Dynamics of Estrogen Receptor-mediated Transcriptional Activation of Responsive Genes In Vivo: Apprehending Transcription in Four Dimensions

  • Raphaël Métivier
  • Guillaume Huet
  • Rozenn Gallais
  • Laurence Finot
  • Fabien Petit
  • Christophe Tiffoche
  • Yohann Mérot
  • Christine LePéron
  • George Reid
  • Graziella Penot
  • Florence Demay
  • Frank Gannon
  • Gilles Flouriot
  • Gilles Salbert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 617)

Estrogens, such as 17β-estradiol (E2), are commonly recognized as pivotal hormones controlling female reproductive physiology (1), but they also exhibit pleiotropic actions in male reproductive development and physiology, bone and lipid metabolisms, and the maintenance of the cardiovascular and neuronal systems (2–4). These effects of E2 are mainly transduced through specific receptors, the estrogen receptors (ERα and ERβ), although another protein, G protein-coupled receptor (GPR30) has been recently suggested to transduce some of the estrogenic responses (5). Further studies are awaited to identify the exact respective contribution of both pathways to E2 signaling. ERs are dimeric, intranuclear, ligand-dependent transcription factors belonging to the superfamily of nuclear receptors (NRs) (6). ERs classically recognize defined palindromic target DNA sequences located within the promoter regions of estrogen responsive target genes (7, 8). Upon binding its ligand, ER undergoes drastic conformational changes (8) that generate surfaces that associate with transcriptional cofactors that in turn allow the recruitment to the target promoter and activation of the RNA polymerase II complex (Pol II) (9).


Estrogen Receptor Nuclear Receptor Histone Code Estrogen Recep NuRD Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nilsson S, Makela S, Treuter E, et al. (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565.PubMedGoogle Scholar
  2. 2.
    Lombardi G, Zarrilli S, Colao A, et al. (2001) Estrogens and health in males. Mol Cell Endocrinol 178:51–55.PubMedCrossRefGoogle Scholar
  3. 3.
    Juul A (2001) The effects of oestrogens on linear bone growth. Hum Reprod Update 7:303–313.PubMedCrossRefGoogle Scholar
  4. 4.
    Maggi A, Ciana P, Belcredito S, et al. (2004) Estrogens in the nervous system: mechanisms and nonreproductive functions. Annu Rev Physiol 66:291–313.PubMedCrossRefGoogle Scholar
  5. 5.
    Revankar CM, Cimino DF, Sklar LA, et al. (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–1630.PubMedCrossRefGoogle Scholar
  6. 6.
    Robinson-Rechavi M, Escriva Garcia H, Laudet V (2003) The nuclear receptor superfamily. J Cell Sci 116:585–586.PubMedCrossRefGoogle Scholar
  7. 7.
    Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905–2919.PubMedCrossRefGoogle Scholar
  8. 8.
    Pike AC (2006) Lessons learnt from structural studies of the oestrogen receptor. Best Pract Res Clin Endocrinol Metab 20:1–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Lemon BD, Freedman LP (1999) Nuclear receptor cofactors as chromatin remodelers. Curr Opin Genet Dev 9:499–504.PubMedCrossRefGoogle Scholar
  10. 10.
    van Driel R, Fransz PF, Verschure PJ (2003) The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci 116:4067–4075.PubMedCrossRefGoogle Scholar
  11. 11.
    Krust A, Green S, Argos P, et al. (1986) The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. Embo J 5:891–897.PubMedGoogle Scholar
  12. 12.
    Klinge CM, Jernigan SC, Smith SL, et al. (2001) Estrogen response element sequence impacts the conformation and transcriptional activity of estrogen receptor alpha. Mol Cell Endocrinol 174:151–166.PubMedCrossRefGoogle Scholar
  13. 13.
    Kushner PJ, Agard DA, Greene GL, et al. (2000) Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74:311–317.PubMedCrossRefGoogle Scholar
  14. 14.
