Mechanisms of Tumor-Associated T-Cell Tolerance

  • Adam J. Adler


Prostate Cancer Tumor Immunity Adoptive Immunotherapy Cell Tolerance Peripheral Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, A. J. (2005). Peripheral tolerization of effector and memory T cells: implications for autoimmunity and tumor-immunity. Curr Immunol Rev 1: 21–28.CrossRefGoogle Scholar
  2. Adler, A. J., Huang, C. T., Yochum, G. S., Marsh, D. W., and Pardoll, D. M. (2000). In vivo CD4+ T cell tolerance induction versus priming is independent of the rate and number of cell divisions. J Immunol 164:649–655.PubMedGoogle Scholar
  3. Adler, A. J., Marsh, D. W., Yochum, G. S., Guzzo, J. L., Nigam, A., Nelson, W. G., and Pardoll, D. M. (1998). CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen presenting cells. J Exp Med 187:1555–1564.PubMedCrossRefGoogle Scholar
  4. Anderson, M. J., Shafer-Weaver, K., Greenberg, N. M., and Hurwitz, A. A. (2007). Tolerization of tumor-specific T cells despite efficient initial priming in a primary murine model of prostate cancer. J Immunol 178:1268–1276.PubMedGoogle Scholar
  5. Anderson, M. S., Venanzi, E. S., Klein, L., Chen, Z., Berzins, S. P., Turley, S. J., von Boehmer, H., Bronson, R., Dierich, A., Benoist, C., and Mathis, D. (2002). Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401.PubMedCrossRefGoogle Scholar
  6. Apostolou, I., and von Boehmer, H. (2004). In vivo instruction of suppressor commitment in naive T cells. J Exp Med 199:1401–1408.PubMedCrossRefGoogle Scholar
  7. Bachmaier, K., Krawczyk, C., Kozieradzki, I., Kong, Y. Y., Sasaki, T., Oliveira-dos-Santos, A., Mariathasan, S., Bouchard, D., Wakeham, A., Itie, A., Le, J., Ohashi, P. S., Sarosi, I., Nishina, H., Lipkowitz, S., and Penninger, J. M. (2000). Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403:211–216.PubMedCrossRefGoogle Scholar
  8. Bannchereau, J., and Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature 392:245–252.CrossRefGoogle Scholar
  9. Belz, G. T., Behrens, G. M., Smith, C. M., Miller, J. F., Jones, C., Lejon, K., Fathman, C. G., Mueller, S. N., Shortman, K., Carbone, F. R., and Heath, W. R. (2002). The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J Exp Med 196:1099–1104.PubMedCrossRefGoogle Scholar
  10. Blattman, J. N., Grayson, J. M., Wherry, E. J., Kaech, S. M., Smith, K. A., and Ahmed, R. (2003). Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat Med 9: 540–547.PubMedCrossRefGoogle Scholar
  11. Bogen, B. (1996). Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur J Immunol 26:2671–2679.PubMedCrossRefGoogle Scholar
  12. Bogen, B., Dembic, Z., and Weiss, S. (1993). Clonal deletion of specific thymocytes by an immunoglobulin idiotype. EMBO J 12:357–363.PubMedGoogle Scholar
  13. Bos, R., van Duikeren, S., van Hall, T., Kaaijk, P., Taubert, R., Kyewski, B., Klein, L., Melief, C. J., and Offringa, R. (2005). Expression of a natural tumor antigen by thymic epithelial cells impairs the tumor-protective CD4+ T-cell repertoire. Cancer Res 65:6443–6449.PubMedCrossRefGoogle Scholar
  14. Bouneaud, C., Kourilsky, P., and Bousso, P. (2000). Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13:829–840.PubMedCrossRefGoogle Scholar
  15. Chen, C. D., Welsbie, D. S., Tran, C., Baek, S. H., Chen, R., Vessella, R., Rosenfeld, M. G., and Sawyers, C. L. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39.PubMedCrossRefGoogle Scholar
  16. Chen, M., Wang, Y. H., Wang, Y., Huang, L., Sandoval, H., Liu, Y. J., and Wang, J. (2006). Dendritic cell apoptosis in the maintenance of immune tolerance. Science 311:1160–1164.PubMedCrossRefGoogle Scholar
