Cdk1, Plks, Auroras, and Neks: The Mitotic Bodyguards

  • Patrick Salaun
  • Yoann Rannou
  • Prigent Claude
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 617)

“Omnis cellula e cellula,” in 1858, an important dogma in cell biology was born, when Rudolf Virchow established that every cell must derive from a preexisting cell. And indeed cell division is the only way for life to expend, it is also the way for immortalization, and unfortunately when uncontrolled also the way for cancer. But unrevealing mechanisms leading to cell division took quite a while. How does a mother cell divide to give two daughters? This is known as the cell cycle, which describes a series of events that insures faithfully transition of the genetic information from one cell generation to the next. These dividing mechanisms have been conserved throughout evolution; they underlie growth and development in all living organisms and are central to their heredity and evolution.


Sister Chromatid Aspergillus Nidulans Aurora Kinase Spindle Checkpoint Centrosome Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fisher DL, Nurse P (1996) A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J 15(4):850–60.PubMedGoogle Scholar
  2. 2.
    Durkacz B, Carr A, Nurse P (1986) Transcription of the cdc2 cell cycle control gene of the fission yeast Schizosaccharomyces pombe. EMBO J 5(2):369–373.PubMedGoogle Scholar
  3. 3.
    Draetta G, Beach D (1988) Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54(1):17–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Draetta G, Luca F, Westendorf J, et al. (1989) Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 56(5):829–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Karaiskou A, Perez LH, Ferby I, et al. (2001) Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem 276(38):36028–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Nigg EA (1998) Polo-like kinases: positive regulators of cell division from start to finish. Curr Opin Cell Biol 10:776–783.PubMedCrossRefGoogle Scholar
  7. 7.
    Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7(11):1140–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Chan CS, Botstein D (1993) Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135(3):677–91.PubMedGoogle Scholar
  9. 9.
    Glover DM, Leibowitz MH, McLean DA, et al. (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81(1):95–105.PubMedCrossRefGoogle Scholar
  10. 10.
    Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2(1):21–32.PubMedCrossRefGoogle Scholar
  11. 11.
    Brown JR, Koretke KK, Birkeland ML, et al. (2004) Evolutionary relationships of Aurora kinases: implications for model organism studies and the development of anti-cancer drugs. BMC Evol Biol 4(1):39.PubMedCrossRefGoogle Scholar
  12. 12.
    O'Connell MJ, Krien MJ, Hunter T (2003) Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13(5):221–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Osmani SA, May GS, Morris NR (1987) Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans. J Cell Biol 104(6):1495–504.PubMedCrossRefGoogle Scholar
  14. 14.
    Belham C, Roig J, Caldwell JA, et al. (2003) Mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem 278(37):34897–909.PubMedCrossRefGoogle Scholar
  15. 15.
    Fry AM (2002) The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21:6184–6194.PubMedCrossRefGoogle Scholar
  16. 16.
    Prigent C, Glover DM, Giet R (2005) Drosophila Nek2 protein kinase knockdown leads to centrosome maturation defects while overexpression causes centrosome fragmentation and cytokinesis failure. Exp Cell Res 303(1):1–13.PubMedGoogle Scholar
  17. 17.
    Scrittori L, Skoufias DA, Hans F, et al. (2005) A small C-terminal sequence of Aurora B is responsible for localization and function. Mol Biol Cell 16(1):292–305.PubMedCrossRefGoogle Scholar
  18. 18.
    Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1(2):82–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Blangy A, Lane HA, d'Herin P, et al. (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83(7):1159–69.PubMedCrossRefGoogle Scholar
  20. 20.
    Peter M, Nakagawa J, Doree M, et al. (1990) In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61(4):591–602.PubMedCrossRefGoogle Scholar
  21. 21.
    Kimura K, Hirano M, Kobayashi R, et al. (1998) Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282(5388):487–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Rudner AD, Murray AW (2000) Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J Cell Biol 149(7):1377–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Elia AE, Rellos P, Haire LF, et al. (2003) The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115(1):83–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Qian YW, Erikson E, Maller JL (1998) Purification and cloning of a protein kinase that phosphorylates and activates the polo-like kinase Plx1. Science 282(5394):1701–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Kumagai, A, Dunphy WG (1996) Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273:1377–1380.PubMedCrossRefGoogle Scholar
  26. 26.
    Nakajima H, Toyoshima-Morimoto F, Taniguchi E, et al. (2003) Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J Biol Chem 278(28):25277–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Nakajima Toyoshima-Morimoto F, Taniguchi E, Shinya N, et al. (2001) Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 410(6825):215–20.CrossRefGoogle Scholar
  28. 28.
