Skip to main content

Mitotic Spindle Assembly Mechanisms

  • Chapter
  • First Online:

Abstract

The mitotic spindle consists of dynamic microtubules and many associated factors that form an antiparallel, bipolar array. Duplicated chromosomes are attached to microtubules of the spindle and then are physically separated by the spindle to opposite ends of the dividing cell. Spindles vary in their morphology and assembly pathway depending on the cell type and organism, but common underlying mechanisms derive from the dynamics of the microtubules and microtubule-based motor proteins, and the activities of chromosomes themselves. In this chapter, we describe the multiple mechanisms that promote assembly of the dynamic mitotic spindle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Bassam, J., van Breugel, M., Harrison, S. C. and Hyman, A. 2006. Stu2p binds tubulin and undergoes an open-to-closed conformational change. J Cell Biol 172: 1009–1022.

    PubMed  CAS  Google Scholar 

  • Albee, A. J., Tao, W. and Wiese, C. 2006. Phosphorylation of maskin by Aurora-A is regulated by RanGTP and importin beta. J Biol Chem 281: 38293–38301.

    PubMed  CAS  Google Scholar 

  • Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P., Nigg, E. A. and Mann, M. 2003. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426: 570–574.

    PubMed  CAS  Google Scholar 

  • Andersen, S. S. L., Ashford, A. J., Tournebize, R., Gavet, O., A., S., Hyman, A. A. and Karsenti, E. 1997. Mitotic chromatin regulates phosphorylation of Stathmin/Op18. Nature 389: 640–643.

    PubMed  CAS  Google Scholar 

  • Antonio, C., Ferby, I., Wilhelm, H., Jones, M., Karsenti, E., Nebreda, A. R. and Vernos, I. 2000. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102: 425–435.

    PubMed  CAS  Google Scholar 

  • Azimzadeh, J. and Bornens, M. 2007. Structure and duplication of the centrosome. J Cell Sci 120: 2139–2142.

    PubMed  CAS  Google Scholar 

  • Basto, R., Lau, J., Vinogradova, T., Gardiol, A., Woods, C. G., Khodjakov, A. and Raff, J. W. 2006. Flies without centrioles. Cell 125: 1375–1386.

    PubMed  CAS  Google Scholar 

  • Bellanger, J. M. and Gonczy, P. 2003. TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. Curr Biol 13: 1488–1498.

    PubMed  CAS  Google Scholar 

  • Belmont, L., Deacon, H. W. and Mitchison, T. J. 1996. Catastrophic revelations about Op18/stathmin. Trends Biochem Sci 21: 197–198.

    PubMed  CAS  Google Scholar 

  • Belmont, L. D., Hyman, A. A., Sawin, K. E. and Mitchison, T. J. 1990. Real-time visualization of cell cycle dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62: 579–589.

    PubMed  CAS  Google Scholar 

  • Belmont, L. D. and Mitchison, T. J. 1996. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84: 623–631.

    PubMed  CAS  Google Scholar 

  • Blower, M. D., Nachury, M., Heald, R. and Weis, K. 2005. A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 121: 223–234.

    PubMed  CAS  Google Scholar 

  • Brittle, A. L. and Ohkura, H. 2005. Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila. Embo J 24: 1387–1396.

    PubMed  CAS  Google Scholar 

  • Brouhard, G. J. and Hunt, A. J. 2005. Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proc Natl Acad Sci USA 102: 13903–13908.

    PubMed  CAS  Google Scholar 

  • Brown, J. A., Bharathi, A., Ghosh, A., Whalen, W., Fitzgerald, E. and Dhar, R. 1995. A mutation in the Schizosaccharomyces pombe rae1 gene causes defects in poly(A)+ RNA export and in the cytoskeleton. J Biol Chem 270: 7411–7419.

    PubMed  CAS  Google Scholar 

  • Brust-Mascher, I., Civelekoglu-Scholey, G., Kwon, M., Mogilner, A. and Scholey, J. M. 2004. Model for anaphase B: role of three mitotic motors in a switch from poleward flux to spindle elongation. Proc Natl Acad Sci USA 101: 15938–15943.

    PubMed  CAS  Google Scholar 

  • Budde, P. P., Kumagai, A., Dunphy, W. G. and Heald, R. 2001. Regulation of Op18 during spindle assembly in Xenopus egg extracts. J Cell Biol 153: 149–158.

    PubMed  CAS  Google Scholar 

  • Burbank, K. S., Mitchison, T. J. and Fisher, D. S. 2007. Slide-and-cluster models for spindle assembly. Curr Biol 17: 1373–1383.

    PubMed  CAS  Google Scholar 

  • Cameron, L. A., Yang, G., Cimini, D., Canman, J. C., Kisurina-Evgenieva, O., Khodjakov, A., Danuser, G. and Salmon, E. D. 2006. Kinesin 5-independent poleward flux of kinetochore microtubules in PtK1 cells. J Cell Biol 173: 173–179.

    PubMed  CAS  Google Scholar 

  • Carazo-Salas, R. E., Gruss, O. J., Mattaj, I. W. and Karsenti, E. 2001. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 3: 228–234.

    PubMed  CAS  Google Scholar 

  • Carminati, J. L. and Stearns, T. 1997. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol 138: 629–641.

    PubMed  CAS  Google Scholar 

  • Cassimeris, L. 1993. Regulation of microtubule dynamic instability. Cell Motil Cytoskeleton 26: 275–281.

    PubMed  CAS  Google Scholar 

  • Cassimeris, L. 2002. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14: 18–24.

    PubMed  CAS  Google Scholar 

  • Cassimeris, L. and Morabito, J. 2004. TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly. Mol Biol Cell 15: 1580–1590.

    PubMed  CAS  Google Scholar 

  • Chang, P., Coughlin, M. and Mitchison, T. J. 2005. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol 7: 1133–1139.

    PubMed  CAS  Google Scholar 

  • Chang, P., Jacobson, M. K. and Mitchison, T. J. 2004. Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432: 645–649.

    PubMed  CAS  Google Scholar 

  • Chang, W., Dynek, J. N. and Smith, S. 2005. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem J 391: 177–184.

    PubMed  CAS  Google Scholar 

  • Compton, D. A. 2005. Regulation of mitosis by poly(ADP-ribosyl)ation. Biochem J 391: e5–6.