  17. Chiller, J. M., Habicht, G. S., and Weigle, W. O. (1971). Kinetic differences in unresponsiveness of thymus and bone marrow cells. Science 171:813–815.PubMedCrossRefGoogle Scholar
  18. Coffey, D. S. (2001). Similarities of prostate and breast cancer: evolution, diet, and estrogens. Urology 57:31–38.PubMedCrossRefGoogle Scholar
  19. Cosman, F., and Lindsay, R. (1999). Selective estrogen receptor modulators: clinical spectrum. Endocr Rev 20:418–434.PubMedCrossRefGoogle Scholar
  20. Cox, A. L., Skipper, J., Chen, Y., Henderson, R. A., Darrow, T. L., Shabanowitz, J., Engelhard, V. H., Hunt, D. F., and Slingluff, C. L., Jr (1994). Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264:716–719.PubMedCrossRefGoogle Scholar
  21. Croft, M., Bradley, L. M., and Swain, S. L. (1994). Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol 152:2675–2685.PubMedGoogle Scholar
  22. Denmeade, S. R., and Isaacs, J. T. (2002). A history of prostate cancer treatment. Nat Rev Cancer 2:389–396.PubMedCrossRefGoogle Scholar
  23. Derbinski, J., Gabler, J., Brors, B., Tierling, S., Jonnakuty, S., Hergenhahn, M., Peltonen, L., Walter, J., and Kyewski, B. (2005). Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202:33–45.PubMedCrossRefGoogle Scholar
  24. Doan, T., Herd, K. A., Lambert, P. F., Fernando, G. J., Street, M. D., and Tindle, R. W. (2000). Peripheral tolerance to human papillomavirus E7 oncoprotein occurs by cross-tolerization, is largely Th-2-independent, and is broken by dendritic cell immunization. Cancer Res 60:2810–2815.PubMedGoogle Scholar
  25. Drake, C. G., Doody, A. D., Mihalyo, M. A., Huang, C. T., Kelleher, E., Ravi, S., Hipkiss, E. L., Flies, D. B., Kennedy, E. P., Long, M., McGary, P. W., Coryell, L., Nelson, W. G., Pardoll, D. M., and Adler, A. J. (2005). Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 7:239–249.PubMedCrossRefGoogle Scholar
  26. Dresser, D. W. (1962). Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen. Immunology 5:378–388.PubMedGoogle Scholar
  27. D’Souza, W. N., and Lefrancois, L. (2003). IL-2 is not required for the initiation of CD8 T cell cycling but sustains expansion. J Immunol 171:5727–5735.PubMedGoogle Scholar
  28. Dudley, M. E., Wunderlich, J. R., Robbins, P. F., Yang, J. C., Hwu, P., Schwartzentruber, D. J., Topalian, S. L., Sherry, R., Restifo, N. P., Hubicki, A. M., Robinson, M. R., Raffeld, M., Duray, P., Seipp, C. A., Rogers-Freezer, L., Morton, K. E., Mavroukakis, S. A., White, D. E., and Rosenberg, S. A. (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854.PubMedCrossRefGoogle Scholar
  29. Dummer, W., Niethammer, A. G., Baccala, R., Lawson, B. R., Wagner, N., Reisfeld, R. A., and Theofilopoulos, A. N. (2002). T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 110:185–192.PubMedCrossRefGoogle Scholar
  30. Eynon, E. E., and Parker, D. C. (1992). Small B cells as antigen-presenting cells in the induction of tolerance to soluble protein antigens. J Exp Med 175:131–138.PubMedCrossRefGoogle Scholar
  31. Finkelman, F. D., Lees, A., Birnbaum, R., Gause, W. C., and Morris, S. C. (1996). Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J Immunol 157:1406–1414.PubMedGoogle Scholar
  32. Fox, H. S. (1992). Androgen treatment prevents diabetes in nonobese diabetic mice. J Exp Med 175:1409–1412.PubMedCrossRefGoogle Scholar
  33. Fuchs, E. J., and Matzinger, P. (1992). B cells turn off virgin but not memory T cells. Science 258:1156–1159.PubMedCrossRefGoogle Scholar
  34. Furuya, Y., Lin, X. S., Walsh, J. C., Nelson, W. G., and Isaacs, J. T. (1995). Androgen ablation-induced programmed death of prostatic glandular cells does not involve recruitment into a defective cell cycle or p53 induction. Endocrinology 136:1898–1906.PubMedCrossRefGoogle Scholar
