Skip to main content

The Origin of Estrogen Receptor α-Positive and α-Negative Breast Cancer

  • Chapter
Hormonal Carcinogenesis V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 617))

  • 2427 Accesses

Recent advances in global gene expression analyses have led to a classification of breast tumours based on their intrinsic molecular signature rather than histological appearance, or presence/absence of one particular molecular marker. In a series of seminal papers, Perou and Sorlie working in Botstein’s laboratory in Stanford delineated four basic molecular sub-types of breast cancer (BC) that have been generally confirmed and corroborated by subsequent studies (1–5). The four major sub-types, termed basal, HER2 and luminal types A and B, have been demonstrated to engender different prognostic outcomes (6). This is partly explained by their heterogeneous expression of the ERα, with absent or low levels in the first two sub-types and moderate or strong expression in the latter two sub-types. In this chapter, we review what is known about normal breast epithelial stem and progenitor cells, expression of ERα and how this informs us about the likely cellular origins of these cancer sub-types and their ERα status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fan C, Oh DS, Wessels L, et al. (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355(6):560–569.

    Article  PubMed  CAS  Google Scholar 

  2. Hu Z, Fan C, Oh DS, et al. (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genom 7:96.

    Article  CAS  Google Scholar 

  3. Oh DS, Troester MA, Usary J, et al. (2006) Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 24(11):1656–1664.

    Article  PubMed  CAS  Google Scholar 

  4. Perou CM, Sorlie T, Eisen MB, et al. (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752.

    Article  PubMed  CAS  Google Scholar 

  5. Sorlie T, Perou CM, Tibshirani R, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874.

    Article  PubMed  CAS  Google Scholar 

  6. Sorlie T, Tibshirani R, Parker J, et al. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423.

    Article  PubMed  CAS  Google Scholar 

  7. Reya T, Morrison SJ, Clarke MF, et al. (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111.

    Article  PubMed  CAS  Google Scholar 

  8. Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev Cancer 3(11):832–844.

    Article  PubMed  CAS  Google Scholar 

  9. Clarke RB, Anderson E, Howell A, et al. (2003) Regulation of human breast epithelial stem cells. Cell Prolif 36 (Suppl 1):45–58.

    Article  PubMed  CAS  Google Scholar 

  10. Dontu G, Al-Hajj M, Abdallah WM, et al. (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36 (Suppl 1):59–72.

    Article  PubMed  CAS  Google Scholar 

  11. Smith GH, Boulanger CA (2003) Mammary epithelial stem cells: transplantation and self-renewal analysis. Cell Prolif 36 (Suppl 1):3–15.

    Article  PubMed  CAS  Google Scholar 

  12. Daniel CW, Smith GH (1999) The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 4(1):3–8.

    Article  PubMed  CAS  Google Scholar 

  13. Daniel CW, Deome KB (1965) Growth of mouse mammary glands in vivo after monolayer culture. Science 149:634–636.

    Article  PubMed  CAS  Google Scholar 

  14. Deome KB, Faulkin LJ Jr, Bern HA, et al. (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19(5):515–520.

    PubMed  CAS  Google Scholar 

  15. Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125(10):1921–1930.

    PubMed  CAS  Google Scholar 

  16. Shackleton M, Vaillant F, Simpson KJ, et al. (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88.

    Article  PubMed  CAS  Google Scholar 

  17. Stingl J, Eirew P, Ricketson I, et al. (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993–997.

    PubMed  CAS  Google Scholar 

  18. Clarke RB, Spence K, Anderson E, et al. (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277(2):443–456.

    Article  PubMed  CAS  Google Scholar 

  19. Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132(4):681–687.

    Article  PubMed  CAS  Google Scholar 

  20. Welm BE, Tepera SB, Venezia T, et al. (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245(1):42–56.

    Article  PubMed  CAS  Google Scholar 

  21. Zeps N, Bentel JM, Papadimitriou JM, et al. (1998) Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation 62(5):221–226.

