Tumor Stroma and the Antitumor Immune Response

  • Bin Zhang
  • Donald A. Rowley
  • Hans Schreiber


Stromal Cell Tumor Stroma Radiat Oncol Biol Phys Antitumor Immune Response Adoptive Immunotherapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonia, S. J., Mirza, N., Fricke, I., Chiappori, A., Thompson, P., Williams, N., Bepler, G., Simon, G., Janssen, W., Lee, J. H., et al. (2006). Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12: 878–887.PubMedCrossRefGoogle Scholar
  2. Antony, P. A., Piccirillo, C. A., Akpinarli, A., Finkelstein, S. E., Speiss, P. J., Surman, D. R., Palmer, D. C., Chan, C. C., Klebanoff, C. A., Overwijk, W. W., et al. (2005). CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174:2591–2601.PubMedGoogle Scholar
  3. Arlen, P. M., Gulley, J. L., Parker, C., Skarupa, L., Pazdur, M., Panicali, D., Beetham, P., Tsang, K. Y., Grosenbach, D. W., Feldman, J., et al. (2006). A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 12:1260–1269.PubMedCrossRefGoogle Scholar
  4. Brent, L., and Medawar, P. (1966). Quantitative studies on tissue transplantation immunity. 8. The effects of irradiation. Proc Royal Soc Lond Ser B Biol Sci 165:413–423.CrossRefGoogle Scholar
  5. Bubenik, J. (2003). Tumour MHC class I downregulation and immunotherapy (review). Oncol Rep 10:2005–2008.PubMedGoogle Scholar
  6. Casares, N., Pequignot, M. O., Tesniere, A., Ghiringhelli, F., Roux, S., Chaput, N., Schmitt, E., Hamai, A., Hervas-Stubbs, S., Obeid, M., et al. (2005). Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701.PubMedCrossRefGoogle Scholar
  7. Ciernik, I. F., Romero, P., Berzofsky, J. A., and Carbone, D. P. (1999). Ionizing radiation enhances immunogenicity of cells expressing a tumor-specific T-cell epitope. Int J Radiat Oncol Biol Phys 45:735–741.PubMedCrossRefGoogle Scholar
  8. Demaria, S., Bhardwaj, N., McBride, W. H., and Formenti, S. C. (2005). Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63:655–666.PubMedCrossRefGoogle Scholar
  9. Dudley, M. E., and Rosenberg, S. A. (2003). Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 3:666–675.PubMedCrossRefGoogle Scholar
  10. Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659.PubMedCrossRefGoogle Scholar
  11. Ferrara, N., Mass, R. D., Campa, C., and Kim, R. (2007). Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu Rev Med 58:491–504.PubMedCrossRefGoogle Scholar
  12. Gabrilovich, D. I. (2007). Combination of chemotherapy and immunotherapy for cancer: a paradigm revisited. Lancet Oncol 8:2–3.PubMedCrossRefGoogle Scholar
  13. Ganss, R., Ryschich, E., Klar, E., Arnold, B., and Hammerling, G. J. (2002). Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res 62:1462–1770.PubMedGoogle Scholar
  14. Garin-Chesa, P., Old, L. J., and Rettig, W. J. (1990). Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA 87:7235–7239.PubMedCrossRefGoogle Scholar
  15. Gattinoni, L., Finkelstein, S. E., Klebanoff, C. A., Antony, P. A., Palmer, D. C., Spiess, P. J., Hwang, L. N., Yu, Z., Wrzesinski, C., Heimann, D. M., et al. (2005a). Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202:907–912.CrossRefGoogle Scholar
  16. Gattinoni, L., Klebanoff, C. A., Palmer, D. C., Wrzesinski, C., Kerstann, K., Yu, Z., Finkelstein, S. E., Theoret, M. R., Rosenberg, S. A., and Restifo, N. P. (2005b). Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115:1616–1626.CrossRefGoogle Scholar
  17. Gattinoni, L., Powell, D. J., Jr, Rosenberg, S. A., Restifo, N. P. (2006). Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393.PubMedCrossRefGoogle Scholar
  18. Gribben, J. G., Ryan, D. P., Boyajian, R., Urban, R. G., Hedley, M. L., Beach, K., Nealon, P., Matulonis, U., Campos, S., Gilligan, T. D., et al. (2005). Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 11:4430–4436.PubMedCrossRefGoogle Scholar
  19. Heath, W. R., and Carbone, F. R. (2005). Coupling and cross-presentation. Nature 434:27–28.PubMedCrossRefGoogle Scholar
