Advertisement

Protein–Glycan Interactions in the Regulation of Immune Cell Function in Cancer: Lessons from the Study of Galectins-1 and -3

  • Gabriel A. Rabinovich
  • Fu-Tong Liu

Keywords

Cell Death Differ Endogenous Lectin Modulate Cell Adhesion Galectin Family Endothelial Cell Morphogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, N., Gabius, H. J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B., Macaluso, F., and Brewer, C. F. (2004). Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 279:10841–10847.PubMedCrossRefGoogle Scholar
  2. Akahani, S., Nangia-Makker, P., Inohara, Kim, H. R. C., and Raz, A. (1997). Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res 57:5272–5276.PubMedGoogle Scholar
  3. Almkvist, J., Dahlgren, C., Leffler, H., and Karlsson, A. (2002). Activation of the neutrophil nicotinamide adenine dinucleotide phosphate oxidase by galectin-1, J Immunol 168:4034–4041.PubMedGoogle Scholar
  4. Almkvist, J., Dahlgren, C., Leffler, H., and Karlsson, A. (2004). Newcastle disease virus neuraminidase primes neutrophils for stimulation by galectin-3 and formyl-Met-Leu-Phe. Exp Cell Res 298:74–82.PubMedCrossRefGoogle Scholar
  5. Almkvist, J., Faldt, J., Dahlgren, C., Leffler, H. and Karlsson, A. (2001). Lipopolysaccharide-induced gelatinase granule mobilization primes neutrophils for activation by galectin-3 and formylmethionyl-Leu-Phe. Infect Immun 69:832–837.PubMedCrossRefGoogle Scholar
  6. Amano, M., Galvan, M., He, J., Baum, L. G. (2003). The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation and T cell death. J Biol Chem 278:7469–7475.PubMedCrossRefGoogle Scholar
  7. Andre, S., Pieters, R. J., Vrasidas, I., Kaltner, H., Kuwabara, I., Liu, F-T., Liskamp, R. M., and Gabius, H.-J. (2001). Wedgelike glycodendrimers as inhibitors of binding of mammalian galectins to glycoproteins, lactose, maxiclusters, and cell surface glycoconjugates. Chembiochem 2:822–830.PubMedCrossRefGoogle Scholar
  8. Baptiste, T. A., James, A., Saria, M. and Ochieng, J. (2007). Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells: Implications in the extracellular functions of the lectin. Exp Cell Res 313:652–664.PubMedCrossRefGoogle Scholar
  9. Barrionuevo, P., Beigier-Bompadre, M., Ilarregui, J. M., Toscano, M. A., Bianco, G. A., Isturiz, M. A., and Rabinovich, G. A. (2007). A novel function for galectin-1 at the crossroad of innate and adaptive immunity: Galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway, J Immunol 178:436–445.PubMedGoogle Scholar
  10. Baum, L. G., Blackall, D. P., Arias-Magallano, S., Nanigian, D., Uh, S. Y., Browne, J. M., Hoffmann, D., Emmanouilides, C. E., Territo, M. C., and Baldwin, G. C. (2003) Amelioration of graft versus host disease by galectin-1, Clin Immunol 109:295–307.PubMedCrossRefGoogle Scholar
  11. Blaser, C., Kaufmann, M., Muller, C., Zimmermann, C., Wells, V., Malluci, L., and Pircher, H. (1998). UPbeta-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 28:2311–2319.PubMedCrossRefGoogle Scholar
  12. Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M. E., Alvarez, R., Bryan, M. C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D. J., Skehel, J. J., van Die, I., Burton, D. R., Wilson, I. A., Cummings, R., Bovin, N., Wong, C. H., and Paulson, J. C. (2004). Printed covalent glycan array for ligand profiling of diverse glycan-binding proteins. Proc Natl Acad Sci USA 101:17933–17938.CrossRefGoogle Scholar
  13. Brewer, C. (2002). Binding and cross-linking properties of galectins, Biochim Biophys Acta 1572:255–262.Google Scholar
  14. Cabrera, P. V., Amano, M., Mitoma, J., Chan, J., Said, J., Fukuda, M., and Baum, L. G. (2006). Haploinsufficiency of C2GnT-1 glycosyltransferase renders T lymphoma cells resistant to cell death. Blood 108:2399–2406.PubMedCrossRefGoogle Scholar
  15. Camby, I., Mercier, M. L., Lefranc, F., and Kiss. R. (2006). Galectin-1: a small protein with major functions. Glycobiology 16:137–157.CrossRefGoogle Scholar
