Role of Reactive Oxygen Species in T-Cell Defects in Cancer

  • Alex Corzo
  • Srinivas Nagaraj
  • Dmitry I. Gabrilovich


Reactive Oxygen Species NADPH Oxidase Myeloid Cell Chronic Granulomatous Disease Arginase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agostinelli, E., and Seiler, N. (2006). Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications. Amino Acids 31:341–355.PubMedGoogle Scholar
  2. Almand, B., Clark, J. I., Nikitina, E., English, N. R., Knight, S. C., Carbone, D. P., and Gabrilovich, D. I. (2001). Increased production of immature myeloid cells in cancer patients. A mechanism of immunosuppression in cancer. J Immunol 166:678–689.PubMedGoogle Scholar
  3. Alvarez, B., and Radi, R. (2003). Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25:295–311.PubMedGoogle Scholar
  4. Amici, M., Lupidi, G., Angeletti, M., Fioretti, E., and Eleuteri, A. M. (2003). Peroxynitrite-induced oxidation and its effects on isolated proteasomal systems. Free Radic Biol Med 34:987–996.PubMedGoogle Scholar
  5. Andreyev, A. Y., Kushnareva, Y. E., and Starkov, A. A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214.Google Scholar
  6. Aoe, T., Okamoto, Y., and Saito, T. (1995). Activated macrophages induce structural abnormalities of the T cell receptor-CD3 complex. J Exp Med 181:1881–1886.PubMedGoogle Scholar
  7. Assari, T. (2006). Chronic granulomatous disease; fundamental stages in our understanding of CGD. Med Immunol 5:4.Google Scholar
  8. Babior, B. M. (1984). The respiratory burst of phagocytes. J Clin Invest 73:599–601.PubMedGoogle Scholar
  9. Bagley, J., Singh, G., and Iacomini, J. (2007). Regulation of oxidative stress responses by ataxia-telangiectasia mutated is required for T cell proliferation. J Immunol 178:4757–4763.PubMedGoogle Scholar
  10. Banfi, B., Clark, R. A., Steger, K., and Krause, K. H. (2003). Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3513.PubMedGoogle Scholar
  11. Banfi, B., Malgrange, B., Knisz, J., Steger, K., Dubois-Dauphin, M., and Krause, K. H. (2004). NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279: 46065–46072.PubMedGoogle Scholar
  12. Bentz, B. G., Haines, G. K., 3rd and Radosevich, J. A. (2000). Increased protein nitrosylation in head and neck squamous cell carcinogenesis. Head Neck 22:64–70.PubMedGoogle Scholar
  13. Bingisser, R. M., Tilbrook, P. A., Holt, P. G., and Kees, U. R. (1998). Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160:5729–5734.PubMedGoogle Scholar
  14. Bolis, A., Corbetta, S., Cioce, A., and de Curtis, I. (2003). Differential distribution of Rac1 and Rac3 GTPases in the developing mouse brain: implications for a role of Rac3 in Purkinje cell differentiation. Eur J Neurosci 18:2417–2424.PubMedGoogle Scholar
  15. Bonnefoy, M., Drai, J., and Kostka, T. (2002). [Antioxidants to slow aging, facts and perspectives]. Presse Med 31:1174–1184.PubMedGoogle Scholar
  16. Boucher, J. L., Moali, C., and Tenu, J. P. (1999). Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol Life Sci 55:1015–1028.PubMedGoogle Scholar
  17. Boutard, V., Havouis, R., Fouqueray, B., Philippe, C., Moulinoux, J. P., and Baud, L. (1995). Transforming factor beta stimulates arginase activity in macrophages: implications for the regulation of macrophage cytotoxicity. J Immunol 155:2077–2084.PubMedGoogle Scholar
  18. Bronte, V., Casic, T., Gri, G., Gallana, K., Borsellino, G., Marrigo, I., Battistini, L., Iafrate, M., Prayer-Galletti, U., Pagano, F., and Viola, A. (2005). Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201:1257–1268.PubMedGoogle Scholar
  19. Bronte, V., Serafini, P., De Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D. M., Staib, C., Lowel, M., Sutter, G., Colombo, M. P., and Zanovello, P. (2003). IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278.PubMedGoogle Scholar