    PubMed  CAS  Google Scholar 

  • Compton, D. A. and Cleveland, D. W. 1993. NuMA is required for the proper completion of mitosis. J Cell Biol 120: 947–957.

    PubMed  CAS  Google Scholar 

  • Compton, D. A., Szilak, I. and Cleveland, D. W. 1992. Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J Cell Biol 116: 1395–1408.

    PubMed  CAS  Google Scholar 

  • Cottingham, F. R., Gheber, L., Miller, D. L. and Hoyt, M. A. 1999. Novel roles for saccharomyces cerevisiae mitotic spindle motors. J Cell Biol 147: 335–350.

    PubMed  CAS  Google Scholar 

  • Cullen, C. F., Deak, P., Glover, D. M. and Ohkura, H. 1999. mini spindles: A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J Cell Biol 146: 1005–1018.

    PubMed  CAS  Google Scholar 

  • Cytrynbaum, E. N., Scholey, J. M. and Mogilner, A. 2003. A force balance model of early spindle pole separation in Drosophila embryos. Biophys J 84: 757–769.

    PubMed  CAS  Google Scholar 

  • Dammermann, A., Desai, A. and Oegema, K. 2003. The minus end in sight. Curr Biol 13: R614–624.

    PubMed  CAS  Google Scholar 

  • DeLuca, J. G., Dong, Y., Hergert, P., Strauss, J., Hickey, J. M., Salmon, E. D. and McEwen, B. F. 2005. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell 16: 519–531.

    PubMed  CAS  Google Scholar 

  • DeLuca, J. G., Moree, B., Hickey, J. M., Kilmartin, J. V. and Salmon, E. D. 2002. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J Cell Biol 159: 549–555.

    PubMed  CAS  Google Scholar 

  • Desai, A. and Mitchison, T. J. 1997. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13: 83–117.

    PubMed  CAS  Google Scholar 

  • DeZwaan, T. M., Ellingson, E., Pellman, D. and Roof, D. M. 1997. Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J. Cell Biol. 138: 1023–1040.

    PubMed  CAS  Google Scholar 

  • Doxsey, S., McCollum, D. and Theurkauf, W. 2005. Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 21: 411–434.

    PubMed  CAS  Google Scholar 

  • Drechsel, D. N. and Kirschner, M. W. 1994. The minimum GTP cap required to stabilize microtubules. Curr Biol 4: 1053–1061.

    PubMed  CAS  Google Scholar 

  • Dujardin, D., Wacker, U. I., Moreau, A., Schroer, T. A., Rickard, J. E. and De Mey, J. R. 1998. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J Cell Biol 141: 849–862.

    PubMed  CAS  Google Scholar 

  • Earnshaw, W. C. and Rothfield, N. 1985. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313–321.

    PubMed  CAS  Google Scholar 

  • Echeverri, C. J., Paschal, B. M., Vaughan, K. T. and Vallee, R. B. 1996. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol. 132: 617–633.

    PubMed  CAS  Google Scholar 

  • Eggert, U. S., Mitchison, T. J. and Field, C. M. 2006. Animal cytokinesis: from parts list to mechanisms. Annu Rev Biochem 75: 543–566.

    PubMed  CAS  Google Scholar 

  • Ems-McClung, S. C., Hertzer, K. M., Zhang, X., Miller, M. W. and Walczak, C. E. 2007. The interplay of the N- and C-terminal domains of MCAK control microtubule depolymerization activity and spindle assembly. Mol Biol Cell 18: 282–294.

    PubMed  CAS  Google Scholar 

  • Ems-McClung, S. C., Zheng, Y. and Walczak, C. E. 2004. Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol Biol Cell 15: 46–57.

    PubMed  CAS  Google Scholar 

  • Endow, S. A., Chandra, R., Komma, D. J., Yamamoto, A. H. and Salmon, E. D. 1994. Mutants of the Drosophila ncd microtubule motor protein cause centrosomal and spindle pole defects in mitosis. J Cell Sci 107: 859–867.

    PubMed  CAS  Google Scholar 

  • Enos, A. P. and Morris, N. R. 1990. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60: 1019–1027.

    PubMed  CAS  Google Scholar 

  • Eshel, D., Urrestarazu, L. A., Vissers, S., Jauniaux, J.-C., van Vliet-Reedijk, J. C., Planta, R. J. and Gibbon, I. R. 1993. Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proc Natl Acad Sci USA 90: 11172–11176.

    PubMed  CAS  Google Scholar 

  • Eyers, P. A., Erikson, E., Chen, L. G. and Maller, J. L. 2003. A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 13: 691–697.

    PubMed  CAS  Google Scholar 

  • Fant, X., Merdes, A. and Haren, L. 2004. Cell and molecular biology of spindle poles and NuMA. Int Rev Cytol 238: 1–57.

    PubMed  CAS  Google Scholar 

  • Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. and Ahringer, J. 2000. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408: 325–330.

    PubMed  CAS  Google Scholar 

  • Funabiki, H. and Murray, A. W. 2000. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102: 411–424.

    PubMed  CAS  Google Scholar 

  • Gadea, B. B. and Ruderman, J. V. 2006. Aurora B is required for mitotic chromatin-induced phosphorylation of Op18/Stathmin. Proc Natl Acad Sci USA 103: 4493–4498.

    PubMed  CAS  Google Scholar 

  • Gaetz, J. and Kapoor, T. M. 2004. Dynein/dynactin regulate metaphase spindle length by targeting depolymerizing activities to spindle poles. J Cell Biol 166: 465–471.

    PubMed  CAS  Google Scholar 

  • Gaglio, T., Dionne, M. A. and Compton, D. A. 1997. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J Cell Biol 138: 1055–1066.

    PubMed  CAS  Google Scholar 

  • Gaglio, T., Saredi, A., Bingham, J. B., Hasbani, M. J., Gill, S. R., Schroer, T. A. and Compton, D. A. 1996. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J Cell Biol 135: 399–414.

    PubMed  CAS  Google Scholar 

  • Ganem, N. J. and Compton, D. A. 2004. The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK. J Cell Biol 166: 473–478.

    PubMed  CAS  Google Scholar 

  • Ganem, N. J., Upton, K. and Compton, D. A. 2005. Efficient mitosis in human cells lacking poleward microtubule flux. Curr Biol 15: 1827–1832.

    PubMed  CAS  Google Scholar 

  • Garcia, M. A., Koonrugsa, N. and Toda, T. 2002. Spindle-kinetochore attachment requires the combined action of Kin I-like Klp5/6 and Alp14/Dis1-MAPs in fission yeast. Embo J 21: 6015–6024.

    PubMed  CAS  Google Scholar 

  • Garcia, M. A., Koonrugsa, N. and Toda, T. 2002. Two kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol 12: 610–621.

    PubMed  CAS  Google Scholar 

  • Gard, D. L. and Kirschner, M. W. 1987. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J Cell Biol 105: 2203–2215.

    PubMed  CAS  Google Scholar 

  • Garrett, S., Auer, K., Compton, D. A. and Kapoor, T. M. 2002. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr Biol 12: 2055–2059.

    PubMed  CAS  Google Scholar 

  • Gassmann, R., Carvalho, A., Henzing, A. J., Ruchaud, S., Hudson, D. F., Honda, R., Nigg, E. A., Gerloff, D. L. and Earnshaw, W. C. 2004. Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol 166: 179–191.

    PubMed  CAS  Google Scholar 

  • Gassmann, R., Henzing, A. J. and Earnshaw, W. C. 2005. Novel components of human mitotic chromosomes identified by proteomic analysis of the chromosome scaffold fraction. Chromosoma 113: 385–397.

    PubMed  CAS  Google Scholar 

  • Gergely, F., Draviam, V. M. and Raff, J. W. 2003. The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev 17: 336–341.

    PubMed  CAS  Google Scholar 

  • Giet, R., McLean, D., Descamps, S., Lee, M. J., Raff, J. W., Prigent, C. and Glover, D. M. 2002. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156: 437–451.

    PubMed  CAS  Google Scholar 

  • Giet, R., Uzbekov, R., Cubizolles, F., Le Guellec, K. and Prigent, C. 1999. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J Biol Chem 274: 15005–15013.

    PubMed  CAS  Google Scholar 

  • Gliksman, N. R., Skibbens, R. V. and Salmon, E. D. 1993. How the transition frequencies of microtubule dynamic instability (nucleation, catastrophe, and rescue) regulate microtubule dynamics in interphase and mitosis: analysis using a Monte Carlo computer simulation. Mol Biol Cell 4: 1035–1050.

    PubMed  CAS  Google Scholar 

  • Gönczy P, Pichler S, Kirkham M, Hyman AA. 1999. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J Cell Biol 4(147): 135–50.

    PubMed  CAS  Google Scholar 

  • Gonczy, P., et al. 2000. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408: 331–336.

    PubMed  CAS  Google Scholar 

  • Gordon, M. B., Howard, L. and Compton, D. A. 2001. Chromosome movement in mitosis requires microtubule anchorage at spindle poles. J Cell Biol 152: 425–434.

    PubMed  CAS  Google Scholar 

  • Goshima, G., Nedelec, F. and Vale, R. D. 2005. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol 171: 229–240.

    PubMed  CAS  Google Scholar 

  • Goshima, G. and Vale, R. D. 2003. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J Cell Biol 162: 1003–1016.

    PubMed  CAS  Google Scholar 

  • Goshima, G., Wollman, R., Stuurman, N., Scholey, J. M. and Vale, R. D. 2005. Length control of the metaphase spindle. Curr Biol 15: 1979–1988.

    PubMed  CAS  Google Scholar 

  • Grava, S., Schaerer, F., Faty, M., Philippsen, P. and Barral, Y. 2006. Asymmetric recruitment of dynein to spindle poles and microtubules promotes proper spindle orientation in yeast. Dev Cell 10: 425–439.

    PubMed  CAS  Google Scholar 

  • Green, R. A. and Kaplan, K. B. 2003. Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J Cell Biol 163: 949–961.

    PubMed  CAS  Google Scholar 

  • Green, R. A., Wollman, R. and Kaplan, K. B. 2005. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 16: 4609–4622.

    PubMed  CAS  Google Scholar 

  • Grishchuk, E. L., Spiridonov, I. S. and McIntosh, J. R. 2007. Mitotic chromosome biorientation in fission yeast is enhanced by dynein and a minus-end-directed, kinesin-like protein. Mol Biol Cell 18: 2216–2225.

    PubMed  CAS  Google Scholar 

  • Groen, A. C., Cameron, L. A., Coughlin, M., Miyamoto, D. T., Mitchison, T. J. and Ohi, R. 2004. XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr Biol 14: 1801–1811.

    PubMed  CAS  Google Scholar 

  • Gruneberg, U., Neef, R., Li, X., Chan, E. H., Chalamalasetty, R. B., Nigg, E. A. and Barr, F. A. 2006. KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol 172: 363–372.

    PubMed  CAS  Google Scholar 

  • Gruss, O. J., et al. 2001. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104: 83–93.

    PubMed  CAS  Google Scholar 

  • Gruss, O. J., Wittmann, M., Yokoyama, H., Pepperkok, R., Kufer, T., Sillje, H., Karsenti, E., Mattaj, I. W. and Vernos, I. 2002. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol 4: 871–879.

    PubMed  CAS  Google Scholar 

  • Gupta, M. L., Jr., Carvalho, P., Roof, D. M. and Pellman, D. 2006. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol 8: 913–923.

    PubMed  CAS  Google Scholar 

  • Hagan, I. and Yanagida, M. 1990. Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature 347: 563–566.

    PubMed  CAS  Google Scholar 

  • Hayes, S. 2006. Lamin in the spindle matrix. Nat Cell Biol 8: 550.

    PubMed  CAS  Google Scholar 

  • Heald, R., Tournebize, R., Blank, T., Sandaltzopoulos, R., Becker, P., Hyman, A. and Karsenti, E. 1996. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382: 420–425.

    PubMed  CAS  Google Scholar 

  • Heald, R., Tournebize, R., Habermann, A., Karsenti, E. and Hyman, A. 1997. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J Cell Biol 138: 615–628.

    PubMed  CAS  Google Scholar 

  • Heck, M. M. S., Pereira, A., Pesavento, P., Yannoni, Y., Spradling, A. C. and Goldstein, L. S. B. 1993. The kinesin-like protein KLP61F is essential for mitosis in Drosophila. J Cell Biol. 123: 665–679.