    Lane, Ham, Nigg, EA (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol 135:1701–1713.PubMedCrossRefGoogle Scholar
  29. 29.
    do Carmo Avides M, Tavares A, Glover DM (2001) Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nature Cell Biol 3:421–424.PubMedCrossRefGoogle Scholar
  30. 30.
    Arnaud L, Pines J, Nigg EA (1998) GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma 107(6–7):424–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Golan A, Yudkovsky Y, Hershko A (2002) The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1-cyclin B and Plk. J Biol Chem 277(18):15552–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Kraft C, Herzog F, Gieffers C, et al. (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J 22(24):6598–609.PubMedCrossRefGoogle Scholar
  33. 33.
    Hansen DV, Loktev AV, Ban KH, et al. (2004) Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. Mol Biol Cell (12):5623–34.CrossRefGoogle Scholar
  34. 34.
    Moshe Y, Boulaire J, Pagano M, et al. (2004) Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc Natl Acad Sci USA 101(21):7937–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Ohkura H, Hagan IM, Glover DM (1995) The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev 9(9):1059–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Bahler J, Steever AB, Wheatley S, et al. (1998) Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J Cell Biol 143(6):1603–16.PubMedCrossRefGoogle Scholar
  37. 37.
    Carmena M, Riparbelli MG, Minestrini G, et al. (1998) Drosophila polo kinase is required for cytokinesis. J Cell Biol 143(3):659–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Qian YW, Erikson E, Maller JL (1999) Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1. Mol Cell Biol (12):8625–32.Google Scholar
  39. 39.
    Neef R, Preisinger C, Stucliffe J, et al. (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162:863–875.PubMedCrossRefGoogle Scholar
  40. 40.
    Tsai MY, Wiese C, Cao K, et al. (2003) A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5(3):242–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Dutertre S, Cazales M, Quaranta M, et al. (2004) Phosphorylation of CDC25B by Aurora A at the centrosome contributes to the G2-M transition. J Cell Sci 117(Pt 12):2523–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Marumoto T, Hirota T, Morisaki T, et al. (2002) Roles of Aurora A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 7(11):1173–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Giet R, Uzbekov R, Cubizolles F, et al. (1999) The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J Biol Chem 274(21):15005–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Giet R, McLean D, Descamps S, et al. (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156(3):437–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3(1):51–62.PubMedCrossRefGoogle Scholar
  46. 46.
    Meraldi P, Honda R, Nigg EA (2002) Aurora A overexpression reveals tetraploidization as a major route to centrosome amplification in p53?/? cells. EMBO J 21(4):483–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Castro A, Arlot-Bonnemains Y, Vigneron S, et al. (2002a) APC/Fizzy-Related targets Aurora A kinase for proteolysis. EMBO Rep 3(5):457–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Castro A, Vigneron S, Bernis C, et al. (2002b) The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora A. EMBO Rep 3(12):1209–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Giet R, Petretti C, Prigent C (2006) Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends in Cell Biol 15(5):241–50.CrossRefGoogle Scholar
  50. 50.
    Adams RR, Wheatley SP, Gouldsworthy AM, et al. (2000) INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr Biol 10(17):1075–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Hsu JY, Sun ZW, Li X, et al. (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102(3):279–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152(4):669–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Zeitlin SG, Shelby RD, Sullivan KF (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155(7):1147–57.PubMedCrossRefGoogle Scholar
  54. 54.
    Prigent C, Dimitrov S (2003) Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116(Pt 18):3677–85.PubMedCrossRefGoogle Scholar
  55. 55.
    Ohi R, Sapra T, Howard J, et al. (2004) Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15(6):2895–906.PubMedCrossRefGoogle Scholar
  56. 56.
    Goto H, Yasui Y, Kawajiri A, et al. (2003) Aurora B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278(10):8526–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Minoshima Y, Kawashima T, Hirose K, et al. (2003) Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 4(4):549–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15(8):778–86.PubMedCrossRefGoogle Scholar
  59. 59.
    Hu HM, Chuang CK, Lee MJ, et al. (2000) Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1. DNA Cell Biol 19(11):679–88.PubMedCrossRefGoogle Scholar
  60. 60.
    Kimura M, Matsuda Y, Yoshioka T, et al. (1999) Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 274(11):7334–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Ulisse S, Delcros JG, Baldini E, et al. (2006) Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int J Cancer 119(2):275–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Dutertre S, Hamard-Peron E, Cremet JY, et al. (2005) The absence of p53 aggravates polyploidy and centrosome number abnormality induced by Aurora C overexpression. Cell Cycle 4(12):1783–7.PubMedGoogle Scholar
  63. 63.