  20. Bronte, V., Wang, M., Overwijk, W., Surman, D., Pericle, F., Rosenberg, S. A., and Restifo, N. P. (1998). Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 161:5313–5320.PubMedGoogle Scholar
  21. Cawthon, A. G., and Alexander-Miller, M. A. (2002). Optimal colocalization of TCR and CD8 as a novel mechanism for the control of functional avidity. J Immunol 169:3492–3498.PubMedGoogle Scholar
  22. Chen, J. J., and Yu, B. P. (1994). Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radic Biol Med 17:411–418.PubMedGoogle Scholar
  23. Chiarugi, P., Pani, G., Giannoni, E., Taddei, L., Colavitti, R., Raugei, G., Symons, M., Borrello, S., Galeotti, T., and Ramponi, G. (2003). Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161:933–944.PubMedGoogle Scholar
  24. Chio, K. S., and Tappel, A. L. (1969). Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids. Biochemistry 8:2821–2826.PubMedGoogle Scholar
  25. Cobbs, C. S., Whisenhunt, T. R., Wesemann, D. R., Harkins, L. E., Van Meir, E. G., Samanta, M. (2003). Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res 63:8670–8673.PubMedGoogle Scholar
  26. Dairou, J., Dupret, J. M., and Rodrigues-Lima, F. (2005). Impairment of the activity of the xenobiotic-metabolizing enzymes arylamine N-acetyltransferases 1 and 2 (NAT1/NAT2) by peroxynitrite in mouse skeletal muscle cells. FEBS Lett 579:4719–4723.PubMedGoogle Scholar
  27. Datta, D., Vaidehi, N., Xu, X., and Goddard, W. A., 3rd (2002). Mechanism for antibody catalysis of the oxidation of water by singlet dioxygen. Proc Natl Acad Sci U S A 99:2636–2641.PubMedGoogle Scholar
  28. Dean, R. T., Fu, S., Stocker, R., and Davies, M. J. (1997). Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324 (Pt 1):1–18.PubMedGoogle Scholar
  29. Decoursey, T. E., and Ligeti, E. (2005). Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 62:2173–2193.PubMedGoogle Scholar
  30. Denu, J. M., and Tanner, K. G. (1998). Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37:5633–5642.PubMedGoogle Scholar
  31. Drake, D. R., 3rd, Ream, R. M., Lawrence, C. W., and Braciale, T. J. (2005). Transient loss of MHC class I tetramer binding after CD8+ T cell activation reflects altered T cell effector function. J Immunol 175:1507–1515.PubMedGoogle Scholar
  32. Edgeworth, J., Gorman, M., Bennett, R., Freemont, P., and Hogg, N. (1991). Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J Biol Chem 266:7706–7713.PubMedGoogle Scholar
  33. Ekmekcioglu, S., Ellerhorst, J., Smid, C. M., Prieto, V. G., Munsell, M., Buzaid, A. C., and Grimm, E. A. (2000). Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res 6:4768–4775.PubMedGoogle Scholar
  34. Eze, M. O. (1992). Membrane fluidity, reactive oxygen species, and cell-mediated immunity: implications in nutrition and disease. Med Hypotheses 37:220–224.PubMedGoogle Scholar
  35. Fahmy, T. M., Bieler, J. G., Edidin, M., and Schneck, J. P. (2001). Increased TCR avidity after T cell activation: a mechanism for sensing low-density antigen. Immunity 14:135–143.PubMedGoogle Scholar
  36. Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., Giordano, S., Pani, G., and Galeotti, T. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 25:3689–3698.PubMedGoogle Scholar
  37. Finan, P., Shimizu, Y., Gout, I., Hsuan, J., Truong, O., Butcher, C., Bennett, P., Waterfield, M. D., and Kellie, S. (1994). An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J Biol Chem 269:13752–13755.PubMedGoogle Scholar
  38. Forman, H. J., and Torres, M. (2002). Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166:S4–S8.Google Scholar
  39. Francke, U., Hsieh, C. L., Foellmer, B. E., Lomax, K. J., Malech, H. L., and Leto, T. L. (1990). Genes for two autosomal recessive forms of chronic granulomatous disease assigned to 1q25 (NCF2) and 7q11.23 (NCF1). Am J Hum Genet 47:483–492.PubMedGoogle Scholar
  40. Fu, X., Kassim, S. Y., Parks, W. C., and Heinecke, J. W. (2003). Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 278:28403–28409.PubMedGoogle Scholar