  35. Glimcher, L. H., Townsend, M. J., Sullivan, B. M., and Lord, G. M. (2004). Recent developments in the transcriptional regulation of cytolytic effector cells. Nat. Rev. Immunol. 4:900–911.PubMedCrossRefGoogle Scholar
  36. Gorelik, E. (1983). Concomitant tumor immunity and the resistance to a second tumor challenge. Adv Cancer Res 39:71–120.PubMedGoogle Scholar
  37. Gorelik, L., and Flavell, R. A. (2000). Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181.PubMedCrossRefGoogle Scholar
  38. Greenberg, N. M., DeMayo, F., Finegold, M. J., Medina, D., Tilley, W. D., Aspinall, J. O., Cunha, G. R., Donjacour, A. A., Matusik, R. J., and Rosen, J. M. (1995). Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92:3439–3443.PubMedCrossRefGoogle Scholar
  39. Greenberg, P. D., and Cheever, M. A. (1984). Treatment of disseminated leukemia with cyclophosphamide and immune cells: tumor immunity reflects long-term persistence of tumor-specific donor T cells. J Immunol 133:3401–3407.PubMedGoogle Scholar
  40. Hagymasi, A. T., Slaiby, A. M., Mihalyo, M. A., Qui, H. Z., Zammit, D. J., Lefrancois, L., and Adler, A. J. (2007). Steady state dendritic cells present parenchymal self-antigen and contribute to, but are not essential for, tolerization of naïve and Th1 effector CD4 cells. J Immunol 179:1524–1531.PubMedGoogle Scholar
  41. Hakimi, J. M., Rondinelli, R. H., Schoenberg, M. P., and Barrack, E. R. (1996). Androgen-receptor gene structure and function in prostate cancer. World J Urol 14:329–337.PubMedCrossRefGoogle Scholar
  42. Han, G., Buchanan, G., Ittmann, M., Harris, J. M., Yu, X., Demayo, F. J., Tilley, W., and Greenberg, N. M. (2005). Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc Natl Acad Sci USA 102:1151–1156.PubMedCrossRefGoogle Scholar
  43. Hanson, H. L., Donermeyer, D. L., Ikeda, H., White, J. M., Shankaran, V., Old, L. J., Shiku, H., Schreiber, R. D., and Allen, P. M. (2000). Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 13:265–276.PubMedCrossRefGoogle Scholar
  44. Hawiger, D., Inaba, K., Dorsett, Y., Guo, M., Mahnke, K., Rivera, M., Ravetch, J. V., Steinman, R. M., and Nussenzweig, M. C. (2001). Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194:769–779.PubMedCrossRefGoogle Scholar
  45. Higgins, A. D., Mihalyo, M. A., and Adler, A. J. (2002a). Effector CD4 cells are tolerized upon exposure to parenchymal self-antigen. J Immunol 169:3622–3629.Google Scholar
  46. Higgins, A. D., Mihalyo, M. A., McGary, P. W., and Adler, A. J. (2002b). CD4 cell priming and tolerization are differentially programmed by APCs upon initial engagement. J Immunol 168:5573–5581.Google Scholar
  47. Horgan, K. J., Van Seventer, G. A., Shimizu, Y., and Shaw, S. (1990). Hyporesponsiveness of “naive” (CD45RA+) human T cells to multiple receptor-mediated stimuli but augmentation of responses by co-stimuli. Eur J Immunol 20:1111–1118.PubMedCrossRefGoogle Scholar
  48. Hu, H. M., Poehlein, C. H., Urba, W. J., and Fox, B. A. (2002). Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res 62:3914–3919.PubMedGoogle Scholar
  49. Hu, J., Kindsvogel, W., Busby, S., Bailey, M. C., Shi, Y., and Greenberg, P. D. (1993). An evaluation of the potential to use tumor-associated antigens as targets for antitumor T cell therapy using transgenic mice expressing a retroviral tumor antigen in normal lymphoid tissues. J Exp Med 177:1681–1690.PubMedCrossRefGoogle Scholar
  50. Hung, K., Hayashi, R., Lafond-Walker, A., Lowenstein, C., Pardoll, D., and Levitsky, H. (1998). The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357–2368.PubMedCrossRefGoogle Scholar
