Skip to main content

Role of Reactive Oxygen Species in T-Cell Defects in Cancer

  • Chapter
Tumor-Induced Immune Suppression

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agostinelli, E., and Seiler, N. (2006). Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications. Amino Acids 31:341–355.

    PubMed  CAS  Google Scholar 

  • Almand, B., Clark, J. I., Nikitina, E., English, N. R., Knight, S. C., Carbone, D. P., and Gabrilovich, D. I. (2001). Increased production of immature myeloid cells in cancer patients. A mechanism of immunosuppression in cancer. J Immunol 166:678–689.

    PubMed  CAS  Google Scholar 

  • Alvarez, B., and Radi, R. (2003). Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25:295–311.

    PubMed  CAS  Google Scholar 

  • Amici, M., Lupidi, G., Angeletti, M., Fioretti, E., and Eleuteri, A. M. (2003). Peroxynitrite-induced oxidation and its effects on isolated proteasomal systems. Free Radic Biol Med 34:987–996.

    PubMed  CAS  Google Scholar 

  • Andreyev, A. Y., Kushnareva, Y. E., and Starkov, A. A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214.

    CAS  Google Scholar 

  • Aoe, T., Okamoto, Y., and Saito, T. (1995). Activated macrophages induce structural abnormalities of the T cell receptor-CD3 complex. J Exp Med 181:1881–1886.

    PubMed  CAS  Google Scholar 

  • Assari, T. (2006). Chronic granulomatous disease; fundamental stages in our understanding of CGD. Med Immunol 5:4.

    Google Scholar 

  • Babior, B. M. (1984). The respiratory burst of phagocytes. J Clin Invest 73:599–601.

    PubMed  CAS  Google Scholar 

  • Bagley, J., Singh, G., and Iacomini, J. (2007). Regulation of oxidative stress responses by ataxia-telangiectasia mutated is required for T cell proliferation. J Immunol 178:4757–4763.

    PubMed  CAS  Google Scholar 

  • Banfi, B., Clark, R. A., Steger, K., and Krause, K. H. (2003). Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3513.

    PubMed  CAS  Google Scholar 

  • Banfi, B., Malgrange, B., Knisz, J., Steger, K., Dubois-Dauphin, M., and Krause, K. H. (2004). NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279: 46065–46072.

    PubMed  CAS  Google Scholar 

  • Bentz, B. G., Haines, G. K., 3rd and Radosevich, J. A. (2000). Increased protein nitrosylation in head and neck squamous cell carcinogenesis. Head Neck 22:64–70.

    PubMed  CAS  Google Scholar 

  • Bingisser, R. M., Tilbrook, P. A., Holt, P. G., and Kees, U. R. (1998). Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160:5729–5734.

    PubMed  CAS  Google Scholar 

  • Bolis, A., Corbetta, S., Cioce, A., and de Curtis, I. (2003). Differential distribution of Rac1 and Rac3 GTPases in the developing mouse brain: implications for a role of Rac3 in Purkinje cell differentiation. Eur J Neurosci 18:2417–2424.

    PubMed  Google Scholar 

  • Bonnefoy, M., Drai, J., and Kostka, T. (2002). [Antioxidants to slow aging, facts and perspectives]. Presse Med 31:1174–1184.

    PubMed  Google Scholar 

  • Boucher, J. L., Moali, C., and Tenu, J. P. (1999). Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol Life Sci 55:1015–1028.

    PubMed  CAS  Google Scholar 

  • Boutard, V., Havouis, R., Fouqueray, B., Philippe, C., Moulinoux, J. P., and Baud, L. (1995). Transforming factor beta stimulates arginase activity in macrophages: implications for the regulation of macrophage cytotoxicity. J Immunol 155:2077–2084.

    PubMed  CAS  Google Scholar 

  • Bronte, V., Casic, T., Gri, G., Gallana, K., Borsellino, G., Marrigo, I., Battistini, L., Iafrate, M., Prayer-Galletti, U., Pagano, F., and Viola, A. (2005). Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201:1257–1268.

    PubMed  CAS  Google Scholar 

  • Bronte, V., Serafini, P., De Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D. M., Staib, C., Lowel, M., Sutter, G., Colombo, M. P., and Zanovello, P. (2003). IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278.

    PubMed  CAS  Google Scholar 

  • Bronte, V., Wang, M., Overwijk, W., Surman, D., Pericle, F., Rosenberg, S. A., and Restifo, N. P. (1998). Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 161:5313–5320.