  41. Fu, Y., Watson, G., Jimenez, J., Wang, Y., and Lopez, D. (1990). Expansion of immunoregulatory macrophages by granulocyte-macrophage colony-stimulating factor derived from a murine mammary tumor.Cancer Res 50:227.PubMedGoogle Scholar
  42. Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952.PubMedGoogle Scholar
  43. Gabrilovich, D., Bronte, V., Chen, S.-H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., and Schreiber, H. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Res 67:425.Google Scholar
  44. Gabrilovich, D. I., Velders, M., Sotomayor, E., and Kast, W. M. (2001). Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166:5398–5406.PubMedGoogle Scholar
  45. Gebhardt, C., Nemeth, J., Angel, P., and Hess, J. (2006). S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 72:1622–1631.PubMedGoogle Scholar
  46. Geiszt, M., Lekstrom, K., Witta, J., and Leto, T. L. (2003). Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278:20006–20012.PubMedGoogle Scholar
  47. Gotoh, Y., and Cooper, J. A. (1998). Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J Biol Chem 273:17477–17482.PubMedGoogle Scholar
  48. Groemping, Y., and Rittinger, K. (2005). Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386:401–416.PubMedGoogle Scholar
  49. Groves, J. T. (1999). Peroxynitrite: reactive, invasive and enigmatic. Curr Opin Chem Biol 3:226–235.PubMedGoogle Scholar
  50. Grune, T., Reinheckel, T., and Davies, K. J. (1997). Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534.PubMedGoogle Scholar
  51. Haataja, L., Groffen, J., and Heisterkamp, N. (1997). Characterization of RAC3, a novel member of the Rho family. J Biol Chem 272:20384–20388.PubMedGoogle Scholar
  52. Hampton, M. B., Kettle, A. J., and Winterbourn, C. C. (1998). Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017.PubMedGoogle Scholar
  53. Han, C. H., Freeman, J. L., Lee, T., Motalebi, S. A., and Lambeth, J. D. (1998). Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox). J Biol Chem 273:16663–16668.PubMedGoogle Scholar
  54. Han, C. H., and Lee, M. H. (2000). Activation domain in P67phox regulates the steady state reduction of FAD in gp91phox. J Vet Sci 1:27–31.PubMedGoogle Scholar
  55. Harari, O., and Liao, J. K. (2004). Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des 10:893–898.PubMedGoogle Scholar
  56. Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., Divino, C. M., and Chen, S. H. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131.PubMedGoogle Scholar
  57. Husemann, J., Obstfeld, A., Febbraio, M., Kodama, T., and Silverstein, S. C. (2001). CD11b/CD18 mediates production of reactive oxygen species by mouse and human macrophages adherent to matrixes containing oxidized LDL. Arterioscler Thromb Vasc Biol 21:1301–1305.PubMedGoogle Scholar
  58. Kamata, H., Manabe, T., Oka, S., Kamata, K., and Hirata, H. (2002). Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 519:231–237.PubMedGoogle Scholar
  59. Kao, C., Daniels, M. A., and Jameson, S. C. (2005). Loss of CD8 and TCR binding to Class I MHC ligands following T cell activation. Int Immunol 17:1607–1617.PubMedGoogle Scholar
  60. Kerkhoff, C., Klempt, M., and Sorg, C. (1998). Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). Biochim Biophys Acta 1448:200–211.PubMedGoogle Scholar
  61. Kinnula, V. L., Torkkeli, T., Kristo, P., Sormunen, R., Soini, Y., Paakko, P., Ollikainen, T., Kahlos, K., Hirvonen, A., and Knuutila, S. (2004). Ultrastructural and chromosomal studies on manganese superoxide dismutase in malignant mesothelioma. Am J Respir Cell Mol Biol 31: 147–153.PubMedGoogle Scholar
  62. Kono, K., Salazar-Onfray, F., Petersson, M., Hansson, J., Masucci, G., Wasserman, K., Nakazawa, T., Anderson, P., and Kiessling, R. (1996). Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 26:1308–1313.PubMedGoogle Scholar
  63. Kusmartsev, S., and Gabrilovich, D. I. (2003). Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186-196.Google Scholar