  51. Ikeda, H., Old, L. J., and Schreiber, R. D. (2002). The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13:95–109.PubMedCrossRefGoogle Scholar
  52. Janeway, C. A., Jr, and Medzhitov, R. (2002). Innate immune recognition. Annu Rev Immunol 20:197–216.PubMedCrossRefGoogle Scholar
  53. Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., Feuer, E. J., and Thun, M. J. (2005). Cancer statistics, 2005. CA Cancer J Clin 55:10–30.PubMedGoogle Scholar
  54. Jenkins, M. K., Khoruts, A., Ingulli, E., Mueller, D. L., McSorley, S. J., Reinhardt, R. L., Itano, A., and Pape, K. A. (2001). In vivo activation of antigen-specific CD4 T cells. Annu Rev Immunol 19:23–45.PubMedCrossRefGoogle Scholar
  55. Jones, L. A., Chin, L. T., Longo, D. L., and Kruisbeek, A. M. (1990). Peripheral clonal elimination of functional T cells. Science 250:1726–1729.PubMedCrossRefGoogle Scholar
  56. Jooss, K., Gjata, B., Danos, O., von Boehmer, H., and Sarukhan, A. (2001). Regulatory function of in vivo anergized CD4(+) T cells. Proc Natl Acad Sci USA 98:8738–8743.PubMedCrossRefGoogle Scholar
  57. Kamath, A. T., Henri, S., Battye, F., Tough, D. F., and Shortman, K. (2002). Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100:1734–1741.PubMedGoogle Scholar
  58. Kappler, J., Roehm, M., and Marrack, P. (1987). T cell tolerance by clonal elimination in the thymus. Cell 49:273–280.PubMedCrossRefGoogle Scholar
  59. Kearney, E. R., Pape, K. A., Loh, D. Y., and Jenkins, M. K. (1994). Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1:327–339.PubMedCrossRefGoogle Scholar
  60. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M., and von Boehmer, H. (1988). Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333:742–746.PubMedCrossRefGoogle Scholar
  61. Kreuwel, H. T., Aung, S., Silao, C., and Sherman, L. A. (2002). Memory CD8(+) T cells undergo peripheral tolerance. Immunity 17:73–81.PubMedCrossRefGoogle Scholar
  62. Kurts, C., Cannarile, M., Klebba, I., and Brocker, T. (2001). Dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J Immunol 166:1439–1442.PubMedGoogle Scholar
  63. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. A. P., and Heath, W. R. (1997). Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J Exp Med 186:239–245.PubMedCrossRefGoogle Scholar
  64. Kurts, C., Miller, J. F. A. P., Subramaniam, R. M., Carbone, F. R., and Heath, W. R. (1998). Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J Exp Med 188:409–414.PubMedCrossRefGoogle Scholar
  65. Lee, P. P., Yee, C., Savage, P. A., Fong, L., Brockstedt, D., Weber, J. S., Johnson, D., Swetter, S., Thompson, J., Greenberg, P. D., Roederer, M., and Davis, M. M. (1999). Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–685.PubMedCrossRefGoogle Scholar
  66. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature 396:643–649.PubMedCrossRefGoogle Scholar
  67. Liblau, R., Tisch, R., Bercovici, N., and McDevitt, H. (1997). Systemic antigen in the treatment of T-cell-mediated autoimmune diseases. Immunol Today 18:599–604.PubMedCrossRefGoogle Scholar
  68. Liu, K., Iyoda, T., Saternus, M., Kimura, Y., Inaba, K., and Steinman, R. M. (2002). Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196:1091–1097.PubMedCrossRefGoogle Scholar
  69. Long, M., Higgins, A. D., Mihalyo, M. A., and Adler, A. J. (2003). Effector CD4 cell tolerization is mediated through functional inactivation and involves preferential impairment of TNF-alpha and IFN-gamma expression potentials. Cell Immunol 224:114–121.PubMedCrossRefGoogle Scholar
