Regulation of Hormone Signaling by Nuclear Receptor Interacting Proteins

  • Vanessa Duong
  • Patrick Augereau
  • Eric Badia
  • Stéphan Jalaguier
  • Vincent Cavailles
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 617)

Control of Nuclear Receptor Transactivation. Nuclear receptors are ligand-activated transcription factors that subsequently bind to specific responsive elements located in the regulatory region of target gene promoters (1). They stimulate transcription using both a constitutive amino-terminal and a ligand-dependent carboxyl-terminal activation function (AF1 and AF2, respectively), the latter being associated with the ligand-binding domain. These activation functions act independently or synergistically depending on the cell type and promoter context, by recruiting a number of cofactors (2).


Estrogen Receptor Androgen Receptor Nuclear Receptor Estrogen Response Element RIP140 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304.PubMedGoogle Scholar
  2. 2.
    Hall JM, McDonnell DP (2005) Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5:343–357.PubMedCrossRefGoogle Scholar
  3. 3.
    Lonard DM, O’Malley BW (2005) Expanding functional diversity of the coactivators. Trends Biochem Sci 30:126–132.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith CL, O’Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25:45–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Kumar R, Gururaj AE, Vadlamudi RK, et al. (2005) The clinical relevance of steroid hormone receptor corepressors. Clin Cancer Res 11:2822–2831.PubMedCrossRefGoogle Scholar
  6. 6.
    Cavailles V, Dauvois S, L’Horset F, Lopez G, et al. (1995) Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 14:3741–3751.PubMedGoogle Scholar
  7. 7.
    L’Horset F, Dauvois S, Heery DM, et al. (1996) RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. Mol Cell Biol 16:6029–6036.PubMedGoogle Scholar
  8. 8.
    Ikonen T, Palvimo JJ, Janne OA (1997) Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J Biol Chem 272:29821–29828.PubMedCrossRefGoogle Scholar
  9. 9.
    Masuyama H, Brownfield CM, St-Arnaud R, et al. (1997) Evidence for ligand-dependent intramolecular folding of the AF-2 domain in vitamin D receptor-activated transcription and coactivator interaction. Mol Endocrinol 11:1507–1517.PubMedCrossRefGoogle Scholar
  10. 10.
    Miyata KS, McCaw SE, Meertens LM, et al. (1998) Receptor-interacting protein 140 interacts with and inhibits transactivation by, peroxisome proliferator-activated receptor alpha and liver-X-receptor alpha [In Process Citation]. Mol Cell Endocrinol 146:69–76.PubMedCrossRefGoogle Scholar
  11. 11.
    Subramaniam N, Treuter E, Okret S (1999) Receptor interacting protein RIP140 inhibits both positive and negative gene regulation by glucocorticoids. J Biol Chem 274:18121–18127.PubMedCrossRefGoogle Scholar
  12. 12.
    Sugawara T, Abe S, Sakuragi N, et al. (2001) RIP 140 modulates transcription of the steroidogenic acute regulatory protein gene through interactions with both SF-1 and DAX-1. Endocrinology 142:3570–3577.PubMedCrossRefGoogle Scholar
  13. 13.
    Leonardsson G, Steel JH, Christian M, et al. (2004) Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci USA 101:8437–8442.PubMedCrossRefGoogle Scholar
  14. 14.
    White R, Leonardsson G, Rosewell I, et al. (2000) The nuclear receptor co-repressor nrip1 (RIP140) is essential for female fertility. Nat Med 6:1368–1374.PubMedCrossRefGoogle Scholar
  15. 15.
    Castet A, Herledan A, Bonnet S, et al. (2006) Receptor-interacting protein 140 differentially regulates estrogen receptor-related receptor transactivation depending on target genes. Mol Endocrinol 20:1035–1047.PubMedCrossRefGoogle Scholar
  16. 16.
    Carascossa S, Gobinet J, Georget V, et al. (2006) Receptor-interacting protein 140 is a repressor of the androgen receptor activity. Mol Endocrinol 20:1506–1518.PubMedCrossRefGoogle Scholar
  17. 17.
    Giguere V, Yang N, Segui P, et al. (1988) Identification of a new class of steroid hormone receptors. Nature 331:91–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Horard B, Vanacker JM (2003) Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand. J Mol Endocrinol 31: 349–357.PubMedCrossRefGoogle Scholar