    PubMed  CAS  Google Scholar 

  • Cawthon, A. G., and Alexander-Miller, M. A. (2002). Optimal colocalization of TCR and CD8 as a novel mechanism for the control of functional avidity. J Immunol 169:3492–3498.

    PubMed  CAS  Google Scholar 

  • Chen, J. J., and Yu, B. P. (1994). Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radic Biol Med 17:411–418.

    PubMed  CAS  Google Scholar 

  • Chiarugi, P., Pani, G., Giannoni, E., Taddei, L., Colavitti, R., Raugei, G., Symons, M., Borrello, S., Galeotti, T., and Ramponi, G. (2003). Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161:933–944.

    PubMed  CAS  Google Scholar 

  • Chio, K. S., and Tappel, A. L. (1969). Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids. Biochemistry 8:2821–2826.

    PubMed  CAS  Google Scholar 

  • Cobbs, C. S., Whisenhunt, T. R., Wesemann, D. R., Harkins, L. E., Van Meir, E. G., Samanta, M. (2003). Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res 63:8670–8673.

    PubMed  CAS  Google Scholar 

  • Dairou, J., Dupret, J. M., and Rodrigues-Lima, F. (2005). Impairment of the activity of the xenobiotic-metabolizing enzymes arylamine N-acetyltransferases 1 and 2 (NAT1/NAT2) by peroxynitrite in mouse skeletal muscle cells. FEBS Lett 579:4719–4723.

    PubMed  CAS  Google Scholar 

  • Datta, D., Vaidehi, N., Xu, X., and Goddard, W. A., 3rd (2002). Mechanism for antibody catalysis of the oxidation of water by singlet dioxygen. Proc Natl Acad Sci U S A 99:2636–2641.

    PubMed  CAS  Google Scholar 

  • Dean, R. T., Fu, S., Stocker, R., and Davies, M. J. (1997). Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324 (Pt 1):1–18.

    PubMed  CAS  Google Scholar 

  • Decoursey, T. E., and Ligeti, E. (2005). Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 62:2173–2193.

    PubMed  CAS  Google Scholar 

  • Denu, J. M., and Tanner, K. G. (1998). Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37:5633–5642.

    PubMed  CAS  Google Scholar 

  • Drake, D. R., 3rd, Ream, R. M., Lawrence, C. W., and Braciale, T. J. (2005). Transient loss of MHC class I tetramer binding after CD8+ T cell activation reflects altered T cell effector function. J Immunol 175:1507–1515.

    PubMed  CAS  Google Scholar 

  • Edgeworth, J., Gorman, M., Bennett, R., Freemont, P., and Hogg, N. (1991). Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J Biol Chem 266:7706–7713.

    PubMed  CAS  Google Scholar 

  • Ekmekcioglu, S., Ellerhorst, J., Smid, C. M., Prieto, V. G., Munsell, M., Buzaid, A. C., and Grimm, E. A. (2000). Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res 6:4768–4775.

    PubMed  CAS  Google Scholar 

  • Eze, M. O. (1992). Membrane fluidity, reactive oxygen species, and cell-mediated immunity: implications in nutrition and disease. Med Hypotheses 37:220–224.

    PubMed  CAS  Google Scholar 

  • Fahmy, T. M., Bieler, J. G., Edidin, M., and Schneck, J. P. (2001). Increased TCR avidity after T cell activation: a mechanism for sensing low-density antigen. Immunity 14:135–143.

    PubMed  CAS  Google Scholar 

  • Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., Giordano, S., Pani, G., and Galeotti, T. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 25:3689–3698.

    PubMed  CAS  Google Scholar 

  • Finan, P., Shimizu, Y., Gout, I., Hsuan, J., Truong, O., Butcher, C., Bennett, P., Waterfield, M. D., and Kellie, S. (1994). An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J Biol Chem 269:13752–13755.

    PubMed  CAS  Google Scholar 

  • Forman, H. J., and Torres, M. (2002). Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166:S4–S8.

    Google Scholar 

  • Francke, U., Hsieh, C. L., Foellmer, B. E., Lomax, K. J., Malech, H. L., and Leto, T. L. (1990). Genes for two autosomal recessive forms of chronic granulomatous disease assigned to 1q25 (NCF2) and 7q11.23 (NCF1). Am J Hum Genet 47:483–492.

    PubMed  CAS  Google Scholar 

  • Fu, X., Kassim, S. Y., Parks, W. C., and Heinecke, J. W. (2003). Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 278:28403–28409.