  16. Camby, I., Belot, N., Rorive, S., Lefranc, F., Maurage, C. A., Lahm, H., Kaltner, H., Hadari, Y., Ruchoux, M. M., Brotchi, J., Zick, Y., Salmon, I., Gabius, H. J., and Kiss, R. (2001) Galectins are differentially expressed in supratentorial pilocytic atrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol 11:12–26.PubMedCrossRefGoogle Scholar
  17. Chen, H. Y., Sharma, B. B., Yu, L., Zuberi, R., Weng, I. C., Kawakami, Y., Kawakami, T., Hsu, D. K., and Liu, F. T. (2006). Role of galectin-3 in mast cell functions: Galectin-3-deficient masT cells exhibit impaired mediator release and defective JNK expression. J Immunol 177:4991–4997.PubMedGoogle Scholar
  18. Chung, C. D., Patel, V. P., Moran, M., Lewis, L. A., and Miceli, M. C. (2000). Galectin-1 induces partial TCR UPzeta-chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol 165:3722–3729.PubMedGoogle Scholar
  19. Colnot, C., Ripoche, M. A., Milon, G., Montagutelli, X., Crocker, P. R., and Poirier, F. (1998). Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3-null mutant mice. Immunology 94:290–296.PubMedCrossRefGoogle Scholar
  20. Cooper, D. N. (2002). Galectinomics: finding themes in complexity, Biochim Biophys Acta 1572:209–231.PubMedGoogle Scholar
  21. Cooper, D. N., and Barondes, S. H. (1990). Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J Cell Biol 110:1681–1691.PubMedCrossRefGoogle Scholar
  22. Correa, S. G., Sotomayor, C. E., Aoki, M. P., Maldonado, C. A., and Rabinovich, G. A. (2003). Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages, Glycobiology 13:119–128.PubMedCrossRefGoogle Scholar
  23. Cortegano, I., del Pozo, V., Cardaba, B., de Andres, B., Gallardo, S., del Amo, A., Arrieta, I., Jurado, A., Palomino, P., Liu, F. T., and Lahoz, C. (1998). Galectin-3 down-regulates IL-5 gene expression on different cell types. J Immunol 161:385–389.PubMedGoogle Scholar
  24. Crittenden, S. L., Roff, C. F., and Wang, J. L. (1984). Carbohydrate-binding protein 35: identification of the galactose- specific lectin in various tissues of mice. Mol Cell Biol 4: 1252–1259.PubMedGoogle Scholar
  25. Dagher, S. F., Wang, J. L., and Patterson, R. J. (1995). Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci USA 92:1213–1217.PubMedCrossRefGoogle Scholar
  26. Danguy, A., Camby, I., and Kiss, R. (2002). Galectins and cancer. Biochim Biophys Acta 1572: 285–293.PubMedGoogle Scholar
  27. Daroqui, M. C., Ilarregui, J. M., Rubinstein, N., Salatino, M., Toscano, M. A., Vazquez, P., Bakin, A., Puricelli, L., Bal de Kier Joffe, E., and Rabinovich, G. A. (2007). Regulation of galectin-1 expression by transforming growth factor UPbeta 1: implications for tumor-immune escape. Cancer Immunol Immunother 56:491–499.PubMedCrossRefGoogle Scholar
  28. Davidson, P. J., Davis, M. J., Patterson, R. J., Ripoche, M. A., Poirier, F., and Wang, J. L. (2002). Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology 12: 329–337.PubMedCrossRefGoogle Scholar
  29. Del Pozo, V., Rojo, M., Rubio, M. L., Cortegano, I., Cardaba, B., Gallardo, S., Ortega, M., Civantos, E., Lopez, E., Martin-Mosquero, C., Peces-Barba, G., Palomino, P., Gonzalez-Mangado, N., and Lahoz, C. (2002). Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through interleukin-5 gene downregulation. Am J Respir Crit Care Med 166:732–737.PubMedCrossRefGoogle Scholar
  30. Delacour, D., Cramm-Behrens, C. I., Drobecq, H., Le Bivic, A., Naim, H. Y., and Jacob, R. (2006). Requirement for galectin-3 in apical protein sorting. Curr Biol 16:408–414.PubMedCrossRefGoogle Scholar
  31. Demetriou, M., Granovsky, M., Quaggin, S., and Dennis, J. W. (2001). Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409:733–779.PubMedCrossRefGoogle Scholar
  32. Dong, S. and Hughes, R. C. (1996). Galectin-3 stimulates uptake of extracellular Ca2+ in human Jurkat T-cells. FEBS Lett 395:165–169.PubMedCrossRefGoogle Scholar