    Safe S (2001) Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62:231–252.PubMedCrossRefGoogle Scholar
  15. 15.
    Charpentier AH, Bednarek AK, Daniel RL, et al. (2000) Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res 60:5977–5983.PubMedGoogle Scholar
  16. 16.
    Cicatiello L, Scafoglio C, Altucci L, et al. (2004) A genomic view of estrogen actions in human breast cancer cells by expression profiling of the hormone-responsive transcriptome. J Mol Endocrinol 32:719–775.PubMedCrossRefGoogle Scholar
  17. 17.
    Kamalakaran S, Radhakrishnan SK, Beck WT (2005) Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites. J Biol Chem 280:21491–21497.PubMedCrossRefGoogle Scholar
  18. 18.
    Laganiere J, Deblois G, Lefebvre C, et al. (2005) From the cover: location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci USA 102:11651–11656.PubMedCrossRefGoogle Scholar
  19. 19.
    Carroll JS, Brown M (2006) Estrogen receptor target gene: an evolving concept. Mol Endocrinol 20:1707–1714.PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng AS, Jin VX, Fan M, et al. (2006) Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha responsive promoters. Mol Cell 21:393–404.PubMedCrossRefGoogle Scholar
  21. 21.
    Spector DL (2003) The dynamics of chromosome organization and gene regulation. Annu Rev Biochem 72:573–608.PubMedCrossRefGoogle Scholar
  22. 22.
    Casolari JM, Brown CR, Drubin DA, et al. (2005) Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev 19:1188–1198.PubMedCrossRefGoogle Scholar
  23. 23.
    Cabal GG, Genovesio A, Rodriguez-Navarro S, et al. (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441:770–773.PubMedCrossRefGoogle Scholar
  24. 24.
    Perkins TJ, Hallett M, Glass L (2004) Inferring models of gene expression dynamics. J Theor Biol 230:289–299.PubMedCrossRefGoogle Scholar
  25. 25.
    Snel B, van Noort V, Huynen MA (2004) Gene co-regulation is highly conserved in the evolution of eukaryotes and prokaryotes. Nucleic Acids Res 32:4725–4731.PubMedCrossRefGoogle Scholar
  26. 26.
    Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272.PubMedCrossRefGoogle Scholar
  27. 27.
    Rountree MR, Bachman KE, Herman JG, et al. (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20:3156–3165.PubMedCrossRefGoogle Scholar
  28. 28.
    Razin A (1998) CpG methylation, chromatin structure and gene silencing-a three-way connection. Embo J 17:4905–4908.PubMedCrossRefGoogle Scholar
  29. 29.
    Belandia B, Parker MG (2003) Nuclear receptors: a rendez-vous for chromatin remodeling factors. Cell 114:277–280.PubMedCrossRefGoogle Scholar
  30. 30.
    Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11:1037–1043.PubMedCrossRefGoogle Scholar
  31. 31.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080.PubMedCrossRefGoogle Scholar
  32. 32.
    Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273.PubMedCrossRefGoogle Scholar
  33. 33.
    McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474.PubMedCrossRefGoogle Scholar
  34. 34.
    Berk AJ (1999) Activation of RNA polymerase II transcription. Curr Opin Cell Biol 11:330–335.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen J, Kinyamu HK, Archer TK (2006) Changes in attitude, changes in latitude: nuclear receptors remodeling chromatin to regulate transcription. Mol Endocrinol 20:1–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Jepsen K, Rosenfeld MG (2002) Biological roles and mechanistic actions of co-repressor complexes. J Cell Sci 115:689–698.PubMedGoogle Scholar
  37. 37.
    Liu XF, Bagchi MK (2004) Recruitment of distinct chromatin-modifying complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in vivo. J Biol Chem 279:15050–15058.PubMedCrossRefGoogle Scholar
  38. 38.