    Article  PubMed  CAS  Google Scholar 

  22. Goodell MA, Rosenzweig M, Kim H, et al. (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3(12):1337–1345.

    Article  PubMed  CAS  Google Scholar 

  23. Smalley MJ, Clarke RB (2005) The mammary gland “side population”: a putative stem/progenitor cell marker? J Mammary Gland Biol Neoplasia 10 (1):37–47.

    Article  PubMed  Google Scholar 

  24. Alvi AJ, Clayton H, Joshi C, et al. (2003) Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 5(1):R1–R8.

    Article  PubMed  Google Scholar 

  25. Clayton H, Titley I, Vivanco M (2004) Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 297(2):444–460.

    Article  PubMed  CAS  Google Scholar 

  26. Asselin-Labat ML, Shackleton M, Stingl J, et al. (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98(14):1011–1014.

    PubMed  CAS  Google Scholar 

  27. Anderson WF, Matsuno R (2006) Breast cancer heterogeneity: a mixture of at least two main types? J Natl Cancer Inst 98(14):948–951.

    Article  PubMed  CAS  Google Scholar 

  28. Keeling JW, Ozer E, King G, Walker F (2000) Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. J Pathol 191(4):449–451.

    Article  PubMed  CAS  Google Scholar 

  29. Capuco AV, Ellis S, Wood DL, et al. (2002) Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue Cell 34(3):143–154.

    Article  PubMed  CAS  Google Scholar 

  30. Clarke RB, Howell A, Potten CS, et al. (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57(22):4987–4991.

    PubMed  CAS  Google Scholar 

  31. Russo J, Ao X, Grill C, et al. (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53(3):217–227.

    Article  PubMed  CAS  Google Scholar 

  32. Seagroves TN, Lydon JP, Hovey RC, et al. (2000) C/EBPbeta (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol Endocrinol 14(3):359–368.

    Article  PubMed  CAS  Google Scholar 

  33. Booth BW, Smith GH (2006) Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res 8(4):R49.

    Article  PubMed  CAS  Google Scholar 

  34. Dimitrakakis C, Zhou J, Wang J, et al. (2006) Co-expression of estrogen receptor-alpha and targets of estrogen receptor action in proliferating monkey mammary epithelial cells. Breast Cancer Res 8(1):R10.

    Article  PubMed  CAS  Google Scholar 

  35. Shoker BS, Jarvis C, Clarke RB, et al. (1999) Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am J Pathol 155(6):1811–1815.

    PubMed  CAS  Google Scholar 

  36. Laakso M, Tanner M, Nilsson J, et al. (2006) Basoluminal carcinoma: a new biologically and prognostically distinct entity between basal and luminal breast cancer. Clin Cancer Res 12(14 Pt 1):4185–4191.

    Article  PubMed  CAS  Google Scholar 

  37. Farmer P, Bonnefoi H, Becette V, et al. (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24(29):4660–4671.

    Article  PubMed  CAS  Google Scholar 

  38. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988.

    Article  PubMed  CAS  Google Scholar 

  39. Locke M, Heywood M, Fawell S, et al. (2005) Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 65(19):8944–8950.

    Article  PubMed  CAS  Google Scholar 

  40. Ponti D, Costa A, Zaffaroni N, et al. (2005) Isolation and in vitro propagation f tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511.

    Article  PubMed  CAS  Google Scholar 

  41. Behbod F, Rosen JM (2005) Will cancer stem cells provide new therapeutic targets? Carcinogenesis 26(4):703–711.

    Article  PubMed  CAS  Google Scholar 

  42. Kalirai H, Clarke RB (2006) Human breast epithelial stem cells and their regulation. J Pathol 208(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  43. Liu S, Dontu G, Wicha MS (2005) Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7(3):86–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Clarke, R.B., Sims, A.H., Howell, A. (2008). The Origin of Estrogen Receptor α-Positive and α-Negative Breast Cancer. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_7

Download citation

Publish with us

Policies and ethics