  33. Dong, S. and Hughes, R. C. (1997). Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen). Glycoconjugate J 14:267–274.CrossRefGoogle Scholar
  34. Elola, M. T., Wolfenstein-Todel, C., Troncoso, M. F., Vasta, G., and Rabinovich, G. A. (2007). Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci 64:1679–1700.PubMedCrossRefGoogle Scholar
  35. Endharti, A. T., Zhou, Y. W., Nakashima, I., and Suzuki, H. (2005). Galectin-1 supports survival of naive T cells without promoting cell proliferation, Eur J Immunol 35:86–97.PubMedCrossRefGoogle Scholar
  36. Faldt, J., Dahlgren, C., Ridell, M. and Karlsson, A. (2001). Priming of human neutrophils by mycobacterial lipoarabinomannans: role of granule mobilisation. Microbes Infect 3:1101–1109.PubMedCrossRefGoogle Scholar
  37. Fernandez, G. C., Ilarregui, J. M., Rubel, C. J., Toscano, M. A., Gomez, S. A., Beigier Bompadre, M., Isturiz, M. A., Rabinovich, G. A., and Palermo, M. S. (2005). Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: involvement of alternative MAPK pathways. Glycobiology 15:519–527.PubMedCrossRefGoogle Scholar
  38. Frigeri, L. G., Zuberi, R. I., and Liu, F. T. (1993). UPvarepsilonBP, a UPbeta-galactoside-binding animal lectin, recognizes IgE receptor (FceRI) and activates mast cells. Biochemistry 32:7644–7649.PubMedCrossRefGoogle Scholar
  39. Fuertes, M. B., Molinero, L. L., Toscano, M. A., Ilarregui, J. M., Rubinstein, N., Fainboim, L., Zwirner, N. W., and Rabinovich, G. A. (2004). Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase and p70S6 kinase. Mol Cell Biochem 267:177–185.PubMedCrossRefGoogle Scholar
  40. Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H. R., Hogan, V., Inohara, H., Kagawa, S., and Raz, A. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res 63:8302–8311.PubMedGoogle Scholar
  41. Fulcher, J. A., Hashimi, S. T., Levroney, E. L., Pang, M., Gurney, K. B., Baum, L. G., and Lee, B. Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix, J Immunol 177:216–226.Google Scholar
  42. Gabius, H. J., Engelhardt, R., and Cramer, F. (1986). Endogenous tumor lectins: overview and perspectives. Anticancer Res 6:573–578.PubMedGoogle Scholar
  43. Galvan, M., Tsuboi, S., Fukuda, M., and Baum, L. G. (2000). Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J Biol Chem 275:16730–16737.PubMedCrossRefGoogle Scholar
  44. Garin, M. I., Chu, C. C., Golshayan, D., Cernuda-Morollon, E., Wait, R., Lechler, R. I. (2007). Galectin-1: a key effector of regulation mediated by CD4^+ CD25^+ T cells. Blood 109:2058–2065.PubMedCrossRefGoogle Scholar
  45. Garin, J., Diez, R., Kieffer, S., Dermine, J. F., Duclos, S., Gagnon, E., Sadoul, R.,. Rondeau, C., and Desjardins, M. (2001). The phagosome proteome: insight into phagosome functions. J Cell Biol 152:165–180.PubMedCrossRefGoogle Scholar
  46. Gauthier, L., Rossi, B., Roux, F., Termine, E., and Schiff, C. (2002). Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc Natl Acad Sci USA 99:13014–13019.PubMedCrossRefGoogle Scholar
  47. Gil, C. D., Cooper, D., Rosignoli, G., Perretti, M., and Oliani, S. M. (2006). Inflammation-induced modulation of cellular galectin-1 and -3 expression in a model of rat peritonitis. Inflamm Res 55:99–107.PubMedCrossRefGoogle Scholar
  48. Glinsky, G. V., Price, J. E., Glinsky, V. V., Mossine, V. V., Kiriakova, G. and Metcalf, J. B. (1996). Inhibition of human breast cancer metastasis in nude mice by synthetic glycoamines. Cancer Res 56:5319–5324.PubMedGoogle Scholar
  49. Gordon, S. (2003). Alternative activation of macrophages. Nat Rev Immunol 3, 23–35.PubMedCrossRefGoogle Scholar
  50. Hahn, H. P., Pang, M., He, J., Hernandez, J. D., Yang, R. Y., Li, L. Y., Wang, X., Liu, F. T., and Baum, L. G. (2004). Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ 11:1277–1286.PubMedCrossRefGoogle Scholar
  51. He, J., and Baum, L. G. (2006). Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab Invest 86:578–590.PubMedGoogle Scholar