  64. Kusmartsev, S., and Gabrilovich, D. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174:4880–4891.PubMedGoogle Scholar
  65. Kusmartsev, S., and Gabrilovich, D. I. (2006). Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55:237–245.PubMedGoogle Scholar
  66. Kusmartsev, S., Li, Y., and Chen, S. (2000). Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165:779.Google Scholar
  67. Kusmartsev, S., Nagaraj, S., and Gabrilovich, D. I. (2005). Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175:4583–4592.PubMedGoogle Scholar
  68. Kusmartsev, S., Nefedova, Y., Yoder, D., and Gabrilovich, D. I. (2004). Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999.PubMedGoogle Scholar
  69. Kyaw, M., Yoshizumi, M., Tsuchiya, K., Kirima, K., Suzaki, Y., Abe, S., Hasegawa, T., and Tamaki, T. (2002). Antioxidants inhibit endothelin-1 (1-31)-induced proliferation of vascular smooth muscle cells via the inhibition of mitogen-activated protein (MAP) kinase and activator protein-1 (AP-1). Biochem Pharmacol 64:1521–1531.PubMedGoogle Scholar
  70. Laurent, A., Nicco, C., Chereau, C., Goulvestre, C., Alexandre, J., Alves, A., Levy, E., Goldwasser, F., Panis, Y., Soubrane, O., Weill, B., and Batteux, F. (2005). Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65: 948–956.PubMedGoogle Scholar
  71. Leonard, S. S., Harris, G. K., and Shi, X. (2004). Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942.PubMedGoogle Scholar
  72. Leto, T. L., Adams, A. G., and de Mendez, I. (1994). Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A 91:10650–10654.PubMedGoogle Scholar
  73. Li, Q., Pan, P. Y., Gu, P., Xu, D., and Chen, S. H. (2004). Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res 64:1130–1139.PubMedGoogle Scholar
  74. Lockhart, D. C., Chan, A. K., Mak, S., Joo, H. G., Daust, H. A., Carritte, A., Douville, C. C., Goedegebuure, P. S., and Eberlein, T. J. (2001). Loss of T-cell receptor-CD3zeta and T-cell function in tumor-infiltrating lymphocytes but not in tumor-associated lymphocytes in ovarian carcinoma. Surgery 129:749–756.PubMedGoogle Scholar
  75. Maile, R., Siler, C. A., Kerry, S. E., Midkiff, K. E., Collins, E. J., and Frelinger, J. A. (2005). Peripheral “CD8 tuning” dynamically modulates the size and responsiveness of an antigen-specific T cell pool in vivo. J Immunol 174:619–627.PubMedGoogle Scholar
  76. Malmberg, K. J., Arulampalam, V., Ichihara, F., Petersson, M., Seki, K., Andersson, T., Lenkei, R., Masucci, G., Pettersson, S., and Kiessling, R. (2001). Inhibition of activated/memory (CD45RO(+)) T cells by oxidative stress associated with block of NF-kappaB activation. J Immunol 167:2595–2601.PubMedGoogle Scholar
  77. Mantovani, G., Maccio, A., Madeddu, C., Mura, L., Gramignano, G., Lusso, M. R., Massa, E., Mocci, M., and Serpe, R. (2003). Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med 81:664–673.PubMedGoogle Scholar
  78. Marnett, L. J., Hurd, H. K., Hollstein, M. C., Levin, D. E., Esterbauer, H., and Ames, B. N. (1985). Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat Res 148:25–34.PubMedGoogle Scholar
  79. Mates, J. M., Perez-Gomez, C., and Nunez de Castro, I. (1999). Antioxidant enzymes and human diseases. Clin Biochem 32:595–603.PubMedGoogle Scholar
  80. Melani, C., Chiodoni, C., Forni, G., and Colombo, M. P. (2003). Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145.PubMedGoogle Scholar
  81. Modolell, M., Corraliza, I. M., Link, F., Soler, G., and Eichmann, K. (1995). Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow derived macrophages by Th1 and Th2 cytokines. Eur J Immunol 25:1101–1104.PubMedGoogle Scholar
  82. Moll, J., Sansig, G., Fattori, E., and van der Putten, H. (1991). The murine rac1 gene: cDNA cloning, tissue distribution and regulated expression of rac1 mRNA by disassembly of actin microfilaments. Oncogene 6:863–866.PubMedGoogle Scholar
