Skip to main content

Mcl-1 is Regulated by IL-6 and Mediates the Survival Activity of the Cytokine in a Model of Late Stage Prostate Carcinoma

  • Chapter
Hormonal Carcinogenesis V

Summary

The proinflammatory cytokine interleukin-6 (IL-6) has been considered a positive growth factor in late stage prostate cancer (PC) cells and a potential target for therapeutic interference. We studied the effects of inhibition of IL-6 in LNCaP-IL6+ cells, a model system for advanced PC, which produce IL-6. By using the chimeric anti-IL-6 antibody, CNTO 328, we showed that the autocrine IL-6 loop is responsible for decreased sensitivity of LNCaP-IL-6+ cells to die by apoptosis. Dysregulation of Bcl-2 family members could be implicated in the acquisition of resistance to apoptosis in malignant cell lines. Myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of this family that is overexpressed in the IL-6 selected cells compared with control. Specific knock-down of Mcl-1 gene expression by siRNA yielded an increase in apoptosis of LNCaP-IL-6+ cells. Interestingly, inactivation of IL-6 autocrine loop was not able to increase apoptosis levels in the absence of Mcl-1, thus suggesting this molecule as a mediator of the survival action of IL-6. Finally, using selective kinase inhibitors we provide evidence for the involvement of p38 and ERK1/2 mitogen-activated protein kinases pathways in the IL-6-mediated regulation of Mcl-1. In conclusion, these data suggest that endogenous IL-6 acts as an antiapoptotic factor in LNCaP-IL-6+ cells and that Mcl-1 is critical for its survival activity. CNTO 328, in our experimental conditions, is able to render LNCaP-IL-6+ cells more sensitive to apoptosis. These data support the concept of anti-IL-6 therapy in human PC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Twillie DA, Eisenberger MA, Carducci MA, et al. (1995) Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology 45: 542–9.

    Article  PubMed  CAS  Google Scholar 

  2. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24(1): 21–44.

    Article  PubMed  CAS  Google Scholar 

  3. Rubinfeld H, Seger R (2005) The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 31(2): 151–74.

    Article  PubMed  CAS  Google Scholar 

  4. Sridhar SS, Hedley D, and Siu LL (2005) Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 4(4): 677–85.

    Article  PubMed  CAS  Google Scholar 

  5. Shimada K, Nakamura M, Ishida E, et al. (2002) Contributions of mitogen-activated protein kinase and nuclear factor kappa B to N-(4-hydroxyphenyl) retinamide-induced apoptosis in prostate cancer cells. Mol Carcinog 35(3): 127–37.

    Article  PubMed  CAS  Google Scholar 

  6. Ricote M, Garcia-Tunon I, Bethencourt F, et al. (2006) The p38 transduction pathway in prostatic neoplasia. J Pathol 208(3): 401–7.

    Article  PubMed  CAS  Google Scholar 

  7. Hobisch A, Ramoner R, Fuchs D, et al. (2001) Prostate cancer cells (LNCaP) generated after long-term interleukin 6 (IL-6) treatment express IL-6 and acquire an IL-6 partially resistant phenotype. Clin Cancer Res 7(9): 2941–8.

    PubMed  CAS  Google Scholar 

  8. Culig Z, Steiner H, Bartsch G, et al. (2005) Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem 95: 497–505.

    Article  PubMed  CAS  Google Scholar 

  9. Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258(6): 479–517.

    Article  PubMed  CAS  Google Scholar 

  10. Jourdan M, Veyrune JL, Vos JD, et al. (2003) A major role for Mcl-1 antiapoptotic protein in the IL-6-induced survival of human myeloma cells. Oncogene 22(19): 2950–9.

    Article  PubMed  CAS  Google Scholar 

  11. Royuela M, Arenas MI, Bethencourt FR, et al. (2001) Immunoexpressions of p21, Rb, mcl-1 and bad gene products in normal, hyperplastic and carcinomatous human prostates. Eur Cytokine Netw 12(4): 654–63.