  52. Hébert, E. and Monsigny, M. (1993). Oncogenes and expression of endogenous lectins and glycoconjugates. Biol Cell 79:97–109.PubMedCrossRefGoogle Scholar
  53. Hébert, E. and Monsigny, M. (1994). Galectin-3 mRNA level depends on transformation phenotype in ras-transformed NIH 3T3 cells. Biol Cell 81:73–76.Google Scholar
  54. Hikita, C., Vijayakumar, S., Takito, J., Erdjument-Bromage, H., Tempst, P., and Al-Awqati, Q. (2001). Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3. J Cell Biol 151:1235–1146.CrossRefGoogle Scholar
  55. Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W. E., Yagi, F., and Kasai, K. I. (2002). Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572: 232–254.PubMedGoogle Scholar
  56. Hsu, D. K., Dowling, C. A., Jeng, K.-C. G., Chen, J.-T., Yang, R.-Y. and Liu, F.-T. (1999). Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. Int J Cancer 81: 519–526.PubMedCrossRefGoogle Scholar
  57. Hsu, D. K., Hammes, S. R., Kuwabara, I., Greene, W. C., and Liu, F. T. (1996). Human T lymphotropic virus-1 infection of human T lymphocytes induces expression of the UPbeta-galactose-binding lectin, galectin-3. Am J Pathol 148:1661–1670.PubMedGoogle Scholar
  58. Hsu, D. K., Yang, R. Y., and Liu, F. T. (2006). Galectins in apoptosis. Methods Enzymol 417: 256–273.PubMedCrossRefGoogle Scholar
  59. Hsu, D. K., Yang, R. Y., Yu, L., Pan, Z., Salomon, D. R., Fung-Leung, W. P., and Liu, F. T. (2000). Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 156:1073–1083.PubMedGoogle Scholar
  60. Hsu, D. K., Zuberi, R. and Liu, F. T. (1992). Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J Biol Chem 267: 14167–14174.PubMedGoogle Scholar
  61. Hughes, R. C. (1999). Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta 1473:172–185.PubMedGoogle Scholar
  62. Hughes, R. C. (2001). Galectins as modulators of cell adhesion. Biochimie 83:667–676.PubMedCrossRefGoogle Scholar
  63. Ingrassia, L., Camby, I., Lefranc, F., Mathieu, V., Nshimyumukiza, P., Darro, F., and Kiss, R. (2006). Anti-galectin compounds as potential anti-cancer drugs. Curr Med Chem 13: 3513–3527.PubMedCrossRefGoogle Scholar
  64. Ion, G., Fajka-Boja, R., Kovacs, F., Szebeni, G., Gombos, I., Czibula, A., Matko, J., and Monostori, E. (2006). Acid sphingomyelinase-mediated release of ceramide is essential to trigger the mitochondrial pathway of apoptosis by galectin-1. Cell Signal 18:1887–1896.PubMedCrossRefGoogle Scholar
  65. Ion, G., Fajka-Boja, R., Toth, G. K., Caron, M., and Monostori, E. (2005). Role of p56lck and ZAP70-mediated tyrosine phosphorylation in galectin-1-induced cell death. Cell Death Differ 12:1145–1147.PubMedCrossRefGoogle Scholar
  66. Iruisci, I., Tinari, N., Natoli, C., Angelucci, D., Cianchetti, E., and Iacobelli, S. (2000). Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 6: 1389–1393.Google Scholar
  67. Jeng, K. C. G., Frigeri, L. G., and Liu, F. T. (1994). An endogenous lectin, galectin-3 (eBP/Mac-2), potentiates IL-1 production by human monocytes. Immunol Lett 42:113–116.PubMedCrossRefGoogle Scholar
  68. Karlsson, A., Follin, P., Leffler, H., and Dahlgren, C. (1998). Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood 91:3430–3438.PubMedGoogle Scholar
  69. Kiss, J. Kunstar, A., Fajka-Boja, R., Dudics, V., Tovari, J., Legradi, A., Monostori, E., and Uher, F. (2007). A novel anti-inflammatory function of human galectin-1: inhibition of hematopoietic progenitor cell mobilization. Exp Hematol 35:305–313.PubMedCrossRefGoogle Scholar
  70. Kopitz, J., von Reitzenstein, C., Andre, S., Kaltner, H., Uhl, J., Ehemann, V., Cantz, M., and Gabius, H. J. (2001). Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem 276:35917–35923.PubMedCrossRefGoogle Scholar
  71. Kuwabara, I., and Liu, F. T. (1996). Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol 156:3939–3944.PubMedGoogle Scholar
  72. La, M., Cao, T. V., Cerchiaro, G., Chilton, K., Hirabayashi, J., Kasai, K., Oliani, S. M., Chernajovsky, Y., and Perretti, M. (2003). A novel biological activity for galectin-1: inhibition of leukocyte–endothelial cell interactions in experimental inflammation. Am J Pathol 163:1505–1515.PubMedGoogle Scholar