    PubMed  CAS  Google Scholar 

  • Hetzer, M., Gruss, O. J. and Mattaj, I. W. 2002. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 4: E177–184.

    PubMed  CAS  Google Scholar 

  • Holmfeldt, P., Brannstrom, K., Stenmark, S. and Gullberg, M. 2006. Aneugenic activity of Op18/stathmin is potentiated by the somatic Q18-->e mutation in leukemic cells. Mol Biol Cell 17: 2921–2930.

    PubMed  CAS  Google Scholar 

  • Holmfeldt, P., Brattsand, G. and Gullberg, M. 2002. MAP4 counteracts microtubule catastrophe promotion but not tubulin-sequestering activity in intact cells. Curr Biol 12: 1034–1039.

    PubMed  CAS  Google Scholar 

  • Holmfeldt, P., Stenmark, S. and Gullberg, M. 2004. Differential functional interplay of TOGp/XMAP215 and the KinI kinesin MCAK during interphase and mitosis. Embo J 23: 627–637.

    PubMed  CAS  Google Scholar 

  • Howard, J. and Hyman, A. A. 2003. Dynamics and mechanics of the microtubule plus end. Nature 422: 753–758.

    PubMed  CAS  Google Scholar 

  • Hoyt, M. A., He, L., Totis, L. and Saunders, W. S. 1993. Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135: 35–44.

    PubMed  CAS  Google Scholar 

  • Huang, B. and Huffaker, T. C. 2006. Dynamic microtubules are essential for efficient chromosome capture and biorientation in S. cerevisiae. J Cell Biol 175: 17–23.

    PubMed  CAS  Google Scholar 

  • Joukov, V., Groen, A. C., Prokhorova, T., Gerson, R., White, E., Rodriguez, A., Walter, J. C. and Livingston, D. M. 2006. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127: 539–552.

    PubMed  CAS  Google Scholar 

  • Kalab, P., Weis, K. and Heald, R. 2002. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295: 2452–2456.

    PubMed  CAS  Google Scholar 

  • Kapitein, L. C., Peterman, E. J., Kwok, B. H., Kim, J. H., Kapoor, T. M. and Schmidt, C. F. 2005. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435: 114–118.

    PubMed  CAS  Google Scholar 

  • Kapoor, T. M. and Compton, D. A. 2002. Searching for the middle ground: mechanisms of chromosome alignment during mitosis. J Cell Biol 157: 551–556.

    PubMed  CAS  Google Scholar 

  • Kapoor, T. M., Lampson, M. A., Hergert, P., Cameron, L., Cimini, D., Salmon, E. D., McEwen, B. F. and Khodjakov, A. 2006. Chromosomes can congress to the metaphase plate before biorientation. Science 311: 388–391.

    PubMed  CAS  Google Scholar 

  • Kapoor, T. M., Mayer, T. U., Coughlin, M. L. and Mitchison, T. J. 2000. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 150: 975–988.

    PubMed  CAS  Google Scholar 

  • Kapoor, T. M. and Mitchison, T. J. 2001. Eg5 is static in bipolar spindles relative to tubulin: evidence for a static spindle matrix. J Cell Biol 154: 1125–1133.

    PubMed  CAS  Google Scholar 

  • Karsenti, E. and Vernos, I. 2001. The mitotic spindle: a self-made machine. Science 294: 543–547.

    PubMed  CAS  Google Scholar 

  • Kashina, A. S., Baskin, R. J., Cole, D. G., Wedaman, K. P., Saxton, W. M. and Scholey, J. M. 1996. A bipolar kinesin. Nature 379: 270–272.

    PubMed  CAS  Google Scholar 

  • Kelly, A. E., Sampath, S. C., Maniar, T. A., Woo, E. M., Chait, B. T. and Funabiki, H. 2007. Chromosomal enrichment and activation of the aurora B pathway are coupled to spatially regulate spindle assembly. Dev Cell 12: 31–43.

    PubMed  CAS  Google Scholar 

  • Kerscher, O., Felberbaum, R. and Hochstrasser, M. 2006. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22: 159–180.

    PubMed  CAS  Google Scholar 

  • Kerssemakers, J. W., Munteanu, E. L., Laan, L., Noetzel, T. L., Janson, M. E. and Dogterom, M. 2006. Assembly dynamics of microtubules at molecular resolution. Nature 442: 709–712.

    PubMed  CAS  Google Scholar 

  • Khodjakov, A., Cole, R. W., Oakley, B. R. and Rieder, C. L. 2000. Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 10: 59–67.

    PubMed  CAS  Google Scholar 

  • Khodjakov, A., Copenagle, L., Gordon, M. B., Compton, D. A. and Kapoor, T. M. 2003. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J Cell Biol 160: 671–683.

    PubMed  CAS  Google Scholar 

  • Khodjakov, A. and Rieder, C. L. 1999. The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J Cell Biol 146: 585–596.

    PubMed  CAS  Google Scholar 

  • Khodjakov, A. and Rieder, C. L. 2001. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J Cell Biol 153: 237–242.

    PubMed  CAS  Google Scholar 

  • King, S. M. 2002. Dyneins motor on in plants. Traffic 3: 930–931.

    PubMed  CAS  Google Scholar 

  • Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. and Hyman, A. A. 2001. Reconstitution of physiological microtubule dynamics using purified components. Science 294: 1340–1343.

    PubMed  CAS  Google Scholar 

  • Kinoshita, K., Noetzel, T. L., Pelletier, L., Mechtler, K., Drechsel, D. N., Schwager, A., Lee, M., Raff, J. W. and Hyman, A. A. 2005. Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol 170: 1047–1055.

    PubMed  CAS  Google Scholar 

  • Kirschner, M. W. and Mitchison, T. J. 1986. Beyond self assembly: from microtubules to morphogenesis. Cell 45: 329–342.

    PubMed  CAS  Google Scholar 

  • Kittler, R. and Buchholz, F. 2005. Functional genomic analysis of cell division by endoribonuclease-prepared siRNAs. Cell Cycle 4: 564–567.

    PubMed  CAS  Google Scholar 

  • Kline-Smith, S. L., Khodjakov, A., Hergert, P. and Walczak, C. E. 2004. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol Biol Cell 15: 1146–1159.