  70. Long, M., Slaiby, A. M., Hagymasi, A. T., Mihalyo, M. A., Lichtler, A. C., Reiner, S. L., and Adler, A. J. (2006). T-bet down-modulation in tolerized Th1 effector CD4 cells confers a TCR-distal signaling defect that selectively impairs IFN-gamma expression. J Immunol 176:1036–1045.PubMedGoogle Scholar
  71. Lopez-Otin, C., and Diamandis, E. P. (1998). Breast and prostate cancer: an analysis of common epidemiological, genetic, and biochemical features. Endocr Rev 19:365–396.PubMedCrossRefGoogle Scholar
  72. Lyman, M. A., Aung, S., Biggs, J. A., and Sherman, L. A. (2004). A spontaneously arising pancreatic tumor does not promote the differentiation of naive CD8+ T lymphocytes into effector CTL. J Immunol 172:6558–6567.PubMedGoogle Scholar
  73. Marzo, A. L., Lake, R. A., Lo, D., Sherman, L., McWilliam, A., Nelson, D., Robinson, B. W., and Scott, B. (1999). Tumor antigens are constitutively presented in the draining lymph nodes. J Immunol 162:5838–5845.PubMedGoogle Scholar
  74. Matzinger, P. (1994). Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045.PubMedGoogle Scholar
  75. Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nat Rev Immunol 1: 135–145.PubMedCrossRefGoogle Scholar
  76. Mihalyo, M. A., Doody, A. D., McAleer, J. P., Nowak, E. C., Long, M., Yang, Y., and Adler, A. J. (2004). In vivo cyclophosphamide and IL-2 treatment impedes self-antigen-induced effector CD4 cell tolerization: implications for adoptive immunotherapy. J Immunol 172: 5338–5345.PubMedGoogle Scholar
  77. Mihalyo, M. A., Hagymasi, A. T., Slaiby, A. M., Nevius, E. E., and Adler, A. J. (2007). Dendritic cells program non-immunogenic prostate-specific T cell responses beginning at early stages of prostate tumorigenesis. Prostate 67:536–546.PubMedCrossRefGoogle Scholar
  78. Morgan, D. J., Kreuwel, H. T., Fleck, S., Levitsky, H. I., Pardoll, D. M., and Sherman, L. A. (1998). Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160:643–651.PubMedGoogle Scholar
  79. Mueller, D. L. (2004). E3 ubiquitin ligases as T cell anergy factors. Nat Immunol 5:883–890.PubMedCrossRefGoogle Scholar
  80. Murphy, K. M., and Reiner, S. L. (2002). Decision making in the immune system: the lineage decisions of helper T cells. Nat Rev Immunol 2:933–944.PubMedCrossRefGoogle Scholar
  81. Nguyen, L. T., Elford, A. R., Murakami, K., Garza, K. M., Schoenberger, S. P., Odermatt, B., Speiser, D. E., and Ohashi, P. S. (2002). Tumor growth enhances cross-presentation leading to limited T cell activation without tolerance. J Exp Med 195:423–435.PubMedCrossRefGoogle Scholar
  82. North, R. J. (1982). Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155: 1063–1074.PubMedCrossRefGoogle Scholar
  83. Ochsenbein, A. F., Sierro, S., Odermatt, B., Pericin, M., Karrer, U., Hermans, J., Hemmi, S., Hengartner, H., and Zinkernagel, R. M. (2001). Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411:1058–1064.PubMedCrossRefGoogle Scholar
  84. Oldstone, M. B. (1998). Molecular mimicry and immune-mediated diseases. FASEB J 12:1255–1265.PubMedGoogle Scholar
  85. Pape, K. A., Merica, R., Mondino, A., Khoruts, A., and Jenkins, M. K. (1998). Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J Immunol 160:4719–4729.PubMedGoogle Scholar
  86. Pardoll, D. (2003). Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839.PubMedCrossRefGoogle Scholar
  87. Poehlein, C. H., Hu, H. M., Yamada, J., Assmann, I., Alvord, W. G., Urba, W. J., and Fox, B. A. (2003). TNF plays an essential role in tumor regression after adoptive transfer of perforin/IFN-gamma double knockout effector T cells. J Immunol 170:2004–2013.PubMedGoogle Scholar