  73. Lahm, H., Andre, S., Hoeflich, A., Kaltner, H., Siebert, H. C., Sordat, B., von der Lieth, C. W., Wolf, E., and Gabius, H.-J. (2004). Tumor galectinology: insights into the complex network of a family of endogenous lectins. Glycoconj J 20:227–238.PubMedCrossRefGoogle Scholar
  74. Le, Q. T., Shi, G., Cao, H., Nelson, D. W., Wang, Y., Chen, E. Y., Zhao, S., Kong, C., Richardson, D., O’Byrne, K. J., Giaccia, A. J., and Koong, A. C. (2005). Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 23:8932–8941.PubMedCrossRefGoogle Scholar
  75. Liu, F. T. (2005). Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol 136:385–400.PubMedCrossRefGoogle Scholar
  76. Liu, F. T., Hsu, D. K., Zuberi, R. I., Kuwabara, I., Chi, E. Y., and Henderson, W. R., Jr (1995). Expression and function of galectin-3, a UPbeta-galactoside-binding lectin, in human monocytes and macrophages. Am J Pathol 147:1016–1029.PubMedGoogle Scholar
  77. Liu, F. T., Patterson, R. J., and Wang, J. L. (2002). Intracellular functions of galectins. Biochim Biophys Acta 1572:263–273.PubMedGoogle Scholar
  78. Liu, F. T., and Rabinovich, G. A. (2005). Galectins as modulators of tumour progression. Nat Rev Cancer 5:29–41.PubMedCrossRefGoogle Scholar
  79. Lopez, E., Del Pozo, V., Miguel, T., Sastre, B., Seoane, C., Civantos, E., Llanes, E., Baeza, M. L., Palomino, P., Cardaba, B., Gallardo, S., Manzarbeitia, F., Zubeldia, J. M., and Lahoz, C. (2006). Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model.J Immunol 176:1943–1950.PubMedGoogle Scholar
  80. Lu, Y., Lotan, D., and Lotan, R. (2000). Differential regulation of constitutive and retinoic acid-induced galectin-1 gene transcription in murine embryonal carcinoma and myoblastic cells. Biochim Biophys Acta 1491:13–19.PubMedGoogle Scholar
  81. Mahoney, S., Wilkinson, M., Smith, S., and Haynes, L. W. (2000). Stabilization of neurites in cerebellar granule cells by transglutaminase activity: identification of midkine and galectin-3 as substrates. Neuroscience 101:141–155.PubMedCrossRefGoogle Scholar
  82. Massa, S. M., Cooper, D. N. W., Leffler, H., and Barondes, S. H. (1993). L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry 32: 260–267.PubMedCrossRefGoogle Scholar
  83. Matarrese, P., Tinari, A., Mormone, E., Bianco, G. A., Toscano, M. A., Ascione, B., Rabinovich, G. A., and Malorni, W. (2005). Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding and fission. J Biol Chem 280:6969–6985.PubMedCrossRefGoogle Scholar
  84. Matarrese, P., Tinari, N., Semeraro, M. L., Natoli, C., Iacobelli, S., and Malorni, W. (2000). Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis. FEBS Lett 473:311–315.PubMedCrossRefGoogle Scholar
  85. Mehul, B., Bawumia, S., and Hughes, R. C. (1995). Cross-linking of galectin 3, a galactose-binding protein of mammalian cells, by tissue-type transglutaminase. FEBS Lett 360:160–164.PubMedCrossRefGoogle Scholar
  86. Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., Harlan, J. E., Yoon, H. S., Nettesheim, D., Chang, B. S., Thompson, C. B., Wong, C. L., Ng, S. L., and Fesik, S. W. (1996). X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335–341.PubMedCrossRefGoogle Scholar
  87. Nangia-Makker, P., Hogan, V., Honjo, Y., Baccarini, S., Tait, L., Breaslier, R., and Raz, A. (2002). Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94:854–1862.Google Scholar
  88. Nangia-Makker, P., Honjo, Y., Sarvis, R., Akahani, S., Hogan, V., Pienta, K. J., and Raz, A. (2000). Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 156: 899–909.PubMedGoogle Scholar
  89. Nickel, W. (2005). Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6:607–614.PubMedCrossRefGoogle Scholar