    Perissi V, Aggarwal A, Glass CK, et al. (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116:511–526.PubMedCrossRefGoogle Scholar
  39. 39.
    Lavinsky RM, Jepsen K, Heinzel T, et al. (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95:2920–2925.PubMedCrossRefGoogle Scholar
  40. 40.
    Heery DM, Kalkhoven E, Hoare S, et al. (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736.PubMedCrossRefGoogle Scholar
  41. 41.
    Ren Y, Behre E, Ren Z, et al. (2000) Specific structural motifs determine TRAP220 interactions with nuclear hormone receptors. Mol Cell Biol 20:5433–5446.PubMedCrossRefGoogle Scholar
  42. 42.
    Warnmark A, Wikstrom A, Wright AP, et al. (2001) The N-terminal regions of estrogen receptor alpha and beta are unstructured in vitro and show different TBP binding properties. J Biol Chem 276:45939–45944.PubMedCrossRefGoogle Scholar
  43. 43.
    Demarest SJ, Martinez-Yamout M, Chung J, et al. (2002) Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415:549–553.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang H, Huang ZQ, Xia L, et al. (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293:853–857.PubMedCrossRefGoogle Scholar
  45. 45.
    Klinge CM, Jernigan SC, Mattingly KA, et al. (2004) Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors alpha and beta by coactivators and corepressors. J Mol Endocrinol 33:387–410.PubMedCrossRefGoogle Scholar
  46. 46.
    Maruvada P, Baumann CT, Hager GL, et al. (2003) Dynamic shuttling and intranuclear mobility of nuclear hormone receptors. J Biol Chem 278:12425–12432.PubMedCrossRefGoogle Scholar
  47. 47.
    Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97.PubMedCrossRefGoogle Scholar
  48. 48.
    Geiser M, Mattaj IW, Wilks AF, et al. (1983) Structure and sequence of the promoter area and of a 5¢ upstream demethylation site of the estrogen-regulated chicken vitellogenin ii gene. J Biol Chem 258:9024–9030.PubMedGoogle Scholar
  49. 49.
    Kress C, Thomassin H, Grange T (2001) Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Lett 494:135–140.PubMedCrossRefGoogle Scholar
  50. 50.
    Kress C, Thomassin H, Grange T (2006) Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proc Natl Acad Sci USA 103:11112–11117.PubMedCrossRefGoogle Scholar
  51. 51.
    Reid G, Hubner MR, Metivier R, et al. (2003) Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11:695–707.PubMedCrossRefGoogle Scholar
  52. 52.
    Metivier R, Penot G, Carmouche RP, et al. (2004) Transcriptional complexes engaged by apo-estrogen receptor-alpha isoforms have divergent outcomes. Embo J 23:3653–3666.PubMedCrossRefGoogle Scholar
  53. 53.
    Metivier R, Penot G, Hubner MR, et al. (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115:751–763.PubMedCrossRefGoogle Scholar
  54. 54.
    Metivier R, Reid G, Gannon F (2006) Transcription in four dimensions: nuclear receptor-directed initiation of gene expression. EMBO Rep 7:161–167.PubMedCrossRefGoogle Scholar
  55. 55.
    Ma J (2005) Crossing the line between activation and repression. Trends Genet 21:54–59.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang Y, Ng HH, Erdjument-Bromage H, et al. (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13:1924–1935.PubMedCrossRefGoogle Scholar
  57. 57.
    Valley CC, Metivier R, Solodin NM, et al. (2005) Differential regulation of estrogen-inducible proteolysis and transcription by the estrogen receptor alpha N terminus. Mol Cell Biol 25:5417–5428.PubMedCrossRefGoogle Scholar
  58. 58.
    Dhananjayan SC, Ismail A, Nawaz Z (2005) Ubiquitin and control of transcription. Essays Biochem 41:69–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Kinyamu HK, Chen J, Archer TK (2005) Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors. J Mol Endocrinol 34:281–297.PubMedCrossRefGoogle Scholar
  60. 60.