  88. Proietti, E., Greco, G., Garrone, B., Baccarini, S., Mauri, C., Venditti, M., Carlei, D., and Belardelli, F. (1998). Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. J Clin Invest 101: 429–441.PubMedCrossRefGoogle Scholar
  89. Qin, Z., and Blankenstein, T. (2000). CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 12:677–686.PubMedCrossRefGoogle Scholar
  90. Ramsdell, F., and Fowlkes, B. J. (1992). Maintenance of in vivo tolerance by persistence of antigen. Science 257:1130–1134.PubMedCrossRefGoogle Scholar
  91. Rocha, B., and von Boehmer, H. (1991). Peripheral selection of the T cell repertoire. Science 251:1225–1228.PubMedCrossRefGoogle Scholar
  92. Roden, A. C., Moser, M. T., Tri, S. D., Mercader, M., Kuntz, S. M., Dong, H., Hurwitz, A. A., McKean, D. J., Celis, E., Leibovich, B. C., Allison, J. P., and Kwon, E. D. (2004). Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol 173:6098–6108.PubMedGoogle Scholar
  93. Rosenberg, S. A., Yang, J. C., and Restifo, N. P. (2004). Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915.PubMedCrossRefGoogle Scholar
  94. Roubinian, J. R., Talal, N., Greenspan, J. S., Goodman, J. R., and Siiteri, P. K. (1978). Effect of castration and sex hormone treatment on survival, anti-nucleic acid antibodies, and glomerulonephritis in NZB/NZW F1 mice. J Exp Med 147:1568–1583.PubMedCrossRefGoogle Scholar
  95. Sagerstrom, C. G., Kerr, E. M., Allison, J. P., and Davis, M. M. (1993). Activation and differentiation requirements of primary T cells in vitro. Proc Natl Acad Sci USA 90:8987–8991.PubMedCrossRefGoogle Scholar
  96. Sakaguchi, S. (2000). Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458.PubMedCrossRefGoogle Scholar
  97. Schell, T. D., Knowles, B. B., and Tevethia, S. S. (2000). Sequential loss of cytotoxic T lymphocyte responses to simian virus 40 large T antigen epitopes in T antigen transgenic mice developing osteosarcomas. Cancer Res 60:3002–3012.PubMedGoogle Scholar
  98. Schiavoni, G., Mattei, F., Di Pucchio, T., Santini, S. M., Bracci, L., Belardelli, F., and Proietti, E. (2000). Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95:2024–2030.PubMedGoogle Scholar
  99. Schwartz, R. H. (2003). T cell anergy. Annu Rev Immunol 21:305–334.PubMedCrossRefGoogle Scholar
  100. Sebzda, E., Wallace, V. A., Mayer, J., Yeung, R. S., Mak, T. W., and Ohashi, P. S. (1994). Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 263:1615–1618.PubMedCrossRefGoogle Scholar
  101. Shevach, E. M. (2001). Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med 193:F41–F46.Google Scholar
  102. Shrikant, P., Khoruts, A., and Mescher, M. F. (1999). CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11:483–493.PubMedCrossRefGoogle Scholar
  103. Sotomayor, E. M., Borrello, I., Rattis, F. M., Cuenca, A. G., Abrams, J., Staveley-O’Carroll, K., and Levitsky, H. I. (2001). Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 98:1070–1077.PubMedCrossRefGoogle Scholar
  104. Spiotto, M. T., Yu, P., Rowley, D. A., Nishimura, M. I., Meredith, S. C., Gajewski, T. F., Fu, Y. X., and Schreiber, H. (2002). Increasing tumor antigen expression overcomes “ignorance” to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 17:737–747.PubMedCrossRefGoogle Scholar
  105. Srivastava, P. K. (2006). Therapeutic cancer vaccines. Curr Opin Immunol 18:201–205.PubMedCrossRefGoogle Scholar
  106. Stavely-O’Carroll, K., Sotomayor, E., Montgomery, J., Borrello, I., Hwang, L., Fein, S., Pardoll, D., and Levitsky, H. (1998). Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci USA 95:1178–1183.CrossRefGoogle Scholar
