Gene Expression of 17β-Estradiol-metabolizing Isozymes: Comparison of Normal Human Mammary Gland to Normal Human Liver and to Cultured Human Breast Adenocarcinoma Cells

  • Leane Lehmann
  • Jörg Wagner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 617)


Metabolic activation of 17β-estradiol (E2) to catechols and quinones together with lack of deactivation constitute risk factors in human breast carcinogenesis. E2-catchols are generated by cytochrome P450-dependent monooxygenases (CYPs). Deactivation of E2, E2-catechols, and E2-quinones is mediated by UDP-glucuronosyltransferase (UGT), sulfotransferase (SULT), catechol-O-methyltransferase (COMT), glutathione-S-transferase (GST), and NADPH-quinoneoxidoreductase (QR) isozymes, respectively. The aim of the present study was to quantify mRNA levels of E2-metabolizing isozymes expressed in MCF-7 cells cultured in the presence/absence of steroids by reverse transcription/competitive PCR in relation to the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase and compare them with expression levels in normal human mammary gland (MG) and liver tissue. CYP1A1, 1B1, SULT1A1, 1A2, membrane-bound and soluble COMT, GSTT1, QR1, and UGT2B7 were detected in both tissues and MCF-7 cells; however, most enzymes were expressed at least tenfold higher in liver. Yet, CYP1B1 was expressed as high in breast as in liver and UGTs were not detected in MCF-7 cells cultured with steroids. MCF-7 cells cultured steroidfree additionally expressed CYP1A2 as well as UGT1A4, 1A8, and 1A9. Normal human liver but not MG expressed CYP1A2, 3A4, UGT1A1, 1A3, 1A4, 1A9, and SULT2A1. UGT1A8 was only detected in MCF7 cells but was not found in human liver. Thus, our study provides a comprehensive overview of expression levels of E2-metabolizing enzymes in a popular in vitro model and in human tissues, which will contribute to the interpretation of in vitro studies concerning the activation/deactivation of E2.


Normal Human Liver Human Liver Tissue Human Mammary Gland Human Breast Adenocarcinoma Cell CYP1B1 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cavalieri E, Chakravarti D, Guttenplan J, et al. (2006) Catechol estrogen quinones as initiators of breast and other human cancers: Implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 1766(1): 63–78.PubMedGoogle Scholar
  2. 2.
    Henderson BE, Feigelson HS (2000) Hormonal carcinogenesis. Carcinogenesis 21: 427–433.PubMedCrossRefGoogle Scholar
  3. 3.
    Cavalieri E, Chakravarti D, Guttenplan J, et al. (2006) Catechol estrogen quinones as initiators of breast and other human cancers: Implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 1766: 63–78.PubMedGoogle Scholar
  4. 4.
    Spink DC, Spink BC, Cao JQ, et al. (1998) Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis 19: 291–298.PubMedCrossRefGoogle Scholar
  5. 5.
    Badawi AF, Cavalieri EL, Rogan EG (2001) Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16alpha-hydroxylation of 17beta-estradiol. Metabolism 50: 1001–1003.PubMedCrossRefGoogle Scholar
  6. 6.
    Turgeon D, Carrier JS, Levesque E, et al. (2001) Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members. Endocrinology 142: 778–787.PubMedCrossRefGoogle Scholar
  7. 7.
    Chouinard S, Tessier M, Vernouillet G, et al. (2006) Inactivation of the pure antiestrogen fulvestrant and other synthetic estrogen molecules by UDP-glucuronosyltransferase 1A enzymes expressed in breast tissue. Mol Pharmacol 69: 908–920.PubMedGoogle Scholar
  8. 8.
    Thibaudeau J, Lepine J, Tojcic J, et al. (2006) Characterization of common UGT1A8, UGT1A9, and UGT2B7 variants with different capacities to inactivate mutagenic 4-hydroxylated metabolites of estradiol and estrone. Cancer Res 66: 125–133.PubMedCrossRefGoogle Scholar
  9. 9.
    Guillemette C, Millikan RC, Newman B, et al. (2000) Genetic polymorphisms in uridine diphospho-glucuronosyltransferase 1A1 and association with breast cancer among African Americans. Cancer Res 60: 950–956.PubMedGoogle Scholar
  10. 10.
    Aust S, Obrist P, Klimpfinger M, et al. (2005) Altered expression of the hormone- and xenobiotic-metabolizing sulfotransferase enzymes 1A2 and 1C1 in malignant breast tissue. Int J Oncol 26: 1079–1085.PubMedGoogle Scholar
  11. 11.
    Nishiyama T, Ogura K, Nakano H, et al. (2002) Sulfation of environmental estrogens by cytosolic human sulfotransferases. Drug Metab Pharmacokinet 17: 221–228.PubMedCrossRefGoogle Scholar
  12. 12.
    Harris RM, Waring RH, Kirk CJ, et al. (2000) Sulfation of “estrogenic” alkylphenols and 17beta-estradiol by human platelet phenol sulfotransferases. J Biol Chem 275: 159–166.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang LQ, James MO (2005) Sulfotransferase 2A1 forms estradiol-17-sulfate and celecoxib switches the dominant product from estradiol-3-sulfate to estradiol-17-sulfate. J Steroid Biochem Mol Biol 96: 367–374.PubMedCrossRefGoogle Scholar
  14. 14.
    Ball P, Knuppen R (1980) Catecholoestrogens (2-and 4-hydroxyoestrogens): chemistry, biogenesis, metabolism, occurrence and physiological significance. Acta Endocrinol Suppl (Copenh) 232: 1–127.Google Scholar
  15. 15.
    Danson S, Ward TH, Butler J, et al. (2004) DT-diaphorase: a target for new anticancer drugs. Cancer Treat Rev 30: 437–449.PubMedCrossRefGoogle Scholar
  16. 16.
    Albin N, Massaad L, Toussaint C, et al. (1993) Main drug-metabolizing enzyme systems in human breast tumors and peritumoral tissues. Cancer Res 53: 3541–3546.PubMedGoogle Scholar
  17. 17.
    Dawling S, Hachey DL, Roodi N, et al. (2004) In vitro model of mammary estrogen metabolism: structural and kinetic differences between catechol estrogens 2- and 4-hydroxyestradiol. Chem Res Toxicol 17: 1258–1264.PubMedCrossRefGoogle Scholar
  18. 18.
    Aust S, Jaeger W, Klimpfinger M, et al. (2005) Biotransformation of melatonin in human breast cancer cell lines: role of sulfotransferase 1A1. J Pineal Res 39: 276–282.PubMedCrossRefGoogle Scholar
  19. 19.
    Montano MM, Bianco NR, Deng H, et al. (2005) Estrogen receptor regulation of quinone reductase in breast cancer: implications for estrogen-induced breast tumor growth and therapeutic uses of tamoxifen. Front Biosci 10: 1440–1461.PubMedCrossRefGoogle Scholar
  20. 20.
    Tenhunen J, Heikkila P, Alanko A, et al. (1999) Soluble and membrane-bound catechol-O-methyltransferase in normal and malignant mammary gland. Cancer Lett 144: 75–84.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Leane Lehmann
    • 1
  • Jörg Wagner
    • 2
  1. 1.Institute of Applied BiosciencesUniversity of KarlsruheKarlsruheGermany
  2. 2.Insitote of Applied Biosciences Section of Food Chemistry and ToxicologyUniversity of KarlsruheKarlsruheGermany

Personalised recommendations