    PubMed  CAS  Google Scholar 

  • Kline-Smith, S. L. and Walczak, C. E. 2002. The Microtubule-destabilizing Kinesin XKCM1 Regulates Microtubule Dynamic Instability in Cells. Mol Biol Cell 13: 2718–2731.

    PubMed  CAS  Google Scholar 

  • Koffa, M. D., Casanova, C. M., Santarella, R., Kocher, T., Wilm, M. and Mattaj, I. W. 2006. HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol 16: 743–754.

    PubMed  CAS  Google Scholar 

  • Kosco, K. A., Pearson, C. G., Maddox, P. S., Wang, P. J., Adams, I. R., Salmon, E. D., Bloom, K. and Huffaker, T. C. 2001. Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. Mol Biol Cell 12: 2870–2880.

    PubMed  CAS  Google Scholar 

  • Kuntziger, T., Gavet, O., Manceau, V., Sobel, A. and Bornens, M. 2001. Stathmin/Op18 phosphorylation is regulated by microtubule assembly. Mol Biol Cell 12: 437–448.

    PubMed  CAS  Google Scholar 

  • Kuriyama, R. and Borisy, G. G. 1981. Microtubule-nucleating activity of centrosomes in chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle. J Cell Biol. 91: 822–826.

    PubMed  CAS  Google Scholar 

  • Kuriyama, R., Gustus, C., Terada, Y., Uetake, Y. and Matuliene, J. 2002. CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. J Cell Biol 156: 783–790.

    PubMed  CAS  Google Scholar 

  • Lansbergen, G. and Akhmanova, A. 2006. Microtubule plus end: a hub of cellular activities. Traffic 7: 499–507.

    PubMed  CAS  Google Scholar 

  • Larsson, N., Marklund, U., Gradin, H. M., Brattsand, G. and Gullberg, M. 1997. Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol 17: 5530–5539.

    PubMed  CAS  Google Scholar 

  • Lee, M. J., Gergely, F., Jeffers, K., Peak-Chew, S. Y. and Raff, J. W. 2001. Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nat Cell Biol 3: 643–649.

    PubMed  CAS  Google Scholar 

  • Levesque, A. A. and Compton, D. A. 2001. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J Cell Biol 154: 1135–1146.

    PubMed  CAS  Google Scholar 

  • Lew, D. J. and Burke, D. J. 2003. The spindle assembly and spindle position checkpoints. Annu Rev Genet 37: 251–282.

    PubMed  CAS  Google Scholar 

  • Li, J., Lee, W. L. and Cooper, J. A. 2005. NudEL targets dynein to microtubule ends through LIS1. Nat Cell Biol 7: 686–690.

    PubMed  CAS  Google Scholar 

  • Li, Y., Yeh, E., Hays, T. and Bloom, K. 1993. Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc. Natl. Acad. Sci. USA 90: 10096–10100.

    PubMed  CAS  Google Scholar 

  • Liang, Y., et al. 2007. Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase. Mol Biol Cell 18: 2656–2666.

    PubMed  CAS  Google Scholar 

  • Maiato, H., Fairley, E. A., Rieder, C. L., Swedlow, J. R., Sunkel, C. E. and Earnshaw, W. C. 2003. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113: 891–904.

    PubMed  CAS  Google Scholar 

  • Maiato, H., Khodjakov, A. and Rieder, C. L. 2005. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nat Cell Biol 7: 42–47.

    PubMed  CAS  Google Scholar 

  • Maiato, H., Khodjakov, A. and Rieder, C. L. 2005. MAST/Orbit is required for microtubule subunit incorporation into fluxing kinetochore fibers. Nat Cell Biol.

    Google Scholar 

  • Maiato, H., Rieder, C. L. and Khodjakov, A. 2004. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167: 831–840.

    PubMed  CAS  Google Scholar 

  • Maiato, H., Sampaio, P., Lemos, C. L., Findlay, J., Carmena, M., Earnshaw, W. C. and Sunkel, C. E. 2002. MAST/Orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J Cell Biol 157: 749–760.

    PubMed  CAS  Google Scholar 

  • Maiato, H., Sunkel, C. E. and Earnshaw, W. C. 2003. Dissecting mitosis by RNAi in Drosophila tissue culture cells. Biol Proced Online 5: 153–161.

    PubMed  CAS  Google Scholar 

  • Maney, T., Hunter, A. W., Wagenbach, M. and Wordeman, L. 1998. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol 142: 787–801.

    PubMed  CAS  Google Scholar 

  • Manning, A. L. and Compton, D. A. 2007. Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells. Curr Biol 17: 260–265.

    PubMed  CAS  Google Scholar 

  • Manning, A. L., Ganem, N. J., Bakhoum, S. F., Wagenbach, M., Wordeman, L. and Compton, D. A. 2007. The Kinesin-13 Proteins Kif2a, Kif2b, and Kif2c/MCAK Have Distinct Roles during Mitosis in Human Cells. Mol Biol Cell 18: 2970–2979.

    PubMed  CAS  Google Scholar 

  • Maresca, T. J., Niederstrasser, H., Weis, K. and Heald, R. 2005. Xnf7 contributes to spindle integrity through its microtubule-bundling activity. Curr Biol 15: 1755–1761.

    PubMed  CAS  Google Scholar 

  • Mastronarde, D. N., McDonald, K. L., Ding, R. and McIntosh, J. R. 1993. Interpolar spindle microtubules in PTK cells. J Cell Biol 123: 1475–1489.

    PubMed  CAS  Google Scholar 

  • Matuliene, J. and Kuriyama, R. 2002. Kinesin-like protein CHO1 is required for the formation of midbody matrix and the completion of cytokinesis in mammalian cells. Mol Biol Cell 13: 1832–1845.

    PubMed  CAS  Google Scholar 

  • Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. and Mitchison, T. J. 1999. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286: 971–974.

    PubMed  CAS  Google Scholar 

  • Mayr, M. I., Hummer, S., Bormann, J., Gruner, T., Adio, S., Woehlke, G. and Mayer, T. U. 2007. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17: 488–498.

    PubMed  CAS  Google Scholar 

  • Mazumdar, M., Sundareshan, S. and Misteli, T. 2004. Human chromokinesin KIF4A functions in chromosome condensation and segregation. J Cell Biol 166: 613–620.