  107. Steinman, R. M., Turley, S., Mellman, I., and Inaba, K. (2000). The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 191:411–416.PubMedCrossRefGoogle Scholar
  108. Sugimura, Y., Cunha, G. R., and Donjacour, A. A. (1986). Morphological and histological study of castration-induced degeneration and androgen-induced regeneration in the mouse prostate. Biol Reprod 34:973–983.PubMedCrossRefGoogle Scholar
  109. Surh, C. D., and Sprent, J. (1994). T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372:100–103.PubMedCrossRefGoogle Scholar
  110. Sutherland, J. S., Goldberg, G. L., Hammett, M. V., Uldrich, A. P., Berzins, S. P., Heng, T. S., Blazar, B. R., Millar, J. L., Malin, M. A., Chidgey, A. P., and Boyd, R. L. (2005). Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175:2741–2753.PubMedGoogle Scholar
  111. Tivol, E. A., Borriello, F., Schweitzer, A. N., Lynch, W. P., Bluestone, J. A., and Sharpe, A. H. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547.PubMedCrossRefGoogle Scholar
  112. Topalian, S. L., Solomon, D., and Rosenberg, S. A. (1989). Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol 142:3714–3725.PubMedGoogle Scholar
  113. Viselli, S. M., Stanziale, S., Shults, K., Kovacs, W. J., and Olsen, N. J. (1995). Castration alters peripheral immune function in normal male mice. Immunology 84:337–342.PubMedGoogle Scholar
  114. von Budingen, H. C., Tanuma, N., Villoslada, P., Ouallet, J. C., Hauser, S. L., and Genain, C. P. (2001). Immune responses against the myelin/oligodendrocyte glycoprotein in experimental autoimmune demyelination. J Clin Immunol 21:155–170.CrossRefGoogle Scholar
  115. Wang, R. F., Appella, E., Kawakami, Y., Kang, X., and Rosenberg, S. A. (1996). Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 184:2207–2216.PubMedCrossRefGoogle Scholar
  116. Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., Bhattacharya, R., Gabrilovich, D., Heller, R., Coppola, D., Dalton, W., Jove, R., Pardoll, D., and Yu, H. (2004). Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54.PubMedCrossRefGoogle Scholar
  117. Webb, S., Morris, C., and Sprent, J. (1990). Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell 63:1249–1256.PubMedCrossRefGoogle Scholar
  118. Whitmore, W. F., and Gittes, R. F. (1977). Studies on the prostate and testis as immunologically privileged sites. Cancer Treat Rep 61:217–222.PubMedGoogle Scholar
  119. Wolfel, T., Van Pel, A., Brichard, V., Schneider, J., Seliger, B., Meyer zum Buschenfelde, K. H., and Boon, T. (1994). Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 24:759–764.PubMedCrossRefGoogle Scholar
  120. Yee, C., Riddell, S. R., and Greenberg, P. D. (1997). Prospects for adoptive T cell therapy. Curr Opin Immunol 9:702–708.PubMedCrossRefGoogle Scholar
  121. Yee, C., Thompson, J. A., Byrd, D., Riddell, S. R., Roche, P., Celis, E., and Greenberg, P. D. (2002). Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168–16173.PubMedCrossRefGoogle Scholar
  122. Zhao, X. Y., Malloy, P. J., Krishnan, A. V., Swami, S., Navone, N. M., Peehl, D. M., and Feldman, D. (2000). Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 6:703–706.PubMedCrossRefGoogle Scholar
  123. Zhou, G., Drake, C. G., and Levitsky, H. I. (2006). Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107:628–636.PubMedCrossRefGoogle Scholar
  124. Zhou, G., Lu, Z., McCadden, J. D., Levitsky, H. I., and Marson, A. L. (2004). Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J Exp Med 200:1581–1592.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Adam J. Adler
    • 1
  1. 1.Center for Immunotherapy of Cancer and Infectious Diseases and Department of ImmunologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations