Advertisement

Arginine Availability Regulates T-Cell Function in Cancer

  • Paulo C. Rodríguez
  • Augusto C. Ochoa

Keywords

Nitric Oxide Arginase Activity Cationic Amino Acid Amino Acid Deprivation Myeloid Suppressor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberola, V., Gonzalez-Molina, A., Trenor, A., San Martin, B., Lluch, A., Palau, F., Marin, J., and Garcia-Conde, F. J. (1985). Mechanism of suppression of the depressed lymphocyte response in lung cancer patients. Allergol Immunopathol (Madr) 13, 213–219.Google Scholar
  2. Albina, J. E., Caldwell, M. D., Henry, W. L., Jr, and Mills, C. D. (1989). Regulation of macrophage functions by l-arginine. J Exp Med 169, 1021–1029.PubMedCrossRefGoogle Scholar
  3. Aulak, K. S., Liu, J., Wu, J., Hyatt, S. L., Puppi, M., Henning, S. J., and Hatzoglou, M. (1996). Molecular sites of regulation of expression of the rat cationic amino acid transporter gene. J Biol Chem 271, 29799–29806.PubMedCrossRefGoogle Scholar
  4. Aulak, K. S., Mishra, R., Zhou, L., Hyatt, S. L., de Jonge, W., Lamers, W., Snider, M., and Hatzoglou, M. (1999). Post-transcriptional regulation of the arginine transporter Cat-1 by amino acid availability. J Biol Chem 274, 30424–30432.PubMedCrossRefGoogle Scholar
  5. Barbul, A. (1990). Arginine and immune function. Nutrition 6, 53–58.PubMedGoogle Scholar
  6. Barbul, A., Rettura, G., Levenson, S. M., and Seifter, E. (1977). Arginine: a thymotropic and wound-healing promoting agent. Surg Forum 28, 101–103.PubMedGoogle Scholar
  7. Bernard, A. C., Mistry, S. K., Morris, S. M., Jr, O’Brien, W. E., Tsuei, B. J., Maley, M. E., Shirley, L. A., Kearney, P. A., Boulanger, B. R., and Ochoa, J. B. (2001). Alterations in arginine metabolic enzymes in trauma. Shock 15, 215–219.PubMedGoogle Scholar
  8. Bhatnagar, R. M., Zabriskie, J. B., and Rausen, A. R. (1975). Cellular immune responses to methylcholanthrene-induced fibrosarcoma in BALB/c mice. J Exp Med 142, 839–855.PubMedCrossRefGoogle Scholar
  9. Bingisser, R. M., Tilbrook, P. A., Holt, P. G., and Kees, U. R. (1998). Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160, 5729–5734.PubMedGoogle Scholar
  10. Bluestone, J. A., and Lopez, C. (1979). Suppression of the immune response in tumor-bearing mice. II. Characterization of adherent suppressor cells. J Natl Cancer Inst 63, 1221–1227.PubMedGoogle Scholar
  11. Brito, C., Naviliat, M., Tiscornia, A. C., Vuillier, F., Gualco, G., Dighiero, G., Radi, R., and Cayota, A. M. (1999). Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 162, 3356–3366.PubMedGoogle Scholar
  12. Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., Restifo, N. P., and Zanovello, P. (2000). Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96, 3838–3846.PubMedGoogle Scholar
  13. Bronte, V., Serafini, P., De Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D. M., Staib, C., Lowel, M., Sutter, G., Colombo, M. P., and Zanovello, P. (2003a). IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170, 270–278.Google Scholar
  14. Bronte, V., Serafini, P., Mazzoni, A., Segal, D. M., and Zanovello, P. (2003b). l-Arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24, 302–306.CrossRefGoogle Scholar
  15. Bronte, V., and Zanovello, P. (2005). Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5, 641–654.PubMedCrossRefGoogle Scholar
  16. Bruhat, A., Jousse, C., and Fafournoux, P. (1999). Amino acid limitation regulates gene expression. Proc Nutr Soc 58, 625–632.PubMedGoogle Scholar
  17. Bruhat, A., Jousse, C., Wang, X. Z., Ron, D., Ferrara, M., and Fafournoux, P. (1997). Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post- transcriptional levels. J Biol Chem 272, 17588–17593.PubMedCrossRefGoogle Scholar
  18. Catalona, W. J., Smolev, J. K., and Harty, J. I. (1975). Prognostic value of host immunocompetence in urologic cancer patients. J Urol 114, 922–926.PubMedGoogle Scholar
  19. Chang, C. I., Liao, J. C., and Kuo, L. (2001). Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res 61, 1100–1106.PubMedGoogle Scholar
  20. Closs, E. I. (2002). Expression, regulation and function of carrier proteins for cationic amino acids. Curr Opin Nephrol Hypertens 11, 99–107.PubMedCrossRefGoogle Scholar
  21. Coley, W. B. (1893). The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases Am J Med Sci 1893 May, 105:487–511.CrossRefGoogle Scholar
  22. Duhe, R. J., Evans, G. A., Erwin, R. A., Kirken, R. A., Cox, G. W., and Farrar, W. L. (1998). Nitric oxide and thiol redox regulation of Janus kinase activity. Proc Natl Acad Sci USA 95, 126–131.PubMedCrossRefGoogle Scholar
  23. Dye, E. S., and North, R. J. (1984). Specificity of the T cells that mediate and suppress adoptive immunotherapy of established tumors. J Leukoc Biol 36, 27–37.PubMedGoogle Scholar
  24. Eggers, A. E., and Wunderlich, J. R. (1975). Suppressor cells in tumor-bearing mice capable of nonspecific blocking of in vitro immunization against transplant antigens. J Immunol 114, 1554–1556.PubMedGoogle Scholar
  25. El-Gayar, S., Thuring-Nahler, H., Pfeilschifter, J., Rollinghoff, M., and Bogdan, C. (2003). Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J Immunol 171, 4561–4568.PubMedGoogle Scholar
  26. Fafournoux, P., Bruhat, A., and Jousse, C. (2000). Amino acid regulation of gene expression. Biochem J 351, 1–12.PubMedCrossRefGoogle Scholar
  27. Fefer, A., McCoy, J. L., Perk, K., and Glynn, J. P. (1968). Immunologic, virologic, and pathologic studies of regression of autochthonous Moloney sarcoma virus-induced tumors in mice. Cancer Res 28, 1577–1585.PubMedGoogle Scholar
  28. Fernbach, B. R., Kirchner, H., Bonnard, G. D., and Herberman, R. B. (1976). Suppression of mixed lymphocyte response in mice bearing primary tumors induced by murine sarcoma virus. Transplantation 21, 381–386.PubMedCrossRefGoogle Scholar
  29. Fisher, R. I., DeVita, V. T., Jr, Bostick, F., Vanhaelen, C., Howser, D. M., Hubbard, S. M., and Young, R. C. (1980). Persistent immunologic abnormalities in long-term survivors of advanced Hodgkin’s disease. Ann Intern Med 92, 595–599.PubMedGoogle Scholar
  30. Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4, 941–952.PubMedCrossRefGoogle Scholar
  31. Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., and Carbone, D. P. (1998). Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166.PubMedGoogle Scholar
  32. Gazzola, G. C., Franchi, R., Saibene, V., Ronchi, P., and Guidotti, G. G. (1972). Regulation of amino acid transport in chick embryo heart cells. I. Adaptive system of mediation for neutral amino acids. Biochim Biophys Acta 266, 407–421.PubMedCrossRefGoogle Scholar
  33. Gorczynski, R. M., and Knight, R. A. (1975). Immunity to murine sarcoma virus induced tumours. IV. Direct cellular cytolysis of 51Cr labelled target cells in vitro and analysis of blocking factors which modulate cytotoxicity. Br J Cancer 31, 387–404.PubMedGoogle Scholar
  34. Greenberg, P. D., Kern, D. E., and Cheever, M. A. (1985). Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2- T cells. Tumor eradication does not require participation of cytotoxic T cells. J Exp Med 161, 1122–1134.PubMedCrossRefGoogle Scholar
  35. Guerrini, L., Gong, S. S., Mangasarian, K., and Basilico, C. (1993). Cis- and trans-acting elements involved in amino acid regulation of asparagine synthetase gene expression. Mol Cell Biol 13, 3202–3212.PubMedGoogle Scholar
  36. Hellstrom, I., Sjogren, H. O., Warner, G., and Hellstrom, K. E. (1971). Blocking of cell-mediated tumor immunity by sera from patients with growing neoplasms. Int J Cancer 7, 226–237.PubMedCrossRefGoogle Scholar
  37. Hellstrom, K. E., Hellstrom, I., and Nelson, K. (1983). Antigen-specific suppressor (“blocking”) factors in tumor immunity. Biomembranes 11, 365–388.PubMedGoogle Scholar
  38. Hersh, E. M., and Oppenheim, J. J. (1965). Impaired in vitro lymphocyte transformation in Hodgkin’s disease. N Engl J Med 273, 1006–1012.PubMedCrossRefGoogle Scholar
  39. Hesse, M., Modolell, M., La Flamme, A. C., Schito, M., Fuentes, J. M., Cheever, A. W., Pearce, E. J., and Wynn, T. A. (2001). Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of l-arginine metabolism. J Immunol 167, 6533–6544.PubMedGoogle Scholar
  40. Hibbs, J. B., Jr, Taintor, R. R., and Vavrin, Z. (1987). Macrophage cytotoxicity: role for l-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235, 473–476.PubMedCrossRefGoogle Scholar
  41. Hyatt, S. L., Aulak, K. S., Malandro, M., Kilberg, M. S., and Hatzoglou, M. (1997). Adaptive regulation of the cationic amino acid transporter-1 (Cat-1) in Fao cells. J Biol Chem 272, 19951–19957.PubMedCrossRefGoogle Scholar
  42. Iwahashi, M., Tanimura, H., Yamaue, H., Tsunoda, T., Tani, M., Tamai, M., Noguchi, K., and Hotta, T. (1992). Defective autologous mixed lymphocyte reaction (AMLR) and killer activity generated in the AMLR in cancer patients. Int J Cancer 51, 67–71.PubMedCrossRefGoogle Scholar
  43. Jaroslow, B. N., Suhrbier, K. M., Fry, R. J., and Tyler, S. A. (1975). In vitro suppression of immunocompetent cells by lymphomas from aging mice. J Natl Cancer Inst 54, 1427–1432.PubMedGoogle Scholar
  44. Jerrells, T. R., Dean, J. H., Richardson, G. L., McCoy, J. L., and Herberman, R. B. (1978). Role of suppressor cells in depression of in vitro lymphoproliferative responses of lung cancer and breast cancer patients. J Natl Cancer Inst 61, 1001–1009.PubMedGoogle Scholar
  45. Jousse, C., Bruhat, A., Ferrara, M., and Fafournoux, P. (2000). Evidence for multiple signaling pathways in the regulation of gene expression by amino acids in human cell lines. J Nutr 130, 1555–1560.PubMedGoogle Scholar
  46. Jousse, C., Bruhat, A., Harding, H. P., Ferrara, M., Ron, D., and Fafournoux, P. (1999). Amino acid limitation regulates CHOP expression through a specific pathway independent of the unfolded protein response. FEBS Lett 448, 211–216.PubMedCrossRefGoogle Scholar
  47. Kirchner, H., Glaser, M., Holden, H. T., Fernbach, B. R., and Herberman, R. B. (1976). Suppressor cells in tumor bearing mice and rats. Biomedicine 24, 371–374.PubMedGoogle Scholar
  48. Kolenko, V., Rayman, P., Roy, B., Cathcart, M. K., O’Shea, J., Tubbs, R., Rybicki, L., Bukowski, R., and Finke, J. (1999). Downregulation of JAK3 protein levels in T lymphocytes by prostaglandin E2 and other cyclic adenosine monophosphate-elevating agents: impact on interleukin-2 receptor signaling pathway. Blood 93, 2308–2318.PubMedGoogle Scholar
  49. Lee, J., Ryu, H., Ferrante, R. J., Morris, S. M., Jr, and Ratan, R. R. (2003). Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA 100, 4843–4848.PubMedCrossRefGoogle Scholar
  50. Li, X., Liu, J., Park, J. K., Hamilton, T. A., Rayman, P., Klein, E., Edinger, M., Tubbs, R., Bukowski, R., and Finke, J. (1994). T cells from renal cell carcinoma patients exhibit an abnormal pattern of kappa B-specific DNA-binding activity: a preliminary report. Cancer Res 54, 5424–5429.PubMedGoogle Scholar
  51. Loeffler, C. M. (1991). Antitumor effects of interleukin 2 liposomes and anti-CD3-stimulated T-cells against murine MCA-38 hepatic metastasis. Cancer Res 51, 2127–2132.PubMedGoogle Scholar
  52. Louis, C. A., Mody, V., Henry, W. L., Jr, Reichner, J. S., and Albina, J. E. (1999). Regulation of arginase isoforms I and II by IL-4 in cultured murine peritoneal macrophages. Am J Physiol 276, R237–R242.PubMedGoogle Scholar
  53. Makarenkova, V. P., Bansal, V., Matta, B. M., Perez, L. A., and Ochoa, J. B. (2006). CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol 176, 2085–2094.PubMedGoogle Scholar
  54. Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., Zanovello, P., and Segal, D. M. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168, 689–695.PubMedGoogle Scholar
  55. Miescher, S., Stoeck, M., Qiao, L., Barras, C., Barrelet, L., and von Fliedner, V. (1988). Preferential clonogenic deficit of CD8-positive T-lymphocytes infiltrating human solid tumors. Cancer Res 48, 6992–6998.PubMedGoogle Scholar
  56. Miescher, S., Whiteside, T. L., Carrel, S., and von Fliedner, V. (1986). Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J Immunol 136, 1899–1907.PubMedGoogle Scholar
  57. Mills, C. D., and North, R. J. (1985). Ly-1+2- suppressor T cells inhibit the expression of passively transferred antitumor immunity by suppressing the generation of cytolytic T cells. Transplantation 39, 202–208.PubMedCrossRefGoogle Scholar
  58. Mizoguchi, H., O’Shea, J. J., Longo, D. L., Loeffler, C. M., McVicar, D. W., and Ochoa, A. C. (1992). Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258, 1795–1798.PubMedCrossRefGoogle Scholar
  59. Munder, M., Eichmann, K., and Modolell, M. (1998). Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160, 5347–5354.PubMedGoogle Scholar
  60. Munder, M., Eichmann, K., Moran, J. M., Centeno, F., Soler, G., and Modolell, M. (1999). Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 163, 3771–3777.PubMedGoogle Scholar
  61. Munn, D. H., Sharma, M. D., Baban, B., Harding, H. P., Zhang, Y., Ron, D., and Mellor, A. L. (2005). GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642.PubMedCrossRefGoogle Scholar
  62. North, R. J. (1985). Down-regulation of the antitumor immune response. Adv Cancer Res 45, 1–43.PubMedCrossRefGoogle Scholar
  63. North, R. J., and Bursuker, I. (1984). Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells. J Exp Med 159, 1295–1311.PubMedCrossRefGoogle Scholar
  64. Ochoa, J. B., Bernard, A. C., Mistry, S. K., Morris, S. M., Jr, Figert, P. L., Maley, M. E., Tsuei, B. J., Boulanger, B. R., and Kearney, P. A. (2000). Trauma increases extrahepatic arginase activity. Surgery 127, 419–426.PubMedCrossRefGoogle Scholar
  65. Parhar, R. S., and Lala, P. K. (1987). Amelioration of B16F10 melanoma lung metastasis in mice by a combination therapy with indomethacin and interleukin 2. J Exp Med 165, 14–28.PubMedCrossRefGoogle Scholar
  66. Pauleau, A. L., Rutschman, R., Lang, R., Pernis, A., Watowich, S. S., and Murray, P. J. (2004). Enhancer-mediated control of macrophage-specific arginase I expression. J Immunol 172, 7565–7573.PubMedGoogle Scholar
  67. Prehn, R. T., and Main, J. M. (1957). Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18, 759–778.Google Scholar
  68. Quillard, M., Husson, A., and Lavoinne, A. (1996). Glutamine increases argininosuccinate synthetase mRNA levels in rat hepatocytes. The involvement of cell swelling. Eur J Biochem 236, 56–59.PubMedCrossRefGoogle Scholar
  69. Rodriguez, P. C., Hernandez, C. P., Quiceno, D., Dubinett, S. M., Zabaleta, J., Ochoa, J. B., Gilbert, J., and Ochoa, A. C. (2005). Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202, 931–939.PubMedCrossRefGoogle Scholar
  70. Rodriguez, P. C., Quiceno, D. G., and Ochoa, A. C. (2007). l-Arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573.PubMedCrossRefGoogle Scholar
  71. Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., Delgado, A., Correa, P., Brayer, J., Sotomayor, E. M., Antonia, S., Ochoa, J. B., and Ochoa, A. C. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64, 5839–5849.PubMedCrossRefGoogle Scholar
  72. Rodriguez, P. C., Zea, A. H., Culotta, K. S., Zabaleta, J., Ochoa, J. B., and Ochoa, A. C. (2002). Regulation of T cell receptor CD3 zeta chain expression by l-arginine. J Biol Chem 277, 21123–21129.PubMedCrossRefGoogle Scholar
  73. Rodriguez, P. C., Zea, A. H., DeSalvo, J., Culotta, K. S., Zabaleta, J., Quiceno, D. G., Ochoa, J. B., and Ochoa, A. C. (2003). l-Arginine consumption by macrophages modulates the expression of CD3zeta chain in T lymphocytes. J Immunol 171, 1232–1239.PubMedGoogle Scholar
  74. Ross, J. (1996). Control of messenger RNA stability in higher eukaryotes. Trends Genet 12, 171–175.Google Scholar
  75. Rutschman, R., Lang, R., Hesse, M., Ihle, J. N., Wynn, T. A., and Murray, P. J. (2001). Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J Immunol 166, 2173–2177.PubMedGoogle Scholar
  76. Sachs, A. B. (1993). Messenger RNA degradation in eukaryotes. Cell 74, 413–421.PubMedCrossRefGoogle Scholar
  77. Saini, K. S., Summerhayes, I. C., and Thomas, P. (1990). Molecular events regulating messenger RNA stability in eukaryotes. Mol Cell Biochem 96, 15–23.PubMedCrossRefGoogle Scholar
  78. Saio, M., Radoja, S., Marino, M., and Frey, A. B. (2001). Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol 167, 5583–5593.PubMedGoogle Scholar
  79. Salimuddin, Nagasaki, A., Gotoh, T., Isobe, H., and Mori, M. (1999). Regulation of the genes for arginase isoforms and related enzymes in mouse macrophages by lipopolysaccharide. Am J Physiol 277, E110–E117.PubMedGoogle Scholar
  80. Schmielau, J., and Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61, 4756–4760.PubMedGoogle Scholar
  81. Singh, R., Pervin, S., Karimi, A., Cederbaum, S., and Chaudhuri, G. (2000). Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-l- arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res 60, 3305–3312.PubMedGoogle Scholar
  82. Sonoki, T., Nagasaki, A., Gotoh, T., Takiguchi, M., Takeya, M., Matsuzaki, H., and Mori, M. (1997). Coinduction of nitric-oxide synthase and arginase I in cultured rat peritoneal macrophages and rat tissues in vivo by lipopolysaccharide. J Biol Chem 272, 3689–3693.PubMedCrossRefGoogle Scholar
  83. Suer, G. S., Yoruk, Y., Cakir, E., Yorulmaz, F., and Gulen, S. (1999). Arginase and ornithine, as markers in human non-small cell lung carcinoma. Cancer Biochem Biophys 17, 125–131.Google Scholar
  84. Taheri, F., Ochoa, J. B., Faghiri, Z., Culotta, K., Park, H. J., Lan, M. S., Zea, A. H., and Ochoa, A. C. (2001). l-Arginine regulates the expression of the T-cell receptor zeta chain (CD3zeta) in Jurkat cells. Clin Cancer Res 7, 958s–965s.PubMedGoogle Scholar
  85. White, M. F. (1985). The transport of cationic amino acids across the plasma membrane of mammalian cells. Biochim Biophys Acta 822, 355–374.PubMedGoogle Scholar
  86. Whiteside, T. L., Miescher, S., Moretta, L., and von Fliedner, V. (1988). Cloning and proliferating precursor frequencies of tumor-infiltrating lymphocytes from human solid tumors. Transplant Proc 20, 342–343.PubMedGoogle Scholar
  87. Whiteside, T. L., and Rabinowich, H. (1998). The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol Immunother 46, 175–184.PubMedCrossRefGoogle Scholar
  88. Wu, G., and Morris, S. M., Jr (1998). Arginine metabolism: nitric oxide and beyond. Biochem J 336 (Pt 1), 1–17.PubMedGoogle Scholar
  89. Xia, Y., and Zweier, J. L. (1997). Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA 94, 6954–6958.PubMedCrossRefGoogle Scholar
  90. Young, M. R., Aquino, S., and Young, M. E. (1989). Differential induction of hematopoiesis and immune suppressor cells in the bone marrow versus in the spleen by Lewis lung carcinoma variants. J Leukoc Biol 45, 262–273.PubMedGoogle Scholar
  91. Young, M. R., Newby, M., and Wepsic, H. T. (1987). Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res 47, 100–105.PubMedGoogle Scholar
  92. Zabaleta, J., McGee, D. J., Zea, A. H., Hernandez, C. P., Rodriguez, P. C., Sierra, R. A., Correa, P., and Ochoa, A. C. (2004). Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta). J Immunol 173, 586–593.PubMedGoogle Scholar
  93. Zea, A. H., Rodriguez, P. C., Atkins, M. B., Hernandez, C., Signoretti, S., Zabaleta, J., McDermott, D., Quiceno, D., Youmans, A., O’Neill, A., Mier, J., and Ochoa, A. C. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65, 3044–3048.PubMedGoogle Scholar
  94. Zea, A. H., Rodriguez, P. C., Culotta, K. S., Hernandez, C. P., DeSalvo, J., Ochoa, J. B., Park, H. J., Zabaleta, J., and Ochoa, A. C. (2004). l-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol 232, 21–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paulo C. Rodríguez
  • Augusto C. Ochoa
    • 1
  1. 1.Stanley S. Scott Cancer Center, Louisiana State University Health Sciences CenterNew OrleansUSA

Personalised recommendations