996). Cyclic AMP-dependent protein kinase (cAK) in human B cells: co-localization of type I cAK (RI alpha 2 C2) with the antigen receptor during anti-immunoglobulin-induced B cell activation. Eur J Immunol 26:1290–1296.PubMedGoogle Scholar
  71. Li, X., Liu, J., Park, J. K., et al. (1994). T cells from renal cell carcinoma patients exhibit an abnormal pattern of kappa B-specific DNA-binding activity: a preliminary report. Cancer Res 54:5424–5429.PubMedGoogle Scholar
  72. Lindahl, K. F. (1991). Do we need a pepton hypothesis? Immunogenetics 34:1–4.PubMedGoogle Scholar
  73. Ling, W., Rayman, P., Uzzo, R., et al. (1998). Impaired activation of NFkappaB in T cells from a subset of renal cell carcinoma patients is mediated by inhibition of phosphorylation and degradation of the inhibitor, IkappaBalpha. Blood 92:1334–1341.PubMedGoogle Scholar
  74. Liu, Y., Li, R., and Ladisch, S. (2004). Exogenous ganglioside GD1a enhances epidermal growth factor receptor binding and dimerization. J Biol Chem 279:36481–36489.PubMedGoogle Scholar
  75. Liu, Y. C., Penninger, J., and Karin, M. (2005). Immunity by ubiquitylation: a reversible process of modification. Nat Rev Immunol 5:941–952.PubMedGoogle Scholar
  76. Loeffler, C. M., Smyth, M. J., Longo, D. L., et al. (1992). Immunoregulation in cancer-bearing hosts. Down-regulation of gene expression and cytotoxic function in CD8+ T cells. J Immunol 149:949–956.PubMedGoogle Scholar
  77. Lorenz, U., Ravichandran, K. S., Burakoff, S. J., and Neel, B. G. (1996). Lack of SHPTP1 results in src-family kinase hyperactivation and thymocyte hyperresponsiveness. Proc Natl Acad Sci USA 93:9624–9629.PubMedGoogle Scholar
  78. Lupetti, R., Pisarra, P., Verrecchia, A., et al. (1998). Translation of a retained intron in tyrosinase-related protein (TRP) 2† mRNA generates a new cytotoxic T lymphocyte (CTL)-defined and shared human melanoma antigen not expressed in normal cells of the melanocytic lineage. J Exp Med 188:1005–1016.PubMedGoogle Scholar
  79. Magee, A. I., Adler, J., and Parmryd, I. (2005). Cold-induced coalescence of T-cell plasma membrane microdomains activates signalling pathways. J Cell Sci 118:3141–3151.PubMedGoogle Scholar
  80. Marth, J. D., Lewis, D. B., Wilson, C. B., Gearn, M. E., Krebs, E. G., and Perlmutter, R. M. (1987). Regulation of pp56lck during T-cell activation: functional implications for the src-like protein tyrosine kinases. EMBO J 6:2727–2734.PubMedGoogle Scholar
  81. Masopust, D., Vezys, V., Marzo, A. L., and Lefrancois, L. (2001). Preferential localization of effector memory cells in nonlymphoid tissue. Science 291:2413–2417.PubMedGoogle Scholar
  82. Meng, T. C., Fukada, T., and Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399.PubMedGoogle Scholar
  83. Mescher, M. F., Curtsinger, J. M., Agarwal, P., et al. (2006). Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev 211:81–92.PubMedGoogle Scholar
  84. Michel, J. J., and Scott, J. D. (2002). AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol 42:235–257.PubMedGoogle Scholar
  85. Mizoguchi, H., O’Shea, J. J., Longo, D. L., Loeffler, C. M., McVicar, D. W., and Ochoa, A. C. (1992). Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258:1795–1798.PubMedGoogle Scholar
  86. Mor, A., and Philips, M. R. (2006). Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24:771–800.PubMedGoogle Scholar
  87. Morgan, M. M., Labno, C. M., Van Seventer, G. A., Denny, M. F., Straus, D. B., and Burkhardt, J. K. (2001). Superantigen-induced T cell:B cell conjugation is mediated by LFA-1 and requires signaling through Lck, but not ZAP-70. J Immunol 167:5708–5718.PubMedGoogle Scholar
  88. Mustelin, T., Vang, T., and Bottini, N. (2005). Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 5:43–57.PubMedGoogle Scholar
  89. Nada, S., Okada, M., MacAuley, A., Cooper, J. A., and Nakagawa, H. (1991). Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351:69–72.PubMedGoogle Scholar
  90. Nakagomi, H., Petersson, M., Magnusson, I., et al. (1993). Decreased expression of the signal-transducing zeta chains in tumor-infiltrating T-cells and NK cells of patients with colorectal carcinoma. Cancer Res 53:5610–5612.PubMedGoogle Scholar