  20. Hicklin, D. J., Marincola, F. M., and Ferrone, S. (1999). HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today 5:178–186.PubMedCrossRefGoogle Scholar
  21. Ho, W. Y., Blattman, J. N., Dossett, M. L., Yee, C., and Greenberg, P. D. (2003). Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 3:431–437.PubMedCrossRefGoogle Scholar
  22. Holler, P. D., Chlewicki, L. K., and Kranz, D. M. (2003). TCRs with high affinity for foreign pMHC show self-reactivity. Nat Immunol 4:55–62.PubMedCrossRefGoogle Scholar
  23. Holler, P. D., and Kranz, D. M. (2003). Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity 18:255–264.PubMedCrossRefGoogle Scholar
  24. Ibe, S., Qin, Z., Schuler, T., Preiss, S., and Blankenstein, T. (2001). Tumor rejection by disturbing tumor stroma cell interactions. J Exp Med 194:1549–1559.PubMedCrossRefGoogle Scholar
  25. Kaminski, M. S., Zasadny, K. R., Francis, I. R., Milik, A. W., Ross, C. W., Moon, S. D., Crawford, S. M., Burgess, J. M., Petry, N. A., Butchko, G. M., et al. (1993). Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med 329:459–465.PubMedCrossRefGoogle Scholar
  26. Kelly, T. (2005). Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resist Updat 8:51–58.PubMedCrossRefGoogle Scholar
  27. Khong, H. T., Wang, Q. J., and Rosenberg, S. A. (2004). Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother 27:184–190.PubMedCrossRefGoogle Scholar
  28. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., and Ferrara, N. (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844.PubMedCrossRefGoogle Scholar
  29. Klebanoff, C. A., Gattinoni, L., Torabi-Parizi, P., Kerstann, K., Cardones, A. R., Finkelstein, S. E., Palmer, D. C., Antony, P. A., Hwang, S. T., Rosenberg, S. A., et al. (2005). Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102:9571–9576.PubMedCrossRefGoogle Scholar
  30. Klein, E., and Klein, G. (1972). Specificity of homograft rejection in vivo, assessed by inoculation of artificially mixed compatible and incompatible tumor cells. Cell Immunol 5:201–208.CrossRefGoogle Scholar
  31. Lake, R. A., and Robinson, B. W. (2005). Immunotherapy and chemotherapy—a practical partnership. Nat Rev Cancer 5:397–405.PubMedCrossRefGoogle Scholar
  32. Liu, K., Caldwell, S. A., and Abrams, S. I. (2005). Immune selection and emergence of aggressive tumor variants as negative consequences of Fas-mediated cytotoxicity and altered IFN-gamma-regulated gene expression. Cancer Res 65:4376–4388.PubMedCrossRefGoogle Scholar
  33. Lugade, A. A., Moran, J. P., Gerber, S. A., Rose, R. C., Frelinger, J. G., and Lord, E. M. (2005). Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174:7516–7523.PubMedGoogle Scholar
  34. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139.PubMedCrossRefGoogle Scholar
  35. Morgan, R. A., Dudley, M. E., Wunderlich, J. R., Hughes, M. S., Yang, J. C., Sherry, R. M., Royal, R. E., Topalian, S. L., Kammula, U. S., Restifo, N. P., et al. (2006). Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129.PubMedCrossRefGoogle Scholar
  36. Nair, S., Boczkowski, D., Moeller, B., Dewhirst, M., Vieweg, J., and Gilboa, E. (2003). Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 102:964–971.PubMedCrossRefGoogle Scholar
  37. Neijssen, J., Herberts, C., Drijfhout, J. W., Reits, E., Janssen, L., and Neefjes, J. (2005). Cross-presentation by intercellular peptide transfer through gap junctions. Nature 434:83–88.PubMedCrossRefGoogle Scholar
  38. Niederman, T. M., Ghogawala, Z., Carter, B. S., Tompkins, H. S., Russell, M. M., and Mulligan, R. C. (2002). Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc Natl Acad Sci USA 99:7009–7014.PubMedCrossRefGoogle Scholar
  39. Nowak, A. K., Lake, R. A., Marzo, A. L., Scott, B., Heath, W. R., Collins, E. J., Frelinger, J. A., and Robinson, B. W. (2003). Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170:4905–4913.PubMedGoogle Scholar
  40. Prehn, R. T. (1973). Destruction of tumor as an “innocent bystander” in an immune response specifically directed against nontumor antigens. Isr J Med Sci 9:375–379.PubMedGoogle Scholar