    Sasai K, Katayama H, Stenoien DL, et al. (2004) Aurora C kinase is a novel chromosomal passenger protein that can complement Aurora B kinase function in mitotic cells. Cell Motil Cytoskeleton 59(4):249–63.PubMedCrossRefGoogle Scholar
  64. 64.
    Osmani AH, McGuire SL, Osmani SA (1991) Parallel activation of the NIMA and p34cdc2 cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. Cell 67(2):283–91.PubMedCrossRefGoogle Scholar
  65. 65.
    Fry AM, Mayor T, Meraldi P, et al. (1998) C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141(7):1563–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Fry AM, Arnaud L, Nigg EA (1999) Activity of the human centrosomal kinase, Nek2, depends on an unusual leucine zipper dimerization motif. J Biol Chem 274:16304–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Helps NR, Luo X, Barker HM, et al. (2000) NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J 349(Pt 2):509–18.PubMedCrossRefGoogle Scholar
  68. 68.
    Belham C, Roig J, Caldwell JA, et al. (2003) A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem 278:34897–909.PubMedCrossRefGoogle Scholar
  69. 69.
    Yin MJ, Shao L, Voehringer D, et al. (2003). The serine/threonine kinase Nek6 is required for cell cycle progression through mitosis. J Biol Chem 278:52454–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Roig J, Groen A, Caldwell J, et al. (2005). Active Nercc1 protein kinase concentrates at centrosomes early in mitosis, and is necessary for proper spindle assembly. Mol Biol Cell 16:4827–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Lingle WL, Barrett SL, Negron VC, et al. (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99(4):1978–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Hahn WC, Counter CM, Lundberg AS, et al. (1999) Creation of human tumour cells with defined genetic elements. Nature 400(6743):464–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Yamamoto H, Monden T, Miyoshi H, et al. (1998) Cdk2/cdc2 expression in colon carcinogenesis and effects of cdk2/cdc2 inhibitor in colon cancer cells. Int J Oncol 13(2):233–9.PubMedGoogle Scholar
  74. 74.
    Kim JH, Kang MJ, Park CU, et al. (1999) Amplified CDK2 and cdc2 activities in primary colorectal carcinoma. Cancer 85(3):546–53.PubMedCrossRefGoogle Scholar
  75. 75.
    Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–7.PubMedCrossRefGoogle Scholar
  76. 76.
    McDonald ER 3rd, El-Deiry WS (2000) Cell cycle control as a basis for cancer drug development. Int J Oncol 16(5):871–86.PubMedGoogle Scholar
  77. 77.
    Dobashi Y, Shoji M, Jiang SX, et al. (1998) Active cyclin A-CDK2 complex, a possible critical factor for cell proliferation in human primary lung carcinomas. Am J Pathol 153(3):963–72.PubMedGoogle Scholar
  78. 78.
    Matushansky I, Radparvar F, Skoultchi AI (2000) Reprogramming leukemic cells to terminal differentiation by inhibiting specific cyclin-dependent kinases in G1. Proc Natl Acad Sci USA 97:14317–22.PubMedCrossRefGoogle Scholar
  79. 79.
    Damiens E, Baratte B, Marie D, et al. (2001) Anti-mitotic properties of indirubin-3-monoxime, a CDK/GSK-3 inhibitor: induction of endoreplication following prophase arrest. Oncogene 20:3786–97.PubMedCrossRefGoogle Scholar
  80. 80.
    Edamatsu H, Gau CL, Nemoto T, et al. (2000) Cdk inhibitors, roscovitine and olomoucine, synergize with farnesyl transferase inhibitor (FTI) to induce efficient apoptosis of human cancer cell lines. Oncogene 19:3059–68.PubMedCrossRefGoogle Scholar
  81. 81.
    Sen S, Zhou H, Zhang RD, et al. (2002). Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst 94:1320–9.PubMedGoogle Scholar
  82. 82.
    Bischoff JR, Anderson L, Zhu Y, et al. (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. Embo J 17:3052–65.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhou H, Kuang J, Zhong L, et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–93.PubMedCrossRefGoogle Scholar
  84. 84.
    Tanaka T, Kimura M, Matsunaga K, et al. (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59:2041–4.PubMedGoogle Scholar
  85. 85.
    Han H, Bearss DJ, Browne LW, et al. (2002). Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62:2890–6.PubMedGoogle Scholar
  86. 86.
    Miyoshi Y, Iwao K, Egawa C, et al. (2001) Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer 92:370–3.PubMedCrossRefGoogle Scholar
  87. 87.
    Ewart-Toland A, Briassouli P, de Koning JP, et al. (2003) Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat Genet 34(4):403–12.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang X, Zhou YX, Qiao W, et al. (2006) Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene 25:7148–58.PubMedCrossRefGoogle Scholar
  89. 89.