  91. Neel, B. G. (1997). Role of phosphatases in lymphocyte activation. Curr Opin Immunol 9:405–420.PubMedGoogle Scholar
  92. Oh, P., and Schnitzer, J. E. (2001). Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 12:685–698.PubMedGoogle Scholar
  93. O’Keefe, T. L., Williams, G. T., Davies, S. L., and Neuberger, M. S. (1996). Hyperresponsive B cells in CD22-deficient mice. Science 274:798–801.PubMedGoogle Scholar
  94. Olszowy, M. W., Leuchtmann, P. L., Veillette, A., and Shaw, A. S. (1995). Comparison of p56lck and p59fyn protein expression in thymocyte subsets, peripheral T cells, NK cells, and lymphoid cell lines. J Immunol 155:4236–4240.PubMedGoogle Scholar
  95. Ostergaard, H. L., Shackelford, D. A., Hurley, T. R., et al. (1989). Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc Natl Acad Sci USA 86:8959–8963.PubMedGoogle Scholar
  96. Overwijk, W. W., Theoret, M. R., Finkelstein, S. E., et al. (2003). Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198:569–580.PubMedGoogle Scholar
  97. Pardoll, D. (2003). Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839.PubMedGoogle Scholar
  98. Parmiani, G., Pilla, L., Castelli, C., and Rivoltini, L. (2003). Vaccination of patients with solid tumours. Ann Oncol 14:817–824.PubMedGoogle Scholar
  99. Pei, D., Lorenz, U., Klingmuller, U., Neel, B. G., and Walsh, C. T. (1994). Intramolecular regulation of protein tyrosine phosphatase SH-PTP1: a new function for Src homology 2 domains. Biochemistry 33:15483–15493.PubMedGoogle Scholar
  100. Perry, S. J., Baillie, G. S., Kohout, T. A., et al. (2002). Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 298:834–836.PubMedGoogle Scholar
  101. Perry, S. J., and Lefkowitz, R. J. (2002). Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol 12:130–138.PubMedGoogle Scholar
  102. Plas, D. R., Johnson, R., Pingel, J. T., et al. (1996). Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science 272:1173–1176.PubMedGoogle Scholar
  103. Pope, C., Kim, S. K., Marzo, A., et al. (2001). Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J Immunol 166:3402–3409.Google Scholar
  104. Rabinovich, G., Gabrilovich, D., and Sotomayer, E. (2007). Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296.PubMedGoogle Scholar
  105. Radoja, S., Frey, A. B., and Vukmanovic, S. (2006). T-cell receptor signaling events triggering granule exocytosis. Crit Rev Immunol 26:265–290.PubMedGoogle Scholar
  106. Radoja, S., Rao, T. D., Hillman, D., and Frey, A. B. (2000). Mice bearing late-stage tumors have normal functional systemic T cell responses in vitro and in vivo. J Immunol 164: 2619–2628.PubMedGoogle Scholar
  107. Radoja, S., Saio, M., Schaer, D., Koneru, M., Vukmanovic, S., and Frey, A. B. (2001). CD8(+) tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis. J Immunol 167: 5042–5051.PubMedGoogle Scholar
  108. Ravetch, J. V., and Kinet, J. P. (1991). Fc receptors. Annu Rev Immunol 9:457–492.PubMedGoogle Scholar
  109. Reichert, T. E., Strauss, L., Wagner, E. M., Gooding, W., and Whiteside, T. L. (2002). Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res 8:3137–3145.PubMedGoogle Scholar
  110. Resh, M. D. (1994). Myristylation and palmitylation of Src family members: the fats of the matter. Cell 76:411–413.PubMedGoogle Scholar
  111. Riedl, K., Krysan, K., Pold, M., et al. (2004). Multifaceted roles of cyclooxygenase-2 in lung cancer. Drug Resist Updat 7:169–184.PubMedGoogle Scholar
  112. Ritter, G., and Livingston, P. O. (1991). Ganglioside antigens expressed by human cancer cells. Semin Cancer Biol 2:401–409.PubMedGoogle Scholar
  113. Rodriguez, P. C., Hernandez, C. P., Quiceno, D., et al. (2005). Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939.PubMedGoogle Scholar
  114. Rosenberg, S. A., Yang, J. C., and Restifo, N. P. (2004). Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915.PubMedGoogle Scholar
  115. Rudd, C. E. (1999). Adaptors and molecular scaffolds in immune cell signaling. Cell 96:5–8.PubMedGoogle Scholar
