Skip to main content

Regulation of Hormone Signaling by Nuclear Receptor Interacting Proteins

  • Chapter
Hormonal Carcinogenesis V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 617))

Control of Nuclear Receptor Transactivation. Nuclear receptors are ligand-activated transcription factors that subsequently bind to specific responsive elements located in the regulatory region of target gene promoters (1). They stimulate transcription using both a constitutive amino-terminal and a ligand-dependent carboxyl-terminal activation function (AF1 and AF2, respectively), the latter being associated with the ligand-binding domain. These activation functions act independently or synergistically depending on the cell type and promoter context, by recruiting a number of cofactors (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304.

    PubMed  CAS  Google Scholar 

  2. Hall JM, McDonnell DP (2005) Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5:343–357.

    Article  PubMed  Google Scholar 

  3. Lonard DM, O’Malley BW (2005) Expanding functional diversity of the coactivators. Trends Biochem Sci 30:126–132.

    Article  PubMed  CAS  Google Scholar 

  4. Smith CL, O’Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25:45–71.

    Article  PubMed  CAS  Google Scholar 

  5. Kumar R, Gururaj AE, Vadlamudi RK, et al. (2005) The clinical relevance of steroid hormone receptor corepressors. Clin Cancer Res 11:2822–2831.

    Article  PubMed  CAS  Google Scholar 

  6. Cavailles V, Dauvois S, L’Horset F, Lopez G, et al. (1995) Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 14:3741–3751.

    PubMed  CAS  Google Scholar 

  7. L’Horset F, Dauvois S, Heery DM, et al. (1996) RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. Mol Cell Biol 16:6029–6036.

    PubMed  Google Scholar 

  8. Ikonen T, Palvimo JJ, Janne OA (1997) Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J Biol Chem 272:29821–29828.

    Article  PubMed  CAS  Google Scholar 

  9. Masuyama H, Brownfield CM, St-Arnaud R, et al. (1997) Evidence for ligand-dependent intramolecular folding of the AF-2 domain in vitamin D receptor-activated transcription and coactivator interaction. Mol Endocrinol 11:1507–1517.

    Article  PubMed  CAS  Google Scholar 

  10. Miyata KS, McCaw SE, Meertens LM, et al. (1998) Receptor-interacting protein 140 interacts with and inhibits transactivation by, peroxisome proliferator-activated receptor alpha and liver-X-receptor alpha [In Process Citation]. Mol Cell Endocrinol 146:69–76.

    Article  PubMed  CAS  Google Scholar 

  11. Subramaniam N, Treuter E, Okret S (1999) Receptor interacting protein RIP140 inhibits both positive and negative gene regulation by glucocorticoids. J Biol Chem 274:18121–18127.

    Article  PubMed  CAS  Google Scholar 

  12. Sugawara T, Abe S, Sakuragi N, et al. (2001) RIP 140 modulates transcription of the steroidogenic acute regulatory protein gene through interactions with both SF-1 and DAX-1. Endocrinology 142:3570–3577.

    Article  PubMed  CAS  Google Scholar 

  13. Leonardsson G, Steel JH, Christian M, et al. (2004) Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci USA 101:8437–8442.

    Article  PubMed  CAS  Google Scholar 

  14. White R, Leonardsson G, Rosewell I, et al. (2000) The nuclear receptor co-repressor nrip1 (RIP140) is essential for female fertility. Nat Med 6:1368–1374.

    Article  PubMed  CAS  Google Scholar 

  15. Castet A, Herledan A, Bonnet S, et al. (2006) Receptor-interacting protein 140 differentially regulates estrogen receptor-related receptor transactivation depending on target genes. Mol Endocrinol 20:1035–1047.

    Article  PubMed  CAS  Google Scholar 

  16. Carascossa S, Gobinet J, Georget V, et al. (2006) Receptor-interacting protein 140 is a repressor of the androgen receptor activity. Mol Endocrinol 20:1506–1518.

    Article  PubMed  CAS  Google Scholar 

  17. Giguere V, Yang N, Segui P, et al. (1988) Identification of a new class of steroid hormone receptors. Nature 331:91–94.

