Kinetochore-Microtubule Interactions

  • Lesley Clayton
  • Tomoyuki U. Tanaka


Kinetochores are the multiprotein macromolecular assemblies on chromatin that ensure the accurate and timely segregation of chromosomes at during mitosis. To achieve this, kinetochores must interact with the microtubules of the spindle and microtubule-associated proteins. The nature of the kinetochore–microtubule interaction varies during the stages of the mitotic cycle, starting with initial capture and progressing through bi-orientation and congression at prometaphase/metaphase, then finally separation of sister kinetochores/chromatids during anaphase. All the while during this process, kinetochores are able to signal their state of microtubule binding to the cell cycle control machinery. They are also able to influence microtubule dynamics in order to achieve chromosome segregation. Determining the structure and biochemistry of these various interactions continues to be a major objective of research in this field.

Much of the cell biology/cytology of cell division has...


Spindle Pole Spindle Assembly Checkpoint Sister Kinetochore Chromosomal Passenger Complex Microtubule Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work in the authors’ laboratory was supported by Cancer Research UK, the Wellcome Trust, the Human Frontier Science Program, the Lister Research Institute Prize and the Association for International Cancer Research. T.U. Tanaka is a Senior Research Fellow of Cancer Research UK.


  1. Adams, R. R., S. P. Wheatley, et al. 2000. INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr Biol 10: 1075–8.CrossRefGoogle Scholar
  2. Andrews, P. D., E. Knatko, et al. 2003. Mitotic mechanics: the auroras come into view. Curr Opin Cell Biol 15: 672–83.CrossRefGoogle Scholar
  3. Andrews, P. D., Y. Ovechkina, et al. 2004. Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6: 253–68.CrossRefGoogle Scholar
  4. Asbury, C. L., D. R. Gestaut, et al. 2006. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc Natl Acad Sci USA 103: 9873–8.CrossRefGoogle Scholar
  5. Biggins, S. and A. W. Murray 2001. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev 15: 3118–29.CrossRefGoogle Scholar
  6. Biggins, S., F. F. Severin, et al. 1999. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev 13: 532–44.CrossRefGoogle Scholar
  7. Buvelot, S., S. Y. Tatsutani, et al. 2003. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. J Cell Biol 160: 329–39.CrossRefGoogle Scholar
  8. Carazo-Salas, R. E., O. J. Gruss, et al. 2001. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 3: 228–34.CrossRefGoogle Scholar
  9. Carmena, M. and W. C. Earnshaw 2003. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4: 842–54.CrossRefGoogle Scholar
  10. Caudron, M., G. Bunt, et al. 2005. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309: 1373–6.CrossRefGoogle Scholar
  11. Chan, C. S. and D. Botstein 1993. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135: 677–91.Google Scholar
  12. Cheeseman, I. M., S. Anderson, et al. 2002. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111: 163–72.CrossRefGoogle Scholar
  13. Cheeseman, I. M., J. S. Chappie, et al. 2006. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127: 983–97.CrossRefGoogle Scholar
  14. Cimini, D. 2007. Detection and correction of merotelic kinetochore orientationby Aurora B and its partners. Cell Cycle 6: 1558–64.CrossRefGoogle Scholar
  15. Compton, D. A. 2002. Chromosome segregation: pulling from the poles. Curr Biol 12: R651–3.CrossRefGoogle Scholar
  16. Czaban, B. B. and A. Forer 1985. The kinetic polarities of spindle microtubules in vivo, in crane-fly spermatocytes. I. Kinetochore microtubules that re-form after treatment with colcemid. J Cell Sci 79: 1–37.PubMedGoogle Scholar
  17. De Brabander, M., G. Geuens, et al. 1981. Nucleated assembly of mitotic microtubules in living PTK2 cells after release from nocodazole treatment. Cell Motil 1: 469–83.Google Scholar