    PubMed  CAS  Google Scholar 

  • McDonald, H. B. and Goldstein, L. S. 1990. Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell 61: 991–1000.

    PubMed  CAS  Google Scholar 

  • McDonald, H. B., Stewart, R. J. and Goldstein, L. S. B. 1990. The kinesin like ncd protein is a minus end directed microtubule motor. Cell 63: 1159–1165.

    PubMed  CAS  Google Scholar 

  • McDonald, K. L., O'Toole, E. T., Mastronarde, D. N. and McIntosh, J. R. 1992. Kinetochore microtubules in PTK cells. J Cell Biol 118: 369–383.

    PubMed  CAS  Google Scholar 

  • McEwen, B. F., Chan, G. K., Zubrowski, B., Savoian, M. S., Sauer, M. T. and Yen, T. J. 2001. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol Biol Cell 12: 2776–2789.

    PubMed  CAS  Google Scholar 

  • McIntosh, J. R., Grishchuk, E. L. and West, R. R. 2002. Chromosome-microtubule interactions during mitosis. Annu Rev Cell Dev Biol 18: 193–219.

    PubMed  CAS  Google Scholar 

  • Measday, V., et al. 2005. Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc Natl Acad Sci U S A 102: 13956–13961.

    PubMed  CAS  Google Scholar 

  • Meluh, P. B. and Rose, M. D. 1990. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60: 1029–1041.

    PubMed  CAS  Google Scholar 

  • Meraldi, P., Honda, R. and Nigg, E. A. 2004. Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 14: 29–36.

    PubMed  CAS  Google Scholar 

  • Merdes, A. and Cleveland, D. W. 1997. Pathways of spindle pole formation: different mechanisms; conserved components. J Cell Biol 138: 953–956.

    PubMed  CAS  Google Scholar 

  • Merdes, A., Heald, R., Samejima, K., Earnshaw, W. C. and Cleveland, D. W. 2000. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J Cell Biol 149: 851–862.

    PubMed  CAS  Google Scholar 

  • Merdes, A., Ramyar, K., Vechio, J. D. and Cleveland, D. W. 1996. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87: 447–458.

    PubMed  CAS  Google Scholar 

  • Miller, R. K., Cheng, S. C. and Rose, M. D. 2000. Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol Biol Cell 11: 2949–2959.

    PubMed  CAS  Google Scholar 

  • Miller, R. K., Matheos, D. and Rose, M. D. 1999. The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J Cell Biol 144: 963–975.

    PubMed  CAS  Google Scholar 

  • Misek, D. E., Chang, C. L., Kuick, R., Hinderer, R., Giordano, T. J., Beer, D. G. and Hanash, S. M. 2002. Transforming properties of a Q18-->E mutation of the microtubule regulator Op18. Cancer Cell 2: 217–228.

    PubMed  CAS  Google Scholar 

  • Mitchison, T. and Kirschner, M. 1984. Dynamic instability of microtubule growth. Nature 312: 237–242.

    PubMed  CAS  Google Scholar 

  • Mitchison, T. J. 1993. Localization of an exchangeable GTP binding site at the plus end of microtubules. Science 261: 1044–1047.

    PubMed  CAS  Google Scholar 

  • Miyamoto, D. T., Perlman, Z. E., Burbank, K. S., Groen, A. C. and Mitchison, T. J. 2004. The kinesin Eg5 drives poleward microtubule flux in Xenopus egg extract spindles. J Cell Biol. 167: 813–818.

    PubMed  CAS  Google Scholar 

  • Mogilner, A., Wollman, R., Civelekoglu-Scholey, G. and Scholey, J. 2006. Modeling mitosis. Trends Cell Biol 16: 88–96.

    PubMed  CAS  Google Scholar 

  • Morales-Mulia, S. and Scholey, J. M. 2005. Spindle pole organization in Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and KLP10A. Mol Biol Cell 16: 3176–3186.

    PubMed  CAS  Google Scholar 

  • Mountain, V., Simerly, C., Howard, L., Ando, A., Schatten, G. and Compton, D. A. 1999. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147: 351–366.

    PubMed  CAS  Google Scholar 

  • Nachury, M. V., Maresca, T. J., Salmon, W. C., Waterman-Storer, C. M., Heald, R. and Weis, K. 2001. Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104: 95–106.

    PubMed  CAS  Google Scholar 

  • Nelson, C. R. and Szauter, P. 1992. Timing of mitotic chromosome loss caused by the ncd mutation of Drosophila melanogaster. Cell Motil Cytoskeleton 23: 34–44.

    PubMed  CAS  Google Scholar 

  • Niethammer, P., Kronja, I., Kandels-Lewis, S., Rybina, S., Bastiaens, P. and Karsenti, E. 2007. Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. PLoS Biol 5: e29.

    PubMed  Google Scholar 

  • Nigg, E. A. 2001. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2: 21–32.

    PubMed  CAS  Google Scholar 

  • Noetzel, T. L., Drechsel, D. N., Hyman, A. A. and Kinoshita, K. 2005. A comparison of the ability of XMAP215 and tau to inhibit the microtubule destabilizing activity of XKCM1. Philos Trans R Soc Lond B Biol Sci 360: 591–594.

    PubMed  CAS  Google Scholar 

  • Nogales, E. 1999. A structural view of microtubule dynamics. Cell Mol Life Sci 56: 133–142.

    PubMed  CAS  Google Scholar 

  • Nogales, E., Whittaker, M., Milligan, R. A. and Downing, K. H. 1999. High-resolution model of the microtubule. Cell 96: 79–88.

    PubMed  CAS  Google Scholar 

  • Nousiainen, M., Sillje, H. H., Sauer, G., Nigg, E. A. and Korner, R. 2006. Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci USA 103: 5391–5396.

    PubMed  CAS  Google Scholar 

  • O'Brien, L. L., Albee, A. J., Liu, L., Tao, W., Dobrzyn, P., Lizarraga, S. B. and Wiese, C. 2005. The Xenopus TACC homologue, maskin, functions in mitotic spindle assembly. Mol Biol Cell 16: 2836–2847.

    PubMed  Google Scholar 

  • O'Connell, C. B. and Khodjakov, A. L. 2007. Cooperative mechanisms of mitotic spindle formation. J Cell Sci 120: 1717–1722.