  116. Sachs, M., Brohmann, H., Zechner, D., et al. (2000). Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 150:1375–1384.PubMedGoogle Scholar
  117. Samelson, L. E. (2002). Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol 20:371–394.PubMedGoogle Scholar
  118. Schmielau, J., and Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61:4756–4760.PubMedGoogle Scholar
  119. Schraven, B., Marie-Cardine, A., Hubener, C., Bruyns, E., and Ding, I. (1999). Integration of receptor-mediated signals in T cells by transmembrane adaptor proteins. Immunol Today 20:431–434.PubMedGoogle Scholar
  120. Shu, S., Cochran, A. J., Huang, R. R., Morton, D. L., and Maecker, H. T. (2006). Immune responses in the draining lymph nodes against cancer: implications for immunotherapy. Cancer Metastasis Rev 25:233–242.PubMedGoogle Scholar
  121. Shultz, L. D., Schweitzer, P. A., Rajan, T. V., et al. (1993). Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73: 1445–1454.PubMedGoogle Scholar
  122. Siminovitch, K. A., and Neel, B. G. (1998). Regulation of B cell signal transduction by SH2-containing protein-tyrosine phosphatases. Semin Immunol 10:329–347.PubMedGoogle Scholar
  123. Sloan-Lancaster, J., and Allen, P. M. (1996). Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu Rev Immunol 14:1–27.PubMedGoogle Scholar
  124. Sloan-Lancaster, J., Steinberg, T. H., and Allen, P. M. (1996). Selective activation of the calcium signaling pathway by altered peptide ligands. J Exp Med 184:1525–1530.PubMedGoogle Scholar
  125. Staveley-O’Carroll, K., Sotomayor, E., Montgomery, J., et al. (1998). Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci USA 95:1178–1183.PubMedGoogle Scholar
  126. Stefanova, I., Hemmer, B., Vergelli, M., Martin, R., Biddison, W. E., and Germain, R. N. (2003). TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat Immunol 4:248–254.PubMedGoogle Scholar
  127. Stulnig, T. M., Berger, M., Sigmund, T., Raederstorff, D., Stockinger, H., and Waldhausl, W. (1998). Polyunsaturated fatty acids inhibit T cell signal transduction by modification of detergent-insoluble membrane domains. J Cell Biol 143:637–644.PubMedGoogle Scholar
  128. Stutman, O. (1975). Immunodepression and malignancy. Adv Cancer Res 22:261–422.PubMedGoogle Scholar
  129. Takahashi-Tezuka, M., Yoshida, Y., Fukada, T., et al. (1998). Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen-activated protein kinase. Mol Cell Biol 18:4109–4117.PubMedGoogle Scholar
  130. Tasken, K., and Aandahl, E. M. (2004). Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84:137–167.PubMedGoogle Scholar
  131. Tasken, K., and Stokka, A. J. (2006). The molecular machinery for cAMP-dependent immunomodulation in T-cells. Biochem Soc Trans 34:476–479.PubMedGoogle Scholar
  132. Tedoldi, S., Paterson, J. C., Hansmann, M. L., et al. (2006). Transmembrane adaptor molecules: a new category of lymphoid-cell markers. Blood 107:213–221.PubMedGoogle Scholar
  133. Thornton, M. V., Kudo, D., Rayman, P., et al. (2004). Degradation of NF-kappa B in T cells by gangliosides expressed on renal cell carcinomas. J Immunol 172:3480–3490.PubMedGoogle Scholar
  134. Torgersen, K. M., Vaage, J. T., Levy, F. O., Hansson, V., Rolstad, B., and Tasken, K. (1997). Selective activation of cAMP-dependent protein kinase type I inhibits rat natural killer cell cytotoxicity. J Biol Chem 272:5495–5500.PubMedGoogle Scholar
  135. Torgersen, K. M., Vang, T., Abrahamsen, H., et al. (2001). Release from tonic inhibition of T cell activation through transient displacement of C-terminal Src kinase (Csk) from lipid rafts. J Biol Chem 276:29313–29318.PubMedGoogle Scholar
  136. Torgersen, K. M., Vang, T., Abrahamsen, H., Yaqub, S., and Tasken, K. (2002). Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal 14:1–9.PubMedGoogle Scholar
  137. Tran, D. D., Edgar, C. E., Heckman, K. L., et al. (2005). CAML is a p56Lck-interacting protein that is required for thymocyte development. Immunity 23:139–152.PubMedGoogle Scholar
  138. Uzzo, R. G., Clark, P. E., Rayman, P., et al. (1999a). Alterations in NFkappaB activation in T lymphocytes of patients with renal cell carcinoma. J Natl Cancer Inst 91:718–721.Google Scholar