    PubMed  CAS  Google Scholar 

  • Fu, Y., Watson, G., Jimenez, J., Wang, Y., and Lopez, D. (1990). Expansion of immunoregulatory macrophages by granulocyte-macrophage colony-stimulating factor derived from a murine mammary tumor.Cancer Res 50:227.

    PubMed  CAS  Google Scholar 

  • Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952.

    PubMed  CAS  Google Scholar 

  • Gabrilovich, D., Bronte, V., Chen, S.-H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., and Schreiber, H. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Res 67:425.

    Google Scholar 

  • Gabrilovich, D. I., Velders, M., Sotomayor, E., and Kast, W. M. (2001). Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166:5398–5406.

    PubMed  CAS  Google Scholar 

  • Gebhardt, C., Nemeth, J., Angel, P., and Hess, J. (2006). S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 72:1622–1631.

    PubMed  CAS  Google Scholar 

  • Geiszt, M., Lekstrom, K., Witta, J., and Leto, T. L. (2003). Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278:20006–20012.

    PubMed  CAS  Google Scholar 

  • Gotoh, Y., and Cooper, J. A. (1998). Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J Biol Chem 273:17477–17482.

    PubMed  CAS  Google Scholar 

  • Groemping, Y., and Rittinger, K. (2005). Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386:401–416.

    PubMed  CAS  Google Scholar 

  • Groves, J. T. (1999). Peroxynitrite: reactive, invasive and enigmatic. Curr Opin Chem Biol 3:226–235.

    PubMed  CAS  Google Scholar 

  • Grune, T., Reinheckel, T., and Davies, K. J. (1997). Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534.

    PubMed  CAS  Google Scholar 

  • Haataja, L., Groffen, J., and Heisterkamp, N. (1997). Characterization of RAC3, a novel member of the Rho family. J Biol Chem 272:20384–20388.

    PubMed  CAS  Google Scholar 

  • Hampton, M. B., Kettle, A. J., and Winterbourn, C. C. (1998). Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017.

    PubMed  CAS  Google Scholar 

  • Han, C. H., Freeman, J. L., Lee, T., Motalebi, S. A., and Lambeth, J. D. (1998). Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox). J Biol Chem 273:16663–16668.

    PubMed  CAS  Google Scholar 

  • Han, C. H., and Lee, M. H. (2000). Activation domain in P67phox regulates the steady state reduction of FAD in gp91phox. J Vet Sci 1:27–31.

    PubMed  CAS  Google Scholar 

  • Harari, O., and Liao, J. K. (2004). Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des 10:893–898.

    PubMed  CAS  Google Scholar 

  • Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., Divino, C. M., and Chen, S. H. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131.

    PubMed  CAS  Google Scholar 

  • Husemann, J., Obstfeld, A., Febbraio, M., Kodama, T., and Silverstein, S. C. (2001). CD11b/CD18 mediates production of reactive oxygen species by mouse and human macrophages adherent to matrixes containing oxidized LDL. Arterioscler Thromb Vasc Biol 21:1301–1305.

    PubMed  CAS  Google Scholar 

  • Kamata, H., Manabe, T., Oka, S., Kamata, K., and Hirata, H. (2002). Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 519:231–237.

    PubMed  CAS  Google Scholar 

  • Kao, C., Daniels, M. A., and Jameson, S. C. (2005). Loss of CD8 and TCR binding to Class I MHC ligands following T cell activation. Int Immunol 17:1607–1617.

    PubMed  CAS  Google Scholar 

  • Kerkhoff, C., Klempt, M., and Sorg, C. (1998). Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). Biochim Biophys Acta 1448:200–211.

    PubMed  CAS  Google Scholar 

  • Kinnula, V. L., Torkkeli, T., Kristo, P., Sormunen, R., Soini, Y., Paakko, P., Ollikainen, T., Kahlos, K., Hirvonen, A., and Knuutila, S. (2004). Ultrastructural and chromosomal studies on manganese superoxide dismutase in malignant mesothelioma. Am J Respir Cell Mol Biol 31: 147–153.

    PubMed  CAS  Google Scholar 

  • Kono, K., Salazar-Onfray, F., Petersson, M., Hansson, J., Masucci, G., Wasserman, K., Nakazawa, T., Anderson, P., and Kiessling, R. (1996). Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 26:1308–1313.

    PubMed  CAS  Google Scholar 

  • Kusmartsev, S., and Gabrilovich, D. I. (2003). Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186-196.

    Google Scholar 

  • Kusmartsev, S., and Gabrilovich, D. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174:4880–4891.