    Article  PubMed  CAS  Google Scholar 

  18. Horard B, Vanacker JM (2003) Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand. J Mol Endocrinol 31: 349–357.

    Article  PubMed  CAS  Google Scholar 

  19. Giguere V (2002) To ERR in the estrogen pathway. Trends Endocrinol Metab 13:220–225.

    Article  PubMed  CAS  Google Scholar 

  20. Vanacker JM, Pettersson K, Gustafsson JA, et al. (1999) Transcriptional targets shared by estrogen receptor-related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta. EMBO J 18:4270–4279.

    Article  PubMed  CAS  Google Scholar 

  21. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360.

    Article  PubMed  CAS  Google Scholar 

  22. Christian M, Kiskinis E, Debevec D, et al. (2005) RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol 25:9383–9391.

    Article  PubMed  CAS  Google Scholar 

  23. Treuter E, Albrektsen T, Johansson L, et al. (1998) A regulatory role for RIP140 in nuclear receptor activation. Mol Endocrinol 12:864–881.

    Article  PubMed  CAS  Google Scholar 

  24. Castet A, Boulahtouf A, Versini G, et al. (2004) Multiple domains of the receptor-interacting protein 140 contribute to transcription inhibition. Nucleic Acids Res 32:1957–1966.

    Article  PubMed  CAS  Google Scholar 

  25. Safe S, Kim K (2004) Nuclear receptor-mediated transactivation through interaction with Sp proteins. Prog Nucleic Acid Res Mol Biol 77:1–36.

    Article  PubMed  CAS  Google Scholar 

  26. Teyssier C, Belguise K, Galtier F, et al. (2003) Receptor-interacting protein 140 binds c-jun and inhibits estradiol-induced activator protein-1 activity by reversing glucocorticoid receptor-interacting protein 1 effect. Mol Endocrinol 17:287–299.

    Article  PubMed  CAS  Google Scholar 

  27. Thenot S, Charpin M, Bonnet S, et al. (1999) Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Mol Cell Endocrinol 156:85–93.

    Article  PubMed  CAS  Google Scholar 

  28. Augereau P, Badia E, Fuentes M, et al. (2006) Transcriptional regulation of the human NRIP1/RIP140 gene by estrogen is modulated by dioxin signalling. Mol Pharmacol 69:1338–1346.

    Article  PubMed  CAS  Google Scholar 

  29. Kerley JS, Olsen SL, Freemantle SJ, et al. (2001) Transcriptional activation of the nuclear receptor corepressor RIP140 by retinoic acid: a potential negative-feedback regulatory mechanism. Biochem Biophys Res Commun 285:969–975.

    Article  PubMed  CAS  Google Scholar 

  30. Kumar MB, Tarpey RW, Perdew GH (1999) Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. J Biol Chem 274:22155–22164.

    Article  PubMed  CAS  Google Scholar 

  31. Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276:35684–35692.

    Article  PubMed  CAS  Google Scholar 

  32. Alarid ET, Bakopoulos N, Solodin N (1999) Proteasome-mediated proteolysis of estrogen receptor: a novel component in autologous down-regulation. Mol Endocrinol 13:1522–1534.

    Article  PubMed  CAS  Google Scholar 

  33. El Khissiin A, Leclercq G (1999) Implication of proteasome in estrogen receptor degradation. FEBS Lett 448:160–16.

    Article  PubMed  CAS  Google Scholar 

  34. Nawaz Z, Lonard DM, Dennis AP, et al. (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96:1858–1862.

    Article  PubMed  CAS  Google Scholar 

  35. Duong V, Boulle N, Daujat M, et al. (2007) Differential regulation of estrogen receptor turn-over and transactivation by Mdm2 and stress-inducing agents. Cancer Res 67:5513–21.

    Article  PubMed  CAS  Google Scholar 

  36. Momand J, Jung D, Wilczynski S, et al. (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459.

    Article  PubMed  CAS  Google Scholar 

  37. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27.

    Article  PubMed  CAS  Google Scholar 

  38. Haupt Y, Maya R, Kazaz A, et al. (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.

    Article  PubMed  CAS  Google Scholar 

  39. Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58.

    Article  PubMed  CAS  Google Scholar 

  40. Honda R, Yasuda H (2000) Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19:1473–1476.

    Article  PubMed  CAS  Google Scholar 

  41. Lonard DM, Nawaz Z, Smith CL, et al. (2000) The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5:939–948.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Duong, V., Augereau, P., Badia, E., Jalaguier, S., Cavailles, V. (2008). Regulation of Hormone Signaling by Nuclear Receptor Interacting Proteins. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_11

Download citation

Publish with us

Policies and ethics