Advertisement

Identification of Downstream Targets of Estrogen and c-myc in Breast Cancer Cells

  • Elizabeth A. Musgrove
  • C. Marcelo Sergio
  • Luke R. Anderson
  • Claire K. Inman
  • Catriona M. McNeil
  • M. Chehani Alles
  • Margaret Gardiner-Garden
  • Christopher J. Ormandy
  • Alison J. Butt
  • Robert L. Sutherland
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 617)

Summary

Estrogen (E) plays a pivotal regulatory role in the control of cell proliferation in the normal breast and breast cancer (BC). To identify genes with likely roles in proliferation control that are regulated by E and its downstream target c-myc, we compared transcript profiles of antiestrogens-arrested cells stimulated to reinitiate cell cycle progression by E treatment or c-myc induction. Approximately 2/3 of the probe sets significantly regulated by E (adjusted p < 0.01) increased in expression. Half of the E-regulated probe sets were also regulated by c-myc. Genes involved in cell growth, cell proliferation, and cell survival were over-represented in the E-regulated geneset. Analysis of selected candidates has identified a nucleolar protein whose expression is correlated with c-myc expression in BC cell lines. These data indicate that a significant component of E-induced mitogenesis is mediated by c-myc and that selected c-myc target genes may be surrogate markers of c-myc expression in BC.

Keywords

Breast Cancer Transcript Profile Nucleolar Protein Mammary Gland Biol Neoplasia Empty Vector Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sutherland RL, Prall OW, Watts CK, et al. (1998) Estrogen and progestin regulation of cell cycle progression. J Mammary Gland Biol Neoplasia 3:63–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Prall OWJ, Rogan EM, Musgrove EA, et al. (1998) c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol Cell Biol 18:4499–4508.PubMedGoogle Scholar
  3. 3.
    Tang S, Han H, Bajic VB (2004) ERGDB: Estrogen Responsive Genes Database. Nucleic Acids Res 32:D533–D536.PubMedCrossRefGoogle Scholar
  4. 4.
    Zeller KI, Jegga AG, Aronow BJ, et al. (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4:R69.PubMedCrossRefGoogle Scholar
  5. 5.
    McNeil CM, Sergio CM, Anderson LA, et al. (2006) c-Myc overexpression and endocrine resistance in breast cancer. J Steroid Biochem Mol Biol doi:10.1016/j.jsbmb.2006.09.028.Google Scholar
  6. 6.
    Jamerson MH, Johnson MD, Dickson RB (2004) Of mice and Myc: c-Myc and mammary tumorigenesis. J Mammary Gland Biol Neoplasia 9:27–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Carroll JS, Swarbrick A, Musgrove EA, et al. (2002) Mechanisms of growth arrest growth arrest by c-myc antisense oligonucleotides in MCF-7 breast cancer cells: Implications for the antiproliferative effects of antiestrogens. Cancer Res 62:3126–3131.PubMedGoogle Scholar
  8. 8.
    Venditti M, Iwasiow B, Orr FW, et al. (2002) C-myc gene expression alone is sufficient to confer resistance to antiestrogen in human breast cancer cells. Int J Cancer 99:35–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Mukherjee S, Conrad SE (2005) c-Myc suppresses p21WAF1/CIP1 expression during estrogen signaling and antiestrogen resistance in human breast cancer cells. J Biol Chem 280:17617–17625.PubMedCrossRefGoogle Scholar
  10. 10.
    Musgrove EA, Wakeling AE, Sutherland RL (1989) Points of action of estrogen antagonists and a calmodulin antagonist within the MCF-7 human breast cancer cell cycle. Cancer Res 49:2398–2404.PubMedGoogle Scholar
  11. 11.
    Smyth GK 2005 Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. New York: Springer, pp. 397–420.CrossRefGoogle Scholar
  12. 12.
    Benjamini Y, Drai D, Elmer G, et al. (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Elizabeth A. Musgrove
    • 1
  • C. Marcelo Sergio
  • Luke R. Anderson
  • Claire K. Inman
  • Catriona M. McNeil
  • M. Chehani Alles
  • Margaret Gardiner-Garden
  • Christopher J. Ormandy
  • Alison J. Butt
  • Robert L. Sutherland
  1. 1.Cancer Research ProgramGarvan Institute, DarlinghurstSydneyAustralia

Personalised recommendations