    PubMed  CAS  Google Scholar 

  • Kusmartsev, S., and Gabrilovich, D. I. (2006). Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55:237–245.

    PubMed  Google Scholar 

  • Kusmartsev, S., Li, Y., and Chen, S. (2000). Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165:779.

    Google Scholar 

  • Kusmartsev, S., Nagaraj, S., and Gabrilovich, D. I. (2005). Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175:4583–4592.

    PubMed  CAS  Google Scholar 

  • Kusmartsev, S., Nefedova, Y., Yoder, D., and Gabrilovich, D. I. (2004). Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999.

    PubMed  CAS  Google Scholar 

  • Kyaw, M., Yoshizumi, M., Tsuchiya, K., Kirima, K., Suzaki, Y., Abe, S., Hasegawa, T., and Tamaki, T. (2002). Antioxidants inhibit endothelin-1 (1-31)-induced proliferation of vascular smooth muscle cells via the inhibition of mitogen-activated protein (MAP) kinase and activator protein-1 (AP-1). Biochem Pharmacol 64:1521–1531.

    PubMed  CAS  Google Scholar 

  • Laurent, A., Nicco, C., Chereau, C., Goulvestre, C., Alexandre, J., Alves, A., Levy, E., Goldwasser, F., Panis, Y., Soubrane, O., Weill, B., and Batteux, F. (2005). Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65: 948–956.

    PubMed  CAS  Google Scholar 

  • Leonard, S. S., Harris, G. K., and Shi, X. (2004). Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942.

    PubMed  CAS  Google Scholar 

  • Leto, T. L., Adams, A. G., and de Mendez, I. (1994). Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A 91:10650–10654.

    PubMed  CAS  Google Scholar 

  • Li, Q., Pan, P. Y., Gu, P., Xu, D., and Chen, S. H. (2004). Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res 64:1130–1139.

    PubMed  CAS  Google Scholar 

  • Lockhart, D. C., Chan, A. K., Mak, S., Joo, H. G., Daust, H. A., Carritte, A., Douville, C. C., Goedegebuure, P. S., and Eberlein, T. J. (2001). Loss of T-cell receptor-CD3zeta and T-cell function in tumor-infiltrating lymphocytes but not in tumor-associated lymphocytes in ovarian carcinoma. Surgery 129:749–756.

    PubMed  CAS  Google Scholar 

  • Maile, R., Siler, C. A., Kerry, S. E., Midkiff, K. E., Collins, E. J., and Frelinger, J. A. (2005). Peripheral “CD8 tuning” dynamically modulates the size and responsiveness of an antigen-specific T cell pool in vivo. J Immunol 174:619–627.

    PubMed  CAS  Google Scholar 

  • Malmberg, K. J., Arulampalam, V., Ichihara, F., Petersson, M., Seki, K., Andersson, T., Lenkei, R., Masucci, G., Pettersson, S., and Kiessling, R. (2001). Inhibition of activated/memory (CD45RO(+)) T cells by oxidative stress associated with block of NF-kappaB activation. J Immunol 167:2595–2601.

    PubMed  CAS  Google Scholar 

  • Mantovani, G., Maccio, A., Madeddu, C., Mura, L., Gramignano, G., Lusso, M. R., Massa, E., Mocci, M., and Serpe, R. (2003). Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med 81:664–673.

    PubMed  CAS  Google Scholar 

  • Marnett, L. J., Hurd, H. K., Hollstein, M. C., Levin, D. E., Esterbauer, H., and Ames, B. N. (1985). Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat Res 148:25–34.

    PubMed  CAS  Google Scholar 

  • Mates, J. M., Perez-Gomez, C., and Nunez de Castro, I. (1999). Antioxidant enzymes and human diseases. Clin Biochem 32:595–603.

    PubMed  CAS  Google Scholar 

  • Melani, C., Chiodoni, C., Forni, G., and Colombo, M. P. (2003). Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145.

    PubMed  CAS  Google Scholar 

  • Modolell, M., Corraliza, I. M., Link, F., Soler, G., and Eichmann, K. (1995). Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow derived macrophages by Th1 and Th2 cytokines. Eur J Immunol 25:1101–1104.

    PubMed  CAS  Google Scholar 

  • Moll, J., Sansig, G., Fattori, E., and van der Putten, H. (1991). The murine rac1 gene: cDNA cloning, tissue distribution and regulated expression of rac1 mRNA by disassembly of actin microfilaments. Oncogene 6:863–866.