  90. Nieminen, J., Kuno, A., Hirabayashi, J., and Sato, S. (2007). Visualization of galectin-3 oligomerization on the surface of neutrophils and endothelial cells using fluorescence resonance energy transfer. J Biol Chem 282:1374–1383.PubMedCrossRefGoogle Scholar
  91. Nieminen, J., St-Pierre, C., and Sato, S. (2005). Galectin-3 interacts with naive and primed neutrophils, inducing innate immune responses. J Leukoc Biol 78:1127–1135.PubMedGoogle Scholar
  92. Ochieng, J., Leite-Browning, M. L., and Warfield, P. (1998). Regulation of cellular adhesion to extracellular matrix proteins by galectin-3. Biochem Biophys Res Commun 246: 788–791.PubMedCrossRefGoogle Scholar
  93. Ochieng, J., Warfield, P., Green-Jarvis, B., and Fentie, I. (1999). Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin. J Cell Biochem 75:505–514.PubMedCrossRefGoogle Scholar
  94. Ohtsubo, K., and Marth, J. D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867.PubMedCrossRefGoogle Scholar
  95. Pace, K. E., Lee, C., Stewart, P. L., and Baum, L. G. (1999). Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol 163:3801–3811.PubMedGoogle Scholar
  96. Perillo, N. L., Pace, K. E., Seilhamer, J. J., and Baum, L. G. (1995). Apoptosis of T cells mediated by galectin-1. Nature 378:736–739.PubMedCrossRefGoogle Scholar
  97. Perillo, N. L., Uittenbogaart, C. H., Nguyen, J. T., and Baum, L. G. (1997). Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J Exp Med 97:1851–1858.CrossRefGoogle Scholar
  98. Perone, M. J., Larregina, A. T., Shufesky, W. J., Papworth, G. D., Sullivan, M. L., Zahorchak, A. F., Stolz, D. B., Baum, L. G., Watkins, S. C., Thomson, A. W., and Morelli, A. E. (2006). Transgenic galectin-1 induces maturation of dendritic cells that elicit contrasting responses in naïve and activated T cells. J Immunol 176:7207–7220.PubMedGoogle Scholar
  99. Rabinovich, G. A., Alonso, C. R., Sotomayor, C. E., Durand, S., Bocco, J. L., and Riera, C. M. (2000b). Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2. Cell Death Differ 7:747–753.CrossRefGoogle Scholar
  100. Rabinovich, G. A., Ariel, A., Hershkoviz, R., Hirabayashi, J., Kasai, K. I., and Lider, O. (1999a). Specific inhibition of T-cell adhesion to extracellular matrix and pro-inflammatory cytokine secretion by human recombinant galectin-1. Immunology 97:100–106.CrossRefGoogle Scholar
  101. Rabinovich, G. A., Baum, L. G., Tinari, N., Paganelli, R., Natoli, C., Liu, F. T., and Iacobelli, S. (2002a). Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response. Trends Immunol 23:313–320.CrossRefGoogle Scholar
  102. Rabinovich, G. A., Correa, S. G., Bianco, I., Riera, C. M., and Sotomayor, C. E. (2000a). Evidence of a role for galectin-1 in acute inflammation. Eur J Immunol 30:1331–1339.CrossRefGoogle Scholar
  103. Rabinovich, G. A., Cumashi, A., Bianco, G. A., Ciavardelli, D., Iurisci, I., D‘Egidio, M., Piccolo, E., Tinari, N., Nifantiev, N., and Iacobelli, S. (2006). Synthetic lactulose amines: novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis. Glycobiology 16:210–220.PubMedCrossRefGoogle Scholar
  104. Rabinovich, G. A., Daly, G., Dreja, H., Tailor, H., Riera, C. M, Hirabayashi, J., and Chernajovsky, Y. (1999b). Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med 190:385–397.CrossRefGoogle Scholar
  105. Rabinovich, G. A., Gabrilovich, D. and Sotomayor, E. M. (2007). Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296.PubMedCrossRefGoogle Scholar
  106. Rabinovich, G. A., Modesti, N. M, Castagna, L., Landa, C. A, Riera, C. M, Sotomayor, C. E. (1997). Specific inhibition of lymphocyte proliferation and induction of apoptosis by CLL-I, a beta-galactoside-binding lectin. J Biochem 122:365–373.PubMedGoogle Scholar
  107. Rabinovich, G. A., Modesti, N. M, Castagna, L., Todel, C. W, Riera, C. M, Sotomayor, C. E. (1998). Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: biochemical and functional characterization. J Immunol 160:4831–4840.PubMedGoogle Scholar