  18. DeLuca, J. G., W. E. Gall, et al. 2006. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127: 969–82.CrossRefGoogle Scholar
  19. Dewar, H., K. Tanaka, et al. 2004. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428: 93–7.CrossRefGoogle Scholar
  20. Dong, Y., K. J. Vanden Beldt, et al. 2007. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat Cell Biol 9: 516–22.CrossRefGoogle Scholar
  21. Efremov, A., E. L. Grishchuk, et al. 2007. In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proc Natl Acad Sci U S A 104: 19017–22.CrossRefGoogle Scholar
  22. Emanuele, M. J. and P. T. Stukenberg 2007. Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment. Cell 130: 893–905.CrossRefGoogle Scholar
  23. Francisco, L., W. Wang, et al. 1994. Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol Cell Biol 14: 4731–40.Google Scholar
  24. Franck, A. D., A. F. Powers, et al. 2007. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nat Cell Biol 9: 832–7.CrossRefGoogle Scholar
  25. Gardner, M. K., C. G. Pearson, et al. 2005. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol Biol Cell 16: 3764–75.CrossRefGoogle Scholar
  26. Gorbsky, G. J., P. J. Sammak, et al. 1987. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol 104: 9–18.CrossRefGoogle Scholar
  27. Goshima, G. and M. Yanagida 2000. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100: 619–33.CrossRefGoogle Scholar
  28. Grishchuk, E. L., M. I. Molodtsov, et al. 2005. Force production by disassembling microtubules. Nature 438: 384–8.CrossRefGoogle Scholar
  29. Gruss, O. J. and I. Vernos 2004. The mechanism of spindle assembly: functions of Ran and its target TPX2. J Cell Biol 1667: 94–55.CrossRefGoogle Scholar
  30. Hanisch, A., H. H. Sillje, et al. 2006. Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. Embo J 25: 5504–15.CrossRefGoogle Scholar
  31. Hauf, S., R. W. Cole, et al. 2003. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161: 281–94.CrossRefGoogle Scholar
  32. Hayden, J. H., S. S. Bowser, et al. 1990. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J Cell Biol 111: 1039–45.CrossRefGoogle Scholar
  33. He, X., S. Asthana, et al. 2000. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101: 763–75.CrossRefGoogle Scholar
  34. He, X., D. R. Rines, et al. 2001. Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106: 195–206.CrossRefGoogle Scholar
  35. Hegemann, J. H. and U. N. Fleig 1993. The centromere of budding yeast. Bioessays 15: 451–60.CrossRefGoogle Scholar
  36. Higuchi, T. and F. Uhlmann 2005. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433: 171–6.PubMedCrossRefGoogle Scholar
  37. Hildebrandt, E. R. and M. A. Hoyt 2000. Mitotic motors in Saccharomyces cerevisiae. Biochim Biophys Acta 1496: 99–116.CrossRefGoogle Scholar
  38. Hsu, J. Y., Z. W. Sun, et al. 2000. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102: 279–91.CrossRefGoogle Scholar
  39. Indjeian, V. B., B. M. Stern, et al. 2005. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307: 130–3.CrossRefGoogle Scholar
  40. Jelluma, N., A. B. Brenkman, et al. 2008. Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell 132: 233–46.CrossRefGoogle Scholar
  41. Jones, M. H., B. J. Huneycutt, et al. 2005. Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis. Curr Biol 15: 160–5.CrossRefGoogle Scholar
  42. Joseph, J., S. H. Tan, et al. 2002. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol 156: 595–602.CrossRefGoogle Scholar
  43. Kaitna, S., M. Mendoza, et al. 2000. Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol 10: 1172–81.CrossRefGoogle Scholar
  44. Kalab, P., R. T. Pu, et al. 1999. The ran GTPase regulates mitotic spindle assembly. Curr Biol 9: 481–4.CrossRefGoogle Scholar
  45. Kalab, P., K. Weis, et al. 2002. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295: 2452–6.CrossRefGoogle Scholar
  46. Kallio, M. J., M. L. McCleland, et al. 2002. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr Biol 12: 900–5.CrossRefGoogle Scholar