  41. Reits, E. A., Hodge, J. W., Herberts, C. A., Groothuis, T. A., Chakraborty, M., Wansley, E. K., Camphausen, K., Luiten, R. M., de Ru, A. H., Neijssen, J., et al. (2006). Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271.PubMedCrossRefGoogle Scholar
  42. Sanchez-Perez, L., Kottke, T., Diaz, R. M., Ahmed, A., Thompson, J., Chong, H., Melcher, A., Holmen, S., Daniels, G., and Vile, R. G. (2005). Potent selection of antigen loss variants of B16 melanoma following inflammatory killing of melanocytes in vivo. Cancer Res 65:2009–2017.PubMedCrossRefGoogle Scholar
  43. Schreiber, H. (ed.) (2003). Tumor Immunology, 5th edn. Philadelphia, PA: Lippincott-Williams & Wilkins, pp. 1557–1592.Google Scholar
  44. Scott, A. M., Wiseman, G., Welt, S., Adjei, A., Lee, F. T., Hopkins, W., Divgi, C. R., Hanson, L. H., Mitchell, P., Gansen, D. N., et al. (2003). A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res 9:1639–1647.PubMedGoogle Scholar
  45. Seemayer, T. A., Lagace, R., Schurch, W., and Tremblay, G. (1979). Myofibroblasts in the stroma of invasive and metastatic carcinoma: a possible host response to neoplasia. Am J Surg Pathol 3:525–533.PubMedCrossRefGoogle Scholar
  46. Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J., Pegram, M., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792.PubMedCrossRefGoogle Scholar
  47. Spiotto, M. T., Rowley, D. A., and Schreiber, H. (2004). Bystander elimination of antigen loss variants in established tumors. Nat Med 10:294–298.PubMedCrossRefGoogle Scholar
  48. Spiotto, M. T., and Schreiber, H. (2005). Rapid destruction of the tumor microenvironment by CTLs recognizing cancer-specific antigens cross-presented by stromal cells. Cancer Immun 5:8.PubMedGoogle Scholar
  49. Sweeney, C. J., Miller, K. D., and Sledge, G. W., Jr (2003). Resistance in the anti-angiogenic era: nay-saying or a word of caution? Trends Mol Med 9:24–29.PubMedCrossRefGoogle Scholar
  50. Weissman, I. L. (1973). Tumor immunity in vivo: evidence that immune destruction of tumor leaves “bystander” cells intact. J Natl Cancer Inst 51:443–448.PubMedGoogle Scholar
  51. Wesley, U. V., Albino, A. P., Tiwari, S., and Houghton, A. N. (1999). A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J Exp Med 190:311–322.PubMedCrossRefGoogle Scholar
  52. Wheeler, C. J., Das, A., Liu, G., Yu, J. S., and Black, K. L. (2004). Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10:5316–5326.PubMedCrossRefGoogle Scholar
  53. Yamshchikov, G. V., Mullins, D. W., Chang, C. C., Ogino, T., Thompson, L., Presley, J., Galavotti, H., Aquila, W., Deacon, D., Ross, W., et al. (2005). Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J Immunol 174:6863–6871.PubMedGoogle Scholar
  54. Yang, J. C., Haworth, L., Sherry, R. M., Hwu, P., Schwartzentruber, D. J., Topalian, S. L., Steinberg, S. M., Chen, H. X., and Rosenberg, S. A. (2003). A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434.PubMedCrossRefGoogle Scholar
  55. Yu, Z., Theoret, M. R., Touloukian, C. E., Surman, D. R., Garman, S. C., Feigenbaum, L., Baxter, T. K., Baker, B. M., and Restifo, N. P. (2004). Poor immunogenicity of a self/tumor antigen derives from peptide-MHC-I instability and is independent of tolerance. J Clin Invest 114:551–559.PubMedCrossRefGoogle Scholar
  56. Zhang, B., Bowerman, N. A., Salama, J. K., Schmidt, H., Spiotto, M. T., Schietinger, A., Yu, P., Fu, Y. X., Weichselbaum, R. R., Rowley, D. A., et al. (2007). Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204:49–55.PubMedCrossRefGoogle Scholar
  57. Zhou, G., Lu, Z., McCadden, J. D., Levitsky, H. I., and Marson, A. L. (2004). Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J Exp Med 200:1581–1592.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bin Zhang
  • Donald A. Rowley
  • Hans Schreiber
    • 1
  1. 1.The Department of Pathology and the Committee on ImmunologyUniversity of ChicagoChicagoUSA

Personalised recommendations