  83. Mustelin, T., Vang, T., and Bottini, N. (2005). Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 5:43–57.PubMedGoogle Scholar
  84. Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., Herber, D., Schneck, J., and Gabrilovich, D. (2007). Altered recognition of antigen is a novel mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835.PubMedGoogle Scholar
  85. Nakamura, Y., Yasuoka, H., Tsujimoto, M., Yoshidome, K., Nakahara, M., Nakao, K., Nakamura, M., and Kakudo, K. (2006). Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res 12:1201–1207.PubMedGoogle Scholar
  86. Nefedova, Y., Huang, M., Kusmartsev, S., Bhattacharya, R., Cheng, P., Salup, R., Jove, R., and Gabrilovich, D. (2004). Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464–474.PubMedGoogle Scholar
  87. Newton, R. A., and Hogg, N. (1998). The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils. J Immunol 160:1427–1435.PubMedGoogle Scholar
  88. Nicholls, S. J., and Hazen, S. L. (2005). Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25:1102–1111.PubMedGoogle Scholar
  89. Okada, F., Kobayashi, M., Tanaka, H., Kobayashi, T., Tazawa, H., Iuchi, Y., Onuma, K., Hosokawa, M., Dinauer, M. C., and Hunt, N. H. (2006). The role of nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species in the acquisition of metastatic ability of tumor cells. Am J Pathol 169:294–302.PubMedGoogle Scholar
  90. Otsuji, M., Kimura, Y., Aoe, T., Okamoto, Y., and Saito, T. (1996). Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci USA 93:13119–13124.PubMedGoogle Scholar
  91. Pastore, A., Federici, G., Bertini, E., and Piemonte, F. (2003). Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333:19–39.PubMedGoogle Scholar
  92. Rabinovich, G. A., Gabrilovich, D., and Sotomayor, E. M. (2007). Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296.PubMedGoogle Scholar
  93. Reeves, E. P., Lu, H., Jacobs, H. L., Messina, C. G., Bolsover, S., Gabella, G., Potma, E. O., Warley, A., Roes, J., and Segal, A. W. (2002). Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297.PubMedGoogle Scholar
  94. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410.PubMedGoogle Scholar
  95. Rivoltini, L., Carrabba, M., Huber, V., Castelli, C., Novellino, L., Dalerba, P., Mortarini, R., Arancia, G., Anichini, A., Fais, S., and Parmiani, G. (2002). Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 188:97–113.PubMedGoogle Scholar
  96. Rodaway, A. R., Teahan, C. G., Casimir, C. M., Segal, A. W., and Bentley, D. L. (1990). Characterization of the 47-kilodalton autosomal chronic granulomatous disease protein: tissue-specific expression and transcriptional control by retinoic acid. Mol Cell Biol 10:5388–5396.PubMedGoogle Scholar
  97. Rodriguez, A. M., Carrico, P. M., Mazurkiewicz, J. E., and Melendez, J. A. (2000). Mitochondrial or cytosolic catalase reverses the MnSOD-dependent inhibition of proliferation by enhancing respiratory chain activity, net ATP production, and decreasing the steady state levels of H(2)O(2). Free Radic Biol Med 29:801–813.PubMedGoogle Scholar
  98. Ruiz de Morales, J., Velez, D., and Subiza, J. (1999). Ehrlich tumor stimulates extramedullar hematopoiesis in mice without secreting identifiable colony-stimulating factors and without engagement of host T cells. Exp Hematol 27:1757.PubMedGoogle Scholar
  99. Ryter, S. W., and Tyrrell, R. M. (1998). Singlet molecular oxygen ((1)O2): a possible effector of eukaryotic gene expression. Free Radic Biol Med 24:1520–1534.PubMedGoogle Scholar
  100. Salvadori, S., Martinelli, G., and Zier, K. (2000). Resection of solid tumors reverses T cell defects and restores protective immunity. J Immunol 164:2214.PubMedGoogle Scholar
  101. Sathyamoorthy, M., de Mendez, I., Adams, A. G., and Leto, T. L. (1997). p40(phox) down-regulates NADPH oxidase activity through interactions with its SH3 domain. J Biol Chem 272:9141–9146.PubMedGoogle Scholar