  19. 19.
    Giguere V (2002) To ERR in the estrogen pathway. Trends Endocrinol Metab 13:220–225.PubMedCrossRefGoogle Scholar
  20. 20.
    Vanacker JM, Pettersson K, Gustafsson JA, et al. (1999) Transcriptional targets shared by estrogen receptor-related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta. EMBO J 18:4270–4279.PubMedCrossRefGoogle Scholar
  21. 21.
    Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360.PubMedCrossRefGoogle Scholar
  22. 22.
    Christian M, Kiskinis E, Debevec D, et al. (2005) RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol 25:9383–9391.PubMedCrossRefGoogle Scholar
  23. 23.
    Treuter E, Albrektsen T, Johansson L, et al. (1998) A regulatory role for RIP140 in nuclear receptor activation. Mol Endocrinol 12:864–881.PubMedCrossRefGoogle Scholar
  24. 24.
    Castet A, Boulahtouf A, Versini G, et al. (2004) Multiple domains of the receptor-interacting protein 140 contribute to transcription inhibition. Nucleic Acids Res 32:1957–1966.PubMedCrossRefGoogle Scholar
  25. 25.
    Safe S, Kim K (2004) Nuclear receptor-mediated transactivation through interaction with Sp proteins. Prog Nucleic Acid Res Mol Biol 77:1–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Teyssier C, Belguise K, Galtier F, et al. (2003) Receptor-interacting protein 140 binds c-jun and inhibits estradiol-induced activator protein-1 activity by reversing glucocorticoid receptor-interacting protein 1 effect. Mol Endocrinol 17:287–299.PubMedCrossRefGoogle Scholar
  27. 27.
    Thenot S, Charpin M, Bonnet S, et al. (1999) Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Mol Cell Endocrinol 156:85–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Augereau P, Badia E, Fuentes M, et al. (2006) Transcriptional regulation of the human NRIP1/RIP140 gene by estrogen is modulated by dioxin signalling. Mol Pharmacol 69:1338–1346.PubMedCrossRefGoogle Scholar
  29. 29.
    Kerley JS, Olsen SL, Freemantle SJ, et al. (2001) Transcriptional activation of the nuclear receptor corepressor RIP140 by retinoic acid: a potential negative-feedback regulatory mechanism. Biochem Biophys Res Commun 285:969–975.PubMedCrossRefGoogle Scholar
  30. 30.
    Kumar MB, Tarpey RW, Perdew GH (1999) Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. J Biol Chem 274:22155–22164.PubMedCrossRefGoogle Scholar
  31. 31.
    Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276:35684–35692.PubMedCrossRefGoogle Scholar
  32. 32.
    Alarid ET, Bakopoulos N, Solodin N (1999) Proteasome-mediated proteolysis of estrogen receptor: a novel component in autologous down-regulation. Mol Endocrinol 13:1522–1534.PubMedCrossRefGoogle Scholar
  33. 33.
    El Khissiin A, Leclercq G (1999) Implication of proteasome in estrogen receptor degradation. FEBS Lett 448:160–16.PubMedCrossRefGoogle Scholar
  34. 34.
    Nawaz Z, Lonard DM, Dennis AP, et al. (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96:1858–1862.PubMedCrossRefGoogle Scholar
  35. 35.
    Duong V, Boulle N, Daujat M, et al. (2007) Differential regulation of estrogen receptor turn-over and transactivation by Mdm2 and stress-inducing agents. Cancer Res 67:5513–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Momand J, Jung D, Wilczynski S, et al. (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459.PubMedCrossRefGoogle Scholar
  37. 37.
    Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Haupt Y, Maya R, Kazaz A, et al. (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.PubMedCrossRefGoogle Scholar
  39. 39.
    Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58.PubMedCrossRefGoogle Scholar
  40. 40.
    Honda R, Yasuda H (2000) Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19:1473–1476.PubMedCrossRefGoogle Scholar
  41. 41.
    Lonard DM, Nawaz Z, Smith CL, et al. (2000) The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5:939–948.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Vanessa Duong
    • 1
  • Patrick Augereau
  • Eric Badia
  • Stéphan Jalaguier
  • Vincent Cavailles
    • 1
  1. 1.Inserm Unit 540MontpellierFrance

Personalised recommendations