    Gaillard E, Bruck N, Brelivet Y, et al. (2006) Phosphorylation by PKA potentiates retinoic acid receptor alpha activity by means of increasing interaction with and phosphorylation by cyclin H/cdk7. Proc Natl Acad Sci USA 103:9548–9553.PubMedCrossRefGoogle Scholar
  61. 61.
    Srinivas H, Juroske DM, Kalyankrishna S, et al. (2005) c-Jun N-terminal kinase contributes to aberrant retinoid signaling in lung cancer cells by phosphorylating and inducing proteasomal degradation of retinoic acid receptor alpha. Mol Cell Biol 25:1054–1069.PubMedCrossRefGoogle Scholar
  62. 62.
    Shang Y, Hu X, DiRenzo J, et al. (2000) Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103:843–852.PubMedCrossRefGoogle Scholar
  63. 63.
    Burakov D, Crofts LA, Chang CP, et al. (2002) Reciprocal recruitment of DRIP/mediator and p160 coactivator complexes in vivo by estrogen receptor. J Biol Chem 277:14359–14362.PubMedCrossRefGoogle Scholar
  64. 64.
    Mishra SK, Mazumdar A, Vadlamudi RK, et al. (2003) MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions. J Biol Chem 278:19209–19219.PubMedCrossRefGoogle Scholar
  65. 65.
    Stenoien DL, Patel K, Mancini MG, et al. (2001) FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasome-dependent. Nat Cell Biol 3:15–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Rayasam GV, Elbi C, Walker DA, et al. (2005) Ligand-specific dynamics of the progesterone receptor in living cells and during chromatin remodeling in vitro. Mol Cell Biol 25:2406–2418.PubMedCrossRefGoogle Scholar
  67. 67.
    Feige JN, Gelman L, Tudor C, et al. (2005) Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand. J Biol Chem 280:17880–17890.PubMedCrossRefGoogle Scholar
  68. 68.
    Stenoien DL, Nye AC, Mancini MG, et al. (2001) Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor alpha-coactivator complexes in living cells. Mol Cell Biol 21:4404–4412.PubMedCrossRefGoogle Scholar
  69. 69.
    McNally JG, Muller WG, Walker D, et al. (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:1262–1265.PubMedCrossRefGoogle Scholar
  70. 70.
    Hager GL, Elbi C, Johnson TA, et al. (2006) Chromatin dynamics and the evolution of alternate promoter states. Chromosome Res 14:107–116.PubMedCrossRefGoogle Scholar
  71. 71.
    Lemaire V, Lee CF, Lei J, et al. (2006) Sequential recruitment and combinatorial assembling of multiprotein complexes in transcriptional activation. Phys Rev Lett 96:198102.PubMedCrossRefGoogle Scholar
  72. 72.
    Kang Z, Janne OA, Palvimo JJ (2004) Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol Endocrinol 18:2633–2648.PubMedCrossRefGoogle Scholar
  73. 73.
    Dunlop TW, Vaisanen S, Frank C, et al. (2005) The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha, 25-dihydroxyvitamin D3 and its nuclear receptor. J Mol Biol 349:248–260.PubMedCrossRefGoogle Scholar
  74. 74.
    Vaisanen S, Dunlop TW, Sinkkonen L, et al. (2005) Spatio-temporal activation of chromatin on the human CYP24 gene promoter in the presence of 1alpha, 25-dihydroxyvitamin D3. J Mol Biol 350:65–77.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Raphaël Métivier
    • 1
  • Guillaume Huet
  • Rozenn Gallais
  • Laurence Finot
  • Fabien Petit
  • Christophe Tiffoche
  • Yohann Mérot
  • Christine LePéron
  • George Reid
  • Graziella Penot
  • Florence Demay
  • Frank Gannon
  • Gilles Flouriot
  • Gilles Salbert
  1. 1.RennesFrance

Personalised recommendations