  102. Sauer, H., Wartenberg, M., and Hescheler, J. (2001). Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186.PubMedGoogle Scholar
  103. Schmielau, J., and Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61:4756–4760.PubMedGoogle Scholar
  104. Segal, A. W. (2005). How neutrophils kill microbes. Annu Rev Immunol 23:197–223.PubMedGoogle Scholar
  105. Serafini, P., Borrello, I., and Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16:53–65.PubMedGoogle Scholar
  106. Stadtman, E. R., and Oliver, C. N. (1991). Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008.PubMedGoogle Scholar
  107. Starke-Reed, P. E., and Oliver, C. N. (1989). Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 275:559–567.PubMedGoogle Scholar
  108. St Clair, D., Zhao, Y., Chaiswing, L., and Oberley, T. (2005). Modulation of skin tumorigenesis by SOD. Biomed Pharmacother 59:209–214.PubMedGoogle Scholar
  109. Szuster-Ciesielska, A., Hryciuk-Umer, E., Stepulak, A., Kupisz, K., and Kandefer-Szerszen, M. (2004). Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood. Acta Oncol 43:252–258.PubMedGoogle Scholar
  110. Szweda, L. I., Uchida, K., Tsai, L., and Stadtman, E. R. (1993). Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J Biol Chem 268:3342–3347.PubMedGoogle Scholar
  111. Takada, Y., Mukhopadhyay, A., Kundu, G. C., Mahabeleshwar, G. H., Singh, S., and Aggarwal, B. B. (2003). Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem 278:24233–24241.PubMedGoogle Scholar
  112. Terabe, M., Matsui, S., Park, J. M., Mamura, M., Noben-Trauth, N., Donaldson, D. D., Chen, W., Wahl, S. M., Ledbetter, S., Pratt, B., Letterio, J. J., Paul, W. E., and Berzofsky, J. A. (2003). Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198:1741–1752.PubMedGoogle Scholar
  113. Tobiume, K., Saitoh, M., and Ichijo, H. (2002). Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J Cell Physiol 191:95–104.PubMedGoogle Scholar
  114. Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., and Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56.PubMedGoogle Scholar
  115. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40.PubMedGoogle Scholar
  116. Vickers, S. M., MacMillan-Crow, L. A., Green, M., Ellis, C., and Thompson, J. A. (1999). Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch Surg 134:245–251.PubMedGoogle Scholar
  117. Waris, G., and Ahsan, H. (2006). Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14.PubMedGoogle Scholar
  118. Weiss, S. J., Test, S. T., Eckmann, C. M., Roos, D., and Regiani, S. (1986). Brominating oxidants generated by human eosinophils. Science 234:200–203.PubMedGoogle Scholar
  119. Werner, E., and Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol 158:357–368.PubMedGoogle Scholar
  120. White, E., Shannon, J. S., and Patterson, R. E. (1997). Relationship between vitamin and calcium supplement use and colon cancer. Cancer Epidemiol Biomarkers Prev 6:769–774.PubMedGoogle Scholar
  121. Winterbourn, C. C. (1993). Superoxide as an intracellular radical sink. Free Radic Biol Med 14:85–90.PubMedGoogle Scholar
  122. Wu, G., and Morris, S. M. (1998). Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17.PubMedGoogle Scholar
  123. Young, M., Newby, M., and Wepsic, T. (1987). Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors.Cancer Res 47:100–105.Google Scholar
  124. Zea, A. H., Rodriguez, P. C., Atkins, M. B., Hernandez, C., Signoretti, S., Zabaleta, J., McDermott, D., Quiceno, D., Youmans, A., O’Neill, A., Mier, J., and Ochoa, A. C. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044–3048.PubMedGoogle Scholar
  125. Zhu, Q. S., Xia, L., Mills, G. B., Lowell, C. A., Touw, I. P., and Corey, S. J. (2006). G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth. Blood 107:1847–1856.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alex Corzo
  • Srinivas Nagaraj
  • Dmitry I. Gabrilovich
    • 1
  1. 1.H. Lee Moffitt Cancer CenterTampaUSA

Personalised recommendations