Skip to main content

Stem Cells, Hormones, and Mammary Cancer

  • Chapter
Hormonal Carcinogenesis V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 617))

The incidence of breast cancer (BC) is influenced by age, genetics, ethnicity, diet, socioeconomic status, and reproductive history. The latter is the strongest and most reliable risk factor besides age and genetic susceptibility (1). Reproductive factors have been associated with risk for BC since the seventeenth century, when the disease was noted to be more prevalent among Catholic nuns. It is now a well-established fact that a full-term pregnancy early in life is associated with a long-term risk reduction for developing BC. A woman who has her first child after the age of 35 has approximately twice the risk of developing BC as a woman who has a child before age 20 (see current NCI Cancer Fact Sheet on Pregnancy and BC Risk). Despite this long-term reduction in BC risk in parous women, epidemiologists agreed at a recent NCI-sponsored workshop on “Early Reproductive Events and Breast Cancer” (http://nci.nih.gov/cancerinfo/ere) that each gestation increases temporarily the likelihood for developing BC (2). This transient increase in BC risk lasts for a few years after a full-term pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15:36–47.

    PubMed  CAS  Google Scholar 

  2. Lambe M, Hsieh C, Trichopoulos D, et al. (1994) Transient increase in the risk of breast cancer after giving birth. N Engl J Med 331:5–9.

    Article  PubMed  CAS  Google Scholar 

  3. Guzman RC, Yang J, Rajkumar L, et al. (1999) Hormonal prevention of breast cancer: mimicking the protective effect of pregnancy. Proc Natl Acad Sci USA 96:2520–2525.

    Article  PubMed  CAS  Google Scholar 

  4. Jernstrom H, Lerman C, Ghadirian P, et al. (1999) Pregnancy and risk of early breast cancer in carriers of BRCA1 and BRCA2. Lancet 354:1846–1850.

    Article  PubMed  CAS  Google Scholar 

  5. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988.

    Article  PubMed  CAS  Google Scholar 

  6. Callahan R, Smith GH (2000) MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 19:992–1001.

    Article  PubMed  CAS  Google Scholar 

  7. Smith GH (2005) Stem cells and mammary cancer in mice. Stem Cell Rev 1:215–223.

    Article  PubMed  CAS  Google Scholar 

  8. Singh SK, Clarke ID, Terasaki M, et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828.

    PubMed  CAS  Google Scholar 

  9. Thordarson G, Slusher N, Leong H, et al. (2004) Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-alpha activation via the mitogen-activated protein kinase pathway. Breast Cancer Res 6:R423–R436.

    Article  PubMed  CAS  Google Scholar 

  10. Sivaraman L, Medina D (2002) Hormone-induced protection against breast cancer. J Mammary Gland Biol Neoplasia 7:77–92.

    Article  PubMed  Google Scholar 

  11. D’Cruz CM, Moody SE, Master SR, et al. (2002) Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol 16:2034–2051.

    Article  PubMed  Google Scholar 

  12. Ginger MR, Gonzalez-Rimbau MF, Gay JP, et al. (2001) Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Mol Endocrinol 15:1993–2009.

    Article  PubMed  CAS  Google Scholar 

  13. Boulanger CA, Ku W, Smith GH (2005) Parity-induced mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-α1 expression. Oncogene 24:552–560.

    Article  PubMed  CAS  Google Scholar 

  14. Ludwig T, Fisher P, Murty V, et al. (2001) Development of mammary adenocarcinomas by tissue-specific knockout of BRCA2 in mice. Oncogene 20:3937–3948.

    Article  PubMed  CAS  Google Scholar 

  15. Smith GH (1996) Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 39:21–31.

    Article  PubMed  CAS  Google Scholar 

  16. Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921–1930.

    PubMed  CAS  Google Scholar 

  17. Kamiya K, Gould MN, Clifton KH (1998) Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proc Soc Exp Biol Med 219:217–225.

    PubMed  CAS  Google Scholar 

  18. Boulanger CA, Smith GH (2001) Reducing mammary cancer risk through premature stem cell senescence. Oncogene 20:2264–2272.

    Article  PubMed  CAS  Google Scholar 

  19. Henry MD, Triplett AA, Oh KB, et al. (2004) Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene 23:6980–6985.

    Article  PubMed  CAS  Google Scholar 

  20. Krempler A, Henry MD, Triplett AA, et al. (2002) Targeted deletion of the Tsg101 gene results in cell cycle arrest at G1/S and p53-independent cell death. J Biol Chem 277:43216–43223.

    Article  PubMed  CAS  Google Scholar 

  21. Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200.

    Article  PubMed  CAS  Google Scholar 

  22. Potten CS, Owen G, Booth D (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115:2381–2388.

    PubMed  CAS  Google Scholar 

  23. Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132:681–687.

    Article  PubMed  CAS  Google Scholar 

  24. Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Smith, G.H. (2008). Stem Cells, Hormones, and Mammary Cancer. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_6

Download citation

Publish with us

Policies and ethics