  139. Uzzo, R. G., Rayman, P., Kolenko, V., et al. (1999b). Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin Cancer Res 5:1219–1229.Google Scholar
  140. Valitutti, S., Muller, S., Salio, M., and Lanzavecchia, A. (1997). Degradation of T cell receptor (TCR)-CD3-zeta complexes after antigenic stimulation. J Exp Med 185:1859–1864.PubMedGoogle Scholar
  141. Vang, T., Torgersen, K. M., Sundvold, V., et al. (2001). Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med 193:497–507.PubMedGoogle Scholar
  142. Varki, A., and Angata, T. (2006). Siglecs—the major subfamily of I-type lectins. Glycobiology 16:1R–27R.Google Scholar
  143. Veillette, A., Horak, I. D., Horak, E. M., Bookman, M. A., and Bolen, J. B. (1988). Alterations of the lymphocyte-specific protein tyrosine kinase (p56lck) during T-cell activation. Mol Cell Biol 8:4353–4361.PubMedGoogle Scholar
  144. Vivier, E., and Anfossi, N. (2004). Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol 4:190–198.PubMedGoogle Scholar
  145. Vivier, E., and Daeron, M. (1997). Immunoreceptor tyrosine-based inhibition motifs. Immunol Today 18:286–291.PubMedGoogle Scholar
  146. Wang, Q., Stanley, J., Kudoh, S., et al. (1995). T cells infiltrating non-Hodgkin’s B cell lymphomas show altered tyrosine phosphorylation pattern even though T cell receptor/CD3-associated kinases are present. J Immunol 155:1382–1392.PubMedGoogle Scholar
  147. Watts, J. D., Sanghera, J. S., Pelech, S. L., and Aebersold, R. (1993). Phosphorylation of serine 59 of p56lck in activated T cells. J Biol Chem 268:23275–23282.PubMedGoogle Scholar
  148. Weiss, A., and Littman, D. R. (1994). Signal transduction by lymphocyte antigen receptors. Cell 76:263–274.PubMedGoogle Scholar
  149. Whiteside, T. L. (1998). Immune cells in the tumor microenvironment. Mechanisms responsible for functional and signaling defects. Adv Exp Med Biol 451:167–171.PubMedGoogle Scholar
  150. Whiteside, T. L. (1999). Signaling defects in T lymphocytes of patients with malignancy. Cancer Immunol Immunother 48:346–352.PubMedGoogle Scholar
  151. Whiteside, T. L. (2004). Down-regulation of zeta-chain expression in T cells: a biomarker of prognosis in cancer? Cancer Immunol Immunother 53:865–878.PubMedGoogle Scholar
  152. Whiteside, T. L., and Parmiani, G. (1994). Tumor-infiltrating lymphocytes: their phenotype, functions and clinical use. Cancer Immunol Immunother 39:15–21.PubMedGoogle Scholar
  153. Wick, M., Dubey, P., Koeppen, H., et al. (1997). Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy. J Exp Med 186: 229–238.PubMedGoogle Scholar
  154. Willimsky, G., and Blankenstein, T. (2005). Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437:141–146.PubMedGoogle Scholar
  155. Winkler, D. G., Park, I., Kim, T., et al. (1993). Phosphorylation of Ser-42 and Ser-59 in the N-terminal region of the tyrosine kinase p56lck. Proc Natl Acad Sci USA 90:5176–5180.PubMedGoogle Scholar
  156. Wolfl, M., Batten, W. Y., Posovszky, C., Bernhard, H., and Berthold, F. (2002). Gangliosides inhibit the development from monocytes to dendritic cells. Clin Exp Immunol 130:441–448.PubMedGoogle Scholar
  157. Zamoyska, R. (1998). CD4 and CD8: modulators of T-cell receptor recognition of antigen and of immune responses? Curr Opin Immunol 10:82–87.PubMedGoogle Scholar
  158. Zhang, S. Q., Yang, W., Kontaridis, M. I., et al. (2004). Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 13:341–355.PubMedGoogle Scholar
  159. Zhang, Z., Shen, K., Lu, W., and Cole, P. A. (2003). The role of C-terminal tyrosine phosphorylation in the regulation of SHP-1 explored via expressed protein ligation. J Biol Chem 278: 4668–4674.PubMedGoogle Scholar
  160. Zhou, G., Drake, C. G., and Levitsky, H. I. (2006). Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107:628–636.PubMedGoogle Scholar
  161. Zou, W. (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alan B. Frey
    • 1
  1. 1.Department of Cell Biology-MSB623New York University School ofMedicineNew YorkUSA

Personalised recommendations