  47. Kapoor, T. M. and D. A. Compton 2002. Searching for the middle ground: mechanisms of chromosome alignment during mitosis. J Cell Biol 157: 551–6.CrossRefGoogle Scholar
  48. Kapoor, T. M., M. A. Lampson, et al. 2006. Chromosomes can congress to the metaphase plate before biorientation. Science 311: 388–91.CrossRefGoogle Scholar
  49. Katis, V. L., M. Galova, et al. 2004. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol 14: 560–72.CrossRefGoogle Scholar
  50. Kerrebrock, A. W., D. P. Moore, et al. 1995. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell 83: 247–56.CrossRefGoogle Scholar
  51. Khodjakov, A., R. W. Cole, et al. 2000. Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 10: 59–67.CrossRefGoogle Scholar
  52. Khodjakov, A., L. Copenagle, et al. 2003. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J Cell Biol 160: 671–83.CrossRefGoogle Scholar
  53. King, E. M., N. Rachidi, et al. 2007. Ipl1p-dependent phosphorylation of Mad3p is required for the spindle checkpoint response to lack of tension at kinetochores. Genes Dev 21: 1163–8.CrossRefGoogle Scholar
  54. King, J. M., T. S. Hays, et al. 2000. Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. J Cell Biol 151: 739–48.CrossRefGoogle Scholar
  55. Kirschner, M. and T. Mitchison 1986. Beyond self-assembly: from microtubules to morphogenesis. Cell 45: 329–42.CrossRefGoogle Scholar
  56. Kitajima, T. S., S. A. Kawashima, et al. 2004. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427: 510–7.PubMedCrossRefGoogle Scholar
  57. Kitajima, T. S., T. Sakuno, et al. 2006. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441: 46–52.PubMedCrossRefGoogle Scholar
  58. Kitamura, E., K. Tanaka et al. 2007. Kinetochore microtubule interaction during S phase in Saccharomyces Cerevisiae. Genes Dev 21: 3319–3330.PubMedCrossRefGoogle Scholar
  59. Knowlton, A. L., W. Lan, et al. 2006. Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr Biol 1617: 17–10.CrossRefGoogle Scholar
  60. Lampson, M. A., K. Renduchitala, et al. 2004. Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6: 232–7.Google Scholar
  61. Lan, W., X. Zhang, et al. 2004. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14: 273–86.Google Scholar
  62. Liu, X., I. McLeod, et al. 2005. Molecular analysis of kinetochore architecture in fission yeast. Embo J 24: 2919–30.CrossRefGoogle Scholar
  63. Maddox, P., A. Desai, et al. 2002. Poleward microtubule flux is a major component of spindle dynamics and anaphase a in mitotic Drosophila embryos. Curr Biol 12: 1670–4.CrossRefGoogle Scholar
  64. Maddox, P. S., K. S. Bloom, et al. 2000. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nat Cell Biol 2: 36–41.CrossRefGoogle Scholar
  65. Maiato, H., J. DeLuca, et al. 2004. The dynamic kinetochore-microtubule interface. J Cell Sci 117: 5461–77.CrossRefGoogle Scholar
  66. Maiato, H., E. A. Fairley, et al. 2003. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113: 891–904.CrossRefGoogle Scholar
  67. Maiato, H., C. L. Rieder, et al. 2004. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167: 831–40.CrossRefGoogle Scholar
  68. Maiato, H., P. Sampaio, et al. 2002. MAST/Orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J Cell Biol 157: 749–60.CrossRefGoogle Scholar
  69. Marston, A. L., W. H. Tham, et al. 2004. A genome-wide screen identifies genes required for centromeric cohesion. Science 303: 1367–70.CrossRefGoogle Scholar
  70. Maure, J. F., E. Kitamura, et al. 2007. Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism. Curr Biol 17: 2175–82.CrossRefGoogle Scholar
  71. McAinsh, A. D., J. D. Tytell, et al. 2003. Structure, function, and regulation of budding yeast kinetochores. Annu Rev Cell Dev Biol 19: 519–39.PubMedCrossRefGoogle Scholar
  72. McGuinness, B. E., T. Hirota, et al. 2005. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol 3: e86.CrossRefGoogle Scholar