    PubMed  CAS  Google Scholar 

  • Mustelin, T., Vang, T., and Bottini, N. (2005). Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 5:43–57.

    PubMed  CAS  Google Scholar 

  • Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., Herber, D., Schneck, J., and Gabrilovich, D. (2007). Altered recognition of antigen is a novel mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835.

    PubMed  CAS  Google Scholar 

  • Nakamura, Y., Yasuoka, H., Tsujimoto, M., Yoshidome, K., Nakahara, M., Nakao, K., Nakamura, M., and Kakudo, K. (2006). Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res 12:1201–1207.

    PubMed  CAS  Google Scholar 

  • Nefedova, Y., Huang, M., Kusmartsev, S., Bhattacharya, R., Cheng, P., Salup, R., Jove, R., and Gabrilovich, D. (2004). Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464–474.

    PubMed  CAS  Google Scholar 

  • Newton, R. A., and Hogg, N. (1998). The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils. J Immunol 160:1427–1435.

    PubMed  CAS  Google Scholar 

  • Nicholls, S. J., and Hazen, S. L. (2005). Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25:1102–1111.

    PubMed  CAS  Google Scholar 

  • Okada, F., Kobayashi, M., Tanaka, H., Kobayashi, T., Tazawa, H., Iuchi, Y., Onuma, K., Hosokawa, M., Dinauer, M. C., and Hunt, N. H. (2006). The role of nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species in the acquisition of metastatic ability of tumor cells. Am J Pathol 169:294–302.

    PubMed  CAS  Google Scholar 

  • Otsuji, M., Kimura, Y., Aoe, T., Okamoto, Y., and Saito, T. (1996). Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci USA 93:13119–13124.

    PubMed  CAS  Google Scholar 

  • Pastore, A., Federici, G., Bertini, E., and Piemonte, F. (2003). Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333:19–39.

    PubMed  CAS  Google Scholar 

  • Rabinovich, G. A., Gabrilovich, D., and Sotomayor, E. M. (2007). Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296.

    PubMed  CAS  Google Scholar 

  • Reeves, E. P., Lu, H., Jacobs, H. L., Messina, C. G., Bolsover, S., Gabella, G., Potma, E. O., Warley, A., Roes, J., and Segal, A. W. (2002). Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297.

    PubMed  CAS  Google Scholar 

  • Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410.

    PubMed  CAS  Google Scholar 

  • Rivoltini, L., Carrabba, M., Huber, V., Castelli, C., Novellino, L., Dalerba, P., Mortarini, R., Arancia, G., Anichini, A., Fais, S., and Parmiani, G. (2002). Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 188:97–113.

    PubMed  CAS  Google Scholar 

  • Rodaway, A. R., Teahan, C. G., Casimir, C. M., Segal, A. W., and Bentley, D. L. (1990). Characterization of the 47-kilodalton autosomal chronic granulomatous disease protein: tissue-specific expression and transcriptional control by retinoic acid. Mol Cell Biol 10:5388–5396.

    PubMed  CAS  Google Scholar 

  • Rodriguez, A. M., Carrico, P. M., Mazurkiewicz, J. E., and Melendez, J. A. (2000). Mitochondrial or cytosolic catalase reverses the MnSOD-dependent inhibition of proliferation by enhancing respiratory chain activity, net ATP production, and decreasing the steady state levels of H(2)O(2). Free Radic Biol Med 29:801–813.

    PubMed  CAS  Google Scholar 

  • Ruiz de Morales, J., Velez, D., and Subiza, J. (1999). Ehrlich tumor stimulates extramedullar hematopoiesis in mice without secreting identifiable colony-stimulating factors and without engagement of host T cells. Exp Hematol 27:1757.

    PubMed  CAS  Google Scholar 

  • Ryter, S. W., and Tyrrell, R. M. (1998). Singlet molecular oxygen ((1)O2): a possible effector of eukaryotic gene expression. Free Radic Biol Med 24:1520–1534.

    PubMed  CAS  Google Scholar 

  • Salvadori, S., Martinelli, G., and Zier, K. (2000). Resection of solid tumors reverses T cell defects and restores protective immunity. J Immunol 164:2214.

    PubMed  CAS  Google Scholar 

  • Sathyamoorthy, M., de Mendez, I., Adams, A. G., and Leto, T. L. (1997). p40(phox) down-regulates NADPH oxidase activity through interactions with its SH3 domain. J Biol Chem 272:9141–9146.