    Katayama H, Sasai K, Kawai H, et al. (2004) Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36:55–62.PubMedCrossRefGoogle Scholar
  90. 90.
    Liu Q, KaNeko S, Yang I, et al. (2004) Aurora A abrogation of p53 dna binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 279:52175–82.PubMedCrossRefGoogle Scholar
  91. 91.
    Gigoux V, L'Hoste S, Raynaud F, et al. (2002) Identification of Aurora kinases as RasGAP Src homology 3 domain-binding proteins. J Biol Chem 277:23742–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Katayama H, Ota T, Jisaki F, et al. (1999) Mitotic kinase expression and colorectal cancer progression. J Natl Cancer Inst 91:1160–2.PubMedCrossRefGoogle Scholar
  93. 93.
    Takahashi T, Futamura M, Yoshimi N, et al. (2000) Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancers. Jpn J Cancer Res 91:1007–14.PubMedGoogle Scholar
  94. 94.
    Adams RR, Eckley DM, Vagnarelli P, et al. (2001) Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells. Chromosoma 110:65–74.PubMedCrossRefGoogle Scholar
  95. 95.
    Chieffi P, Cozzolino L, Kisslinger A, et al. (2006) Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate 66(3):326–33.PubMedCrossRefGoogle Scholar
  96. 96.
    Ota T, Suto S, Katayama H, et al. (2002) Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res 62:5168–77.PubMedGoogle Scholar
  97. 97.
    Smith SL, Bowers NL, Betticher DC, et al. (2005) Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. Br J Cancer 93(6):719–29.PubMedCrossRefGoogle Scholar
  98. 98.
    Harrington EA, Bebbington D, Moore J, et al. (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10(3):262–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Smith MR, Wilson ML, Hamanaka R, et al. (1997) Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun 234:397–405.PubMedCrossRefGoogle Scholar
  100. 100.
    Eckerdt F, Yuan J, Strebhardt K (2005) Polo-like kinases and oncogenesis. Oncogene 24(2):267–76.PubMedCrossRefGoogle Scholar
  101. 101.
    Weichert W, Denkert C, Schmidt M, et al. (2004). Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma. Br J Cancer 90:815–21.PubMedCrossRefGoogle Scholar
  102. 102.
    Tokumitsu Y, Mori M, Tanaka S, et al. (1999) Prognostic significance of polo-like kinase expression in esophageal carcinoma. Int J Oncol 15:687–92.PubMedGoogle Scholar
  103. 103.
    Knecht R, Oberhauser C, Strebhardt K (2000) PLK (polo-like kinase), a new prognostic marker for oropharyngeal carcinomas. Int J Cancer 89:535–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Kneisel L, Strebhardt K, Bernd A, et al. (2002) Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J Cutan Pathol 29(6):354–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Yamada S, Ohira M, Horie H, et al. (2004) Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas. Oncogene 23(35):5901–11.PubMedCrossRefGoogle Scholar
  106. 106.
    Simizu, S, Osada H (2000) Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nat Cell Biol 2:852–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Mundt KE, Golsteyn RM, Lane HA, et al. (1997) On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Commun 239(2):377–85.PubMedCrossRefGoogle Scholar
  108. 108.
    Yamamoto Y, Matsuyama H, Kawauchi S, et al. (2006) Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer. Oncology 70(3):231–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Spankuch-Schmitt B, Wolf G, Solbach C, et al. (2002) Downregulation of human polo-like kinase activity by antisense oligonucleotides induces growth inhibition in cancer cells. Oncogene 21(20):3162–71.PubMedCrossRefGoogle Scholar
  110. 110.
    Spankuch B, Matthess Y, Knecht R, et al. (2004) Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J Natl Cancer Inst 96(11):862–72.PubMedCrossRefGoogle Scholar
  111. 111.
    Weiss MM, Kuipers EJ, Postma C, et al. (2004) Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol 26(5–6):307–17.PubMedGoogle Scholar
  112. 112.
    Schultz SJ, Fry AM, Sutterlin C, et al. (1994) Cell cycle-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans. Cell Growth Differ 5(6):625–35.PubMedGoogle Scholar
  113. 113.
    Loo LW, Grove DI, Williams EM, et al. (2004) Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res 64(23):8541–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Bettencourt-Dias M, Giet R, Sinka R, et al. 2004 Genome-wide survey of protein kinases required for cell cycle progression. Nature 432:23–30.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Patrick Salaun
  • Yoann Rannou
  • Prigent Claude
    • 1
  1. 1.Universite Rennes Fac. de MedecineRennesFrance

Personalised recommendations