  108. Rabinovich, G. A., Ramhorst, R. E., Rubinstein, N., Corigliano, A., Daroqui, M. C., Kier-Joffe, E. B., and Fainboim, L. (2002b). Induction of allogeneic T -cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms. Cell Death Differ 9: 661–670.CrossRefGoogle Scholar
  109. Raz, A., Meromsky, L., and Lotan, R. (1986). Differential expression of endogenous lectins on the surface of nontumorigenic, tumorigenic and metastatic cells. Cancer Res 46:3667–3672.PubMedGoogle Scholar
  110. Raz, A., Meromsky, L., Zvibel, I., and Lotan, R. (1987). Transformation-related changes in the expression of endogenous cell lectins. Int J Cancer 39:353–360.PubMedCrossRefGoogle Scholar
  111. Rubinstein, N., Alvarez, M., Zwirner, N. W., Toscano, M. A., Ilarregui, J. M., Bravo, A., Mordoh, J., Fainboim, L., Podhajcer, O. L., and Rabinovich, G. A. (2004). Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell 5:241–251.PubMedCrossRefGoogle Scholar
  112. Sano, H., Hsu, D. K., Apgar, J. R., Yu, L., Sharma, B. B., Kuwabara, I., Izui, S., and Liu, F. T. (2003). Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 112: 389–397.PubMedCrossRefGoogle Scholar
  113. Sano, H., Hsu, D. K., Yu, L., Apgar, J. R., Kuwabara, I., Yamanaka, T., Hirashima, M., and Liu, F. T. (2000). Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165:2156–2164.PubMedGoogle Scholar
  114. Santucci, L., Fiorucci, S., Cammilleri, F., Servillo, G., Federici, B., and Morelli, A. (2000). Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. Hepatology 31:399–406.PubMedCrossRefGoogle Scholar
  115. Santucci, L., Fiorucci, S., Rubinstein, N., Mencarelli, A., Palazetti, B., Federici, B., Rabinovich, G. A., and Morelli, A.. (2003). Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124:1381–1394.PubMedCrossRefGoogle Scholar
  116. Sato, S. and Hughes, R. C. (1992). Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin. J Biol Chem 267:6983–6990.PubMedGoogle Scholar
  117. Sparrow, C. P., Leffler, H. and Barondes, S. H. (1987). Multiple soluble b-galactoside-binding lectins from human lung. J Biol Chem 262:7383–7390.PubMedGoogle Scholar
  118. Stillman, B. N., Hsu, D. K., Pang, M., Brewer, C. F., Johnson, P., Liu, F. T., and Baum, L. G. (2006). Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 176:778–789.PubMedGoogle Scholar
  119. Stowell, S. R., Karmakar, S., Stowell, C. J., Dias-Baruffi, M., McEver, R. P., and Cummings, R. D. (2007). Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109:219–227.PubMedCrossRefGoogle Scholar
  120. Sugimoto, N., Oida, T., Hirota, K., Nakamura, K., Nomura, T., Uchiyama, T., and Sakaguchi, S. (2006). Foxp3-dependent and -independent molecules specific for CD25^+ CD4^+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol 18:1197–1209.PubMedCrossRefGoogle Scholar
  121. Swarte, V. V., Mebius, R. E., Joziasse, D. H., Van den Eijnden, D. H., and Kraal, G. (1998). Lymphocyte triggering via L-selectin leads to enhanced galectin-3-mediated binding to dendritic cells. Eur J Immunol 28:2864–2871.PubMedCrossRefGoogle Scholar
  122. Takenaka, Y., Fukumori, T., Yoshii, T., Oka, N., Inohara, H., Kim, H. R., Bresalier, R. S., and Raz, A. (2004). Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol 24:4395–4406.PubMedCrossRefGoogle Scholar
  123. Tejler, J., Tullberg, E., Frejd, T., Leffler, H., and Nilsson, U. J. (2006). Synthesis of multivalent lactose derivatives by 1,2-dipolar cycloadditions: selective galectin-1 inhibition. Carbohydr Res 341:1353–1362.PubMedCrossRefGoogle Scholar
  124. Thijssen, V. L., Postel, R., Brandwijk, R. J., Dings, R. P., Nesmelova, I., Satijn, S., Verhofstad, N., Nakabeppu, Y., Baum, L. G., Bakkers, J, Mayo, K. H., Poirier, F., and Griffioen, A. W. (2006). Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy, Proc Natl Acad Sci USA, 103:15975–15980.PubMedCrossRefGoogle Scholar
  125. Tinari, N., Kuwabara, I., Huflejt, M. E., Shen, P. F., Iacobelli, S., and Liu, F. T. (2001). Glycoprotein 90K/Mac-2BP interacts with galectin-1 and mediates galectin-1-induced cell aggregation. Int J Cancer 91:167–172.PubMedCrossRefGoogle Scholar