    PubMed  Google Scholar 

  • O'Connell, M. J., Krien, M. J. and Hunter, T. 2003. Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13: 221–228.

    PubMed  Google Scholar 

  • O'Connell, M. J., Meluh, P. B., Rose, M. D. and Morris, N. R. 1993. Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans. J Cell Biol 120: 153–162.

    PubMed  Google Scholar 

  • Ohi, R., Burbank, K., Liu, Q. and Mitchison, T. J. 2007. Nonredundant functions of Kinesin-13s during meiotic spindle assembly. Curr Biol 17: 953–959.

    PubMed  CAS  Google Scholar 

  • Oshimori, N., Ohsugi, M. and Yamamoto, T. 2006. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat Cell Biol 8: 1095–1101.

    PubMed  CAS  Google Scholar 

  • Ouchi, M., et al. 2004. BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem 279: 19643–19648.

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps, J., McIntosh, J. R. and Porter, K. R. 1982. Rethinking mitosis. Cell 29: 729–744.

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps, J. D. 1986. Mitotic mechanisms: an alternative view. Trends Biochem Sci 11: 504–507.

    Google Scholar 

  • Popov, A. V., Severin, F. and Karsenti, E. 2002. XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr Biol 12: 1326–1330.

    PubMed  CAS  Google Scholar 

  • Putkey, F. R., Cramer, T., Morphew, M. K., Silk, A. D., Johnson, R. S., McIntosh, J. R. and Cleveland, D. W. 2002. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 3: 351–365.

    PubMed  CAS  Google Scholar 

  • Qi, H., et al. 2004. Megator, an essential coiled-coil protein that localizes to the putative spindle matrix during mitosis in Drosophila. Mol Biol Cell 15: 4854–4865.

    PubMed  CAS  Google Scholar 

  • Rath, U., Wang, D., Ding, Y., Xu, Y. Z., Qi, H., Blacketer, M. J., Girton, J., Johansen, J. and Johansen, K. M. 2004. Chromator, a novel and essential chromodomain protein interacts directly with the putative spindle matrix protein skeletor. J Cell Biochem 93: 1033–1047.

    PubMed  CAS  Google Scholar 

  • Rebollo, E., Llamazares, S., Reina, J. and Gonzalez, C. 2004. Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes. PLoS Biol 2: E8.

    PubMed  Google Scholar 

  • Ribbeck, K., et al. 2006. NuSAP, a mitotic RanGTP target that stabilizes and cross-links microtubules. Mol Biol Cell 17: 2646–2660.

    PubMed  CAS  Google Scholar 

  • Ribbeck, K., Raemaekers, T., Carmeliet, G. and Mattaj, I. W. 2007. A role for NuSAP in linking microtubules to mitotic chromosomes. Curr Biol 17: 230–236.

    PubMed  CAS  Google Scholar 

  • Rogers, G. C., Rogers, S. L., Schwimmer, T. A., Ems-McClung, S. C., Walczak, C. E., Vale, R. D., Scholey, J. M. and Sharp, D. J. 2004. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427: 364–370.

    PubMed  CAS  Google Scholar 

  • Rogers, G. C., Rogers, S. L. and Sharp, D. J. 2005. Spindle microtubules in flux. J Cell Sci 118: 1105–1116.

    PubMed  CAS  Google Scholar 

  • Rusan, N. M., Fagerstrom, C. J., Yvon, A. M. and Wadsworth, P. 2001. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol Biol Cell 12: 971–980.

    PubMed  CAS  Google Scholar 

  • Samejima, K., et al. 2008. A promoter-hijack strategy for conditional shutdown of multiply spliced essential cell cycle genes. Proc Natl Acad Sci USA 105: 2457–2462.

    PubMed  CAS  Google Scholar 

  • Sampath, S. C., Ohi, R., Leismann, O., Salic, A., Pozniakovski, A. and Funabiki, H. 2004. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118: 187–202.

    PubMed  CAS  Google Scholar 

  • Sauer, G., Korner, R., Hanisch, A., Ries, A., Nigg, E. A. and Sillje, H. H. 2005. Proteome analysis of the human mitotic spindle. Mol Cell Proteomics 4: 35–43.

    PubMed  CAS  Google Scholar 

  • Saunders, A. M., Powers, J., Strome, S. and Saxton, W. M. 2007. Kinesin-5 acts as a brake in anaphase spindle elongation. Curr Biol 17: R453–R454.

    PubMed  CAS  Google Scholar 

  • Saunders, W., Hornack, D., Lengyel, V. and Deng, C. 1997. The Saccharomyces cerevisiae kinesin-related motor Kar3p acts at preanaphase spindle poles to limit the number and length of cytoplasmic microtubules. J Cell Biol 137: 417–431.

    PubMed  CAS  Google Scholar 

  • Savoian, M. S., Gatt, M. K., Riparbelli, M. G., Callaini, G. and Glover, D. M. 2004. Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I. J Cell Sci 117: 3669–3677.

    PubMed  CAS  Google Scholar 

  • Savoian, M. S., Goldberg, M. L. and Rieder, C. L. 2000. The rate of poleward chromosome motion is attenuated in Drosophila zw10 and rod mutants. Nat Cell Biol 2: 948–952.

    PubMed  CAS  Google Scholar 

  • Sawin, K. E., LeGuellec, K., Philippe, M. and Mitchison, T. J. 1992. Mitotic spindle organization by a plus-end directed microtubule motor. Nature 359: 540–543.

    PubMed  CAS  Google Scholar 

  • Saxton, W. M., Stemple, D. L., Leslie, R. J., Salmon, E. D., Zavortink, M. and McIntosh, J. R. 1984. Tubulin dynamics in cultured mammalian cells. J Cell Biol. 99: 2175–2186.

    PubMed  CAS  Google Scholar 

  • Scaerou, F., Starr, D. A., Piano, F., Papoulas, O., Karess, R. E. and Goldberg, M. L. 2001. The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore. J Cell Sci 114: 3103–3114.

    PubMed  CAS  Google Scholar 

  • Schaar, B. T., Chan, G. K. T., Maddox, P., Salmon, E. D. and Yen, T. J. 1997. CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol. 139: 1373–1382.

    PubMed  CAS  Google Scholar 

  • Schatz, C. A., Santarella, R., Hoenger, A., Karsenti, E., Mattaj, I. W., Gruss, O. J. and Carazo-Salas, R. E. 2003. Importin alpha-regulated nucleation of microtubules by TPX2. Embo J 22: 2060–2070.

    PubMed  CAS  Google Scholar 

  • Schek, H. T., 3rd, Gardner, M. K., Cheng, J., Odde, D. J. and Hunt, A. J. 2007. Microtubule assembly dynamics at the nanoscale. Curr Biol 17: 1445–1455.

    PubMed  CAS  Google Scholar 

  • Schlaitz, A. L., et al. 2007. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell 128: 115–127.

    PubMed  CAS  Google Scholar 

  • Scholey, J. M., Rogers, G. C. and Sharp, D. J. 2001. Mitosis, microtubules, and the matrix. J Cell Biol 154: 261–266.

    PubMed  CAS  Google Scholar 

  • Severin, F., Habermann, B., Huffaker, T. and Hyman, T. 2001. Stu2 promotes mitotic spindle elongation in anaphase. J Cell Biol 153: 435–442.

    PubMed  CAS  Google Scholar 

  • Sharp, D. J., Brown, H. M., Kwon, M., Rogers, G. C., Holland, G. and Scholey, J. M. 2000. Functional coordination of three mitotic motors in drosophila embryos. Mol Biol Cell 11: 241–253.

    PubMed  CAS  Google Scholar 

  • Sharp, D. J., McDonald, K. L., Brown, H. M., Matthies, H. J., Walczak, C., Vale, R. D., Mitchison, T. J. and Scholey, J. M. 1999. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J Cell Biol 144: 125–138.

    PubMed  CAS  Google Scholar 

  • Sharp, D. J., Rogers, G. C. and Scholey, J. M. 2000. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat Cell Biol 2: 922–930.

    PubMed  CAS  Google Scholar 

  • Sharp, D. J., Rogers, G. C. and Scholey, J. M. 2000. Microtubule motors in mitosis. Nature 407: 41–47.

    PubMed  CAS  Google Scholar 

  • Shaw, S. L., Yeh, E., Maddox, P., Salmon, E. D. and Bloom, K. 1997. Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J Cell Biol 139: 985–994.

    PubMed  CAS  Google Scholar 

  • Shirasu-Hiza, M., Perlman, Z. E., Wittmann, T., Karsenti, E. and Mitchison, T. J. 2004. Eg5 causes elongation of meiotic spindles when flux-associated microtubule depolymerization is blocked. Curr Biol 14: 1941–1945.

    PubMed  CAS  Google Scholar 

  • Sillje, H. H., Nagel, S., Korner, R. and Nigg, E. A. 2006. HURP is a Ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16: 731–742.

    PubMed  CAS  Google Scholar 

  • Skop, A. R., Liu, H., Yates, J., 3rd, Meyer, B. J. and Heald, R. 2004. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305: 61–66.

    PubMed  CAS  Google Scholar 

  • Slep, K. C. and Vale, R. D. 2007. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol Cell 27: 976–991.

    PubMed  CAS  Google Scholar 

  • Sonnichsen, B., et al. 2005. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434: 462–469.

    PubMed  CAS  Google Scholar 

  • Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. and Gilbert, S. P. 2005. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr Biol 15: 1420–1427.

    PubMed  CAS  Google Scholar 

  • Srayko, M., Kaya, A., Stamford, J. and Hyman, A. A. 2005. Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev Cell 9: 223–236.

    PubMed  CAS  Google Scholar 

  • Srayko, M., Quintin, S., Schwager, A. and Hyman, A. A. 2003. Caenorhabditis elegans TAC-1 and ZYG-9 form a complex that is essential for long astral and spindle microtubules. Curr Biol 13: 1506–1511.

    PubMed  CAS  Google Scholar 

  • Stehman, S. A., Chen, Y., McKenney, R. J. and Vallee, R. B. 2007. NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores. J Cell Biol.

    Google Scholar 

  • Storchova, Z., Breneman, A., Cande, J., Dunn, J., Burbank, K., O'Toole, E. and Pellman, D. 2006. Genome-wide genetic analysis of polyploidy in yeast. Nature 443: 541–547.

    PubMed  CAS  Google Scholar 

  • Stout, J. R., Rizk, R. S., Kline, S. L. and Walczak, C. E. 2006. Deciphering protein function during mitosis in PtK cells using RNAi. BMC Cell Biol 7: 26.

    PubMed  Google Scholar 

  • Straight, A. F., Sedat, J. W. and Murray, A. W. 1998. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J Cell Biol 143: 687–694.

    PubMed  CAS  Google Scholar 

  • Stumpff, J., von Dassow, G., Wagenbach, M., Asbury, C. and Wordeman, L. 2008. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev Cell 14: 252–262.

    PubMed  CAS  Google Scholar 

  • Tao, L., Mogilner, A., Civelekoglu-Scholey, G., Wollman, R., Evans, J., Stahlberg, H. and Scholey, J. M. 2006. A homotetrameric kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays. Curr Biol 16: 2293–2302.

    PubMed  CAS  Google Scholar 

  • Theurkauf, W. E. 2001. TACCing down the spindle poles. Nat Cell Biol 3: E159–E161.

    PubMed  CAS  Google Scholar 

  • Tokai-Nishizumi, N., Ohsugi, M., Suzuki, E. and Yamamoto, T. 2005. The chromokinesin Kid is required for maintenance of proper metaphase spindle size. Mol Biol Cell 16: 5455–5463.

    PubMed  CAS  Google Scholar 

  • Tournebize, R., et al. 2000. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2: 13–19.

    PubMed  CAS  Google Scholar 

  • Trieselmann, N., Armstrong, S., Rauw, J. and Wilde, A. 2003. Ran modulates spindle assembly by regulating a subset of TPX2 and Kid activities including Aurora A activation. J Cell Sci 116: 4791–4798.

    PubMed  CAS  Google Scholar 

  • Tsai, M. Y., Wang, S., Heidinger, J. M., Shumaker, D. K., Adam, S. A., Goldman, R. D. and Zheng, Y. 2006. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311: 1887–1893.

    PubMed  CAS  Google Scholar 

  • Tsai, M. Y., Wiese, C., Cao, K., Martin, O., Donovan, P., Ruderman, J., Prigent, C. and Zheng, Y. 2003. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5: 242–248.