  73. Meraldi, P. and P. K. Sorger 2005. A dual role for Bub1 in the spindle checkpoint and chromosome congression. Embo J 24: 1621–33.CrossRefGoogle Scholar
  74. Miranda, J. J., D. S. King, et al. 2007. Protein arms in the kinetochore-microtubule interface of the yeast DASH complex. Mol Biol Cell 18: 2503–10.CrossRefGoogle Scholar
  75. Mitchison, T. and M. Kirschner 1984. Dynamic instability of microtubule growth. Nature 312: 237–42.PubMedCrossRefGoogle Scholar
  76. Mitchison, T. J. and E. D. Salmon 1992. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J Cell Biol 119: 569–82.CrossRefGoogle Scholar
  77. Mitchison, T. J. and E. D. Salmon 2001. Mitosis: a history of division. Nat Cell Biol 3: E17–21.CrossRefGoogle Scholar
  78. Moore, D. P. and T. L. Orr-Weaver 1998. Chromosome segregation during meiosis: building an unambivalent bivalent. Curr Top Dev Biol 37: 263–99.PubMedCrossRefGoogle Scholar
  79. Nasmyth, K. 2005. How might cohesin hold sister chromatids together? Philos Trans R Soc Lond B Biol Sci 360: 483–96.PubMedCrossRefGoogle Scholar
  80. Nicklas, R. B. and C. A. Koch 1969. Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J Cell Biol 43: 40–50.CrossRefGoogle Scholar
  81. O'Toole, E. T., M. Winey, et al. 1999. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol Biol Cell 10: 2017–31.Google Scholar
  82. Ohi, R., T. Sapra, et al. 2004. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15: 2895–906.CrossRefGoogle Scholar
  83. Pearson, C. G., P. S. Maddox, et al. 2001. Budding yeast chromosome structure and dynamics during mitosis. J Cell Biol 152: 1255–66.CrossRefGoogle Scholar
  84. Pearson, C. G., P. S. Maddox, et al. 2003. Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics. Mol Biol Cell 14: 4181–95.CrossRefGoogle Scholar
  85. Pereira, G. and E. Schiebel 2003. Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302: 2120–4.PubMedCrossRefGoogle Scholar
  86. Pfarr, C. M., M. Coue, et al. 1990. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345: 263–5.PubMedCrossRefGoogle Scholar
  87. Pickett-Heaps, J. D. 1991. Cell division in diatoms. Int. Rev.Cytol. 128: 63–107.CrossRefGoogle Scholar
  88. Pinsky, B. A., S. Y. Tatsutani, et al. 2003. An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev Cell 5: 735–45.CrossRefGoogle Scholar
  89. Porter, I. M., S. E. McClelland, et al. 2007. Bod1, a novel kinetochore protein required for chromosome biorientation. J Cell Biol 179: 187–97.CrossRefGoogle Scholar
  90. Rabitsch, K. P., J. Gregan, et al. 2004. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol 14: 287–301.Google Scholar
  91. Riedel, C. G., V. L. Katis, et al. 2006. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441: 53–61.CrossRefGoogle Scholar
  92. Rieder, C. L. and S. P. Alexander 1990. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol 110: 81–95.CrossRefGoogle Scholar
  93. Rieder, C. L. and E. D. Salmon 1994. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol 124: 223–33.CrossRefGoogle Scholar
  94. Rogers, G. C., S. L. Rogers, et al. 2005. Spindle microtubules in flux. J Cell Sci 118: 1105–16.CrossRefGoogle Scholar
  95. Ruchaud, S., M. Carmena, et al. 2007. Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8: 798–812.CrossRefGoogle Scholar
  96. Sanchez-Perez, I., S. J. Renwick, et al. 2005. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. Embo J 24: 2931–43.CrossRefGoogle Scholar
  97. Sandall, S., F. Severin, et al. 2006. A Bir1-Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 127: 1179–91.CrossRefGoogle Scholar
  98. Sassoon, I., F. F. Severin, et al. 1999. Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. Genes Dev 13: 545–55.CrossRefGoogle Scholar
  99. Saxton, W. M., D. L. Stemple, et al. 1984. Tubulin dynamics in cultured mammalian cells. J Cell Biol 99: 2175–86.CrossRefGoogle Scholar
  100. Shang, C., T. R. Hazbun, et al. 2003. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol Biol Cell 14: 3342–55.CrossRefGoogle Scholar