  126. Toscano, M. A., Commodaro, A. G., Bianco, G. A., Ilarregui, J. M., Liberman, A., Serra, H. M., Hirabayashi, J., Rizzo, L. V., and Rabinovich, G. A. (2006). Galectin-1 suppresses autoimmune retinal disease by promoting concomitant T helper (Th)2- and T regulatory mediated anti-inflammatory responses. J Immunol 176:6323–6332.PubMedGoogle Scholar
  127. Van den Brule, F., Califice, S., and Castronovo, V. (2004). Expression of galectins in cancer: a critical review. Glycoconj J 19:537–542.PubMedCrossRefGoogle Scholar
  128. Van den Brule, F. A., Liu, F. T., and Castronovo, V. (1998). Transglutaminase-mediated oligomerization of galectin-3 modulates human melanoma cell interactions with laminin. Cell Adhes Commun 5:425–435.PubMedCrossRefGoogle Scholar
  129. Van der Leij, J., van den Berg, A., Harms, G., Eschbach, H., Vos, H., Zwiers, P., van Weeghel, R., Groen, H., Poppema, S., Visser, L. (2007). Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol Immunol 44:506–513.PubMedCrossRefGoogle Scholar
  130. Vespa, G. N., Lewis, L. A., Kozak, K. R., Moran, M., Nguyen, J. T., Baum, L. G., and Miceli, M. C. (1999). Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibits IL-2 production and proliferation. J Immunol 162:799–806.PubMedGoogle Scholar
  131. Walzel, H., Blach, M., Hirabayashi, J., Kasai, K. I., and Brock, J. (2000). Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells. Glycobiology 10:131–150.PubMedCrossRefGoogle Scholar
  132. Wang, J. L., Gray, R. M., Haudek, K. C., and Patterson, R. J. (2004). Nucleocytoplasmic lectins. Biochim Biophys Acta 1673:75–93.PubMedGoogle Scholar
  133. Yamaoka, A., Kuwabara, I., Frigeri, L. G., and Liu, F. T. (1995). A human lectin, galectin-3 (UPvarepsilonBP/Mac-2), stimulates superoxide production by neutrophils. J Immunol 154:3479–3487.PubMedGoogle Scholar
  134. Yang, R. Y., Hsu, D. K., and Liu, F. T. (1996). Expression of galectin-3 modulates T cell growth and apoptosis. Proc Natl Acad Sci USA 93:6737–6742.PubMedCrossRefGoogle Scholar
  135. Yoshii, T., Fukumori, T., Honjo, Y., Inohara, H., Kim, H. R., and Raz, A. (2002). Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem 277:6852–6857.PubMedCrossRefGoogle Scholar
  136. Yu, F., Finley, R. L., Jr, Raz, A., and Kim, H. R. (2002). Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem 277:15819–15827.PubMedCrossRefGoogle Scholar
  137. Zacarias Fluck, M. F., Rico, M. J., Gervasoni, S. I., Ilarregui, J. M., Toscano, M. A., Rabinovich, G. A., and Scharovsky, O. G. (2007). Low-dose cyclophosphamide modulates galectin-1 expression and function in an experimental rat lymphoma model. Cancer Immunol Immunother 56:237–248.PubMedCrossRefGoogle Scholar
  138. Zhu, W. Q., and Ochieng, J. (2001). Rapid release of intracellular galectin-3 from breast carcinoma cells by fetuin. Cancer Res 61:1869–1873.PubMedGoogle Scholar
  139. Zuberi, R. I., Frigeri, L. G., and Liu, F. T. (1994). Activation of rat basophilic leukemia cells by UPvarepsilonBP, an IgE- binding endogenous lectin. Cell Immunol 156:1–12.PubMedCrossRefGoogle Scholar
  140. Zuberi, R. I., Hsu, D. K., Kalayci, O., Chen, H. Y., Sheldon, H. K., Yu, L., Apgar, J. R., Kawakami, T., Lilly, C. M., and Liu, F. T. (2004). Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 165:2045–2053.PubMedGoogle Scholar
  141. Zubieta, M. R., Furman, D., Barrio, M., Bravo, A. I., Domenichini, E., and Mordoh, J. (2006). Galectin-3 expression correlates with apoptosis of tumor-associated lymphocytes in human melanoma biopsies. Am J Pathol 168:1666–1675.PubMedCrossRefGoogle Scholar
  142. Zuñiga, E., Rabinovich, G. A, Iglesias, M. M, Gruppi, A. (2001). Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J Leukoc Biol 70:73–79.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gabriel A. Rabinovich
    • 1
  • Fu-Tong Liu
  1. 1.Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de ArgentinaArgentina

Personalised recommendations