    PubMed  CAS  Google Scholar 

  • Sauer, H., Wartenberg, M., and Hescheler, J. (2001). Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186.

    PubMed  CAS  Google Scholar 

  • Schmielau, J., and Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61:4756–4760.

    PubMed  CAS  Google Scholar 

  • Segal, A. W. (2005). How neutrophils kill microbes. Annu Rev Immunol 23:197–223.

    PubMed  CAS  Google Scholar 

  • Serafini, P., Borrello, I., and Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16:53–65.

    PubMed  CAS  Google Scholar 

  • Stadtman, E. R., and Oliver, C. N. (1991). Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008.

    PubMed  CAS  Google Scholar 

  • Starke-Reed, P. E., and Oliver, C. N. (1989). Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 275:559–567.

    PubMed  CAS  Google Scholar 

  • St Clair, D., Zhao, Y., Chaiswing, L., and Oberley, T. (2005). Modulation of skin tumorigenesis by SOD. Biomed Pharmacother 59:209–214.

    PubMed  CAS  Google Scholar 

  • Szuster-Ciesielska, A., Hryciuk-Umer, E., Stepulak, A., Kupisz, K., and Kandefer-Szerszen, M. (2004). Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood. Acta Oncol 43:252–258.

    PubMed  CAS  Google Scholar 

  • Szweda, L. I., Uchida, K., Tsai, L., and Stadtman, E. R. (1993). Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J Biol Chem 268:3342–3347.

    PubMed  CAS  Google Scholar 

  • Takada, Y., Mukhopadhyay, A., Kundu, G. C., Mahabeleshwar, G. H., Singh, S., and Aggarwal, B. B. (2003). Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem 278:24233–24241.

    PubMed  CAS  Google Scholar 

  • Terabe, M., Matsui, S., Park, J. M., Mamura, M., Noben-Trauth, N., Donaldson, D. D., Chen, W., Wahl, S. M., Ledbetter, S., Pratt, B., Letterio, J. J., Paul, W. E., and Berzofsky, J. A. (2003). Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198:1741–1752.

    PubMed  CAS  Google Scholar 

  • Tobiume, K., Saitoh, M., and Ichijo, H. (2002). Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J Cell Physiol 191:95–104.

    PubMed  CAS  Google Scholar 

  • Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., and Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56.

    PubMed  CAS  Google Scholar 

  • Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40.

    PubMed  CAS  Google Scholar 

  • Vickers, S. M., MacMillan-Crow, L. A., Green, M., Ellis, C., and Thompson, J. A. (1999). Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch Surg 134:245–251.

    PubMed  CAS  Google Scholar 

  • Waris, G., and Ahsan, H. (2006). Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14.

    PubMed  Google Scholar 

  • Weiss, S. J., Test, S. T., Eckmann, C. M., Roos, D., and Regiani, S. (1986). Brominating oxidants generated by human eosinophils. Science 234:200–203.

    PubMed  CAS  Google Scholar 

  • Werner, E., and Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol 158:357–368.

    PubMed  CAS  Google Scholar 

  • White, E., Shannon, J. S., and Patterson, R. E. (1997). Relationship between vitamin and calcium supplement use and colon cancer. Cancer Epidemiol Biomarkers Prev 6:769–774.

    PubMed  CAS  Google Scholar 

  • Winterbourn, C. C. (1993). Superoxide as an intracellular radical sink. Free Radic Biol Med 14:85–90.

    PubMed  CAS  Google Scholar 

  • Wu, G., and Morris, S. M. (1998). Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17.

    PubMed  CAS  Google Scholar 

  • Young, M., Newby, M., and Wepsic, T. (1987). Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors.Cancer Res 47:100–105.

    Google Scholar 

  • Zea, A. H., Rodriguez, P. C., Atkins, M. B., Hernandez, C., Signoretti, S., Zabaleta, J., McDermott, D., Quiceno, D., Youmans, A., O’Neill, A., Mier, J., and Ochoa, A. C. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044–3048.

    PubMed  CAS  Google Scholar 

  • Zhu, Q. S., Xia, L., Mills, G. B., Lowell, C. A., Touw, I. P., and Corey, S. J. (2006). G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth. Blood 107:1847–1856.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Corzo, A., Nagaraj, S., Gabrilovich, D.I. (2008). Role of Reactive Oxygen Species in T-Cell Defects in Cancer. In: Gabrilovich, D.I., Hurwitz, A.A. (eds) Tumor-Induced Immune Suppression. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69118-3_12

Download citation

Publish with us

Policies and ethics