  101. Skibbens, R. V., V. P. Skeen, et al. 1993. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol 122: 859–75.CrossRefGoogle Scholar
  102. Sonoda, E., T. Matsusaka, et al. 2001. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell 1: 759–70.CrossRefGoogle Scholar
  103. Starr, D. A., B. C. Williams, et al. 1998. ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol 142: 763–74.CrossRefGoogle Scholar
  104. Tanaka, K., E. Kitamura, et al. 2007. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J Cell Biol. 178: 269–281.Google Scholar
  105. Tanaka, K., N. Mukae, et al. 2005. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434: 987–94.PubMedCrossRefGoogle Scholar
  106. Tanaka, T., J. Fuchs, et al. 2000. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat Cell Biol 2: 492–9.Google Scholar
  107. Tanaka, T. U., N. Rachidi, et al. 2002. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108: 317–29.CrossRefGoogle Scholar
  108. Tanaka, T. U., M. J. Stark, et al. 2005. Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol 6: 929–42.CrossRefGoogle Scholar
  109. Telzer, B. R., M. J. Moses, et al. 1975. Assembly of microtubules onto kinetochores of isolated mitotic chromosomes of HeLa cells. Proc Natl Acad Sci USA 72: 4023–7.CrossRefGoogle Scholar
  110. Tippit, D. H., J. D. Pickett-Heaps, et al. 1980. Cell division in two large pennate diatoms Hantzschia and Nitzschia III. A new proposal for kinetochore function during prometaphase. J Cell Biol 86: 402–16.CrossRefGoogle Scholar
  111. Tytell, J. D. and P. K. Sorger 2006. Analysis of kinesin motor function at budding yeast kinetochores. J Cell Biol 172: 861–74.CrossRefGoogle Scholar
  112. Vagnarelli, P., C. Morrison, et al. 2004. Analysis of Scc1-deficient cells defines a key metaphase role of vertebrate cohesin in linking sister kinetochores. EMBO Rep 5: 167–71.CrossRefGoogle Scholar
  113. van Breugel, M., D. Drechsel, et al. 2003. Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J Cell Biol 161: 359–69.CrossRefGoogle Scholar
  114. Wadsworth, P. and A. Khodjakov 2004. E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 14: 413–9.CrossRefGoogle Scholar
  115. Waterman-Storer, C. M., A. Desai, et al. 1998. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol 8: 1227–30.CrossRefGoogle Scholar
  116. Wei, R. R., J. Al-Bassam, et al. 2007. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 14: 54–9.CrossRefGoogle Scholar
  117. Wei, R. R., P. K. Sorger, et al. 2005. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci USA 102: 5363–7.CrossRefGoogle Scholar
  118. Westermann, S., A. Avila-Sakar, et al. 2005. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Mol Cell 17: 277–90.CrossRefGoogle Scholar
  119. Westermann, S., H. W. Wang, et al. 2006. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440: 565–9.PubMedCrossRefGoogle Scholar
  120. Winey, M. and B. J. Huneycutt 2002. Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene 21: 6161–9.CrossRefGoogle Scholar
  121. Winey, M., C. L. Mamay, et al. 1995. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129: 1601–15.CrossRefGoogle Scholar
  122. Witt, P. L., H. Ris, et al. 1980. Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma 81: 483–505.CrossRefGoogle Scholar
  123. Wittmann, T., A. Hyman, et al. 2001. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3: E28–34.CrossRefGoogle Scholar
  124. Wollman, R., E. N. Cytrynbaum, et al. 2005. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr Biol 15: 828–32.CrossRefGoogle Scholar
  125. Yang, Z., U. S. Tulu, et al. 2007. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr Biol 17: 973–80.CrossRefGoogle Scholar
  126. Zhang, X., W. Lan, et al. 2007. Aurora B Phosphorylates Multiple Sites on MCAK to Spatially and Temporally Regulate Its Function. Mol Biol Cell. 18: 3264–3276.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of Life Sciences, University of Dundee, Wellcome Trust BiocentreDundee DD1 5EHU.K

Personalised recommendations