    PubMed  CAS  Google Scholar 

  12. Krajewska M, Krajewski S, Epstein JI, et al. (1996) Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol 148(5): 1567–76.

    PubMed  CAS  Google Scholar 

  13. Krajewski S, Bodrug S, Krajewska M, et al. (1995) Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol 146(6): 1309–19.

    PubMed  CAS  Google Scholar 

  14. Derouet M, Thomas L, Cross A, et al. (2004) Granulocyte macrophage colony-stimulating factor signaling and proteasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-1. J Biol Chem 279(26): 26915–21.

    Article  PubMed  CAS  Google Scholar 

  15. Boucher MJ, Morisset J, Vachon PH, et al. (2000) MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 79(3): 355–69.

    Article  PubMed  CAS  Google Scholar 

  16. Selzer E, Thallinger C, Hoeller C, et al. (2002) Betulinic acid-induced Mcl-1 expression in human melanoma – mode of action and functional significance. Mol Med 8(12): 877–84.

    PubMed  CAS  Google Scholar 

  17. Steiner H, Godoy-Tundidor S, Rogatsch H, et al. (2003) Accelerated in vivo growth of prostate tumors that up-regulate interleukin-6 is associated with reduced retinoblastoma protein expression and activation of the mitogen-activated protein kinase pathway. Am J Pathol 162(2): 655–63.

    PubMed  CAS  Google Scholar 

  18. Borsellino N, Belldegrun A, Bonavida B (1995) Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res 55(20): 4633–9.

    PubMed  CAS  Google Scholar 

  19. Borsellino N, Bonavida B, Ciliberto G, et al. (1999) Blocking signaling through the Gp130 receptor chain by interleukin-6 and oncostatin M inhibits PC-3 cell growth and sensitizes the tumor cells to etoposide and cisplatin-mediated cytotoxicity. Cancer 85(1): 134–44.

    Article  PubMed  CAS  Google Scholar 

  20. Pu YS, Hour TC, Chuang SE, et al. (2004) Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells. Prostate 60(2): 120–9.

    Article  PubMed  CAS  Google Scholar 

  21. Smith PC, Hobisch A, Lin DL, et al. (2001) Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev 12(1): 33–40.

    Article  PubMed  CAS  Google Scholar 

  22. Royuela M, Arenas MI, Bethencourt FR, et al. (2002) Regulation of proliferation/apoptosis equilibrium by mitogen-activated protein kinases in normal, hyperplastic, and carcinomatous human prostate. Hum Pathol 33(3): 299–306.

    Article  PubMed  CAS  Google Scholar 

  23. Raje N, Kumar S, Hideshima T, et al. (2005) Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood 106(3): 1042–7.

    Article  PubMed  CAS  Google Scholar 

  24. Puthier D, Derenne S, Barille S, et al. (1999) Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells. Br J Haematol, 107(2): 392–5.

    Article  PubMed  CAS  Google Scholar 

  25. Lee SO, Lou W, Johnson CS, et al. (2004) Interleukin-6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Prostate 60(3): 178–86.

    Article  PubMed  CAS  Google Scholar 

  26. Nam S, Buettner R, Turkson J, et al. (2005) Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci USA 102(17): 5998–6003.

    Article  PubMed  CAS  Google Scholar 

  27. Niu G, Bowman T, Huang M, et al. (2002) Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21(46): 7001–10.

    Article  PubMed  CAS  Google Scholar 

  28. Zelivianski S, Spellman M, Kellerman M, et al. (2003) ERK inhibitor PD98059 enhances docetaxel-induced apoptosis of androgen-independent human prostate cancer cells. Int J Cancer 107(3): 478–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Cavarretta, I.T. et al. (2008). Mcl-1 is Regulated by IL-6 and Mediates the Survival Activity of the Cytokine in a Model of Late Stage Prostate Carcinoma. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_56

Download citation

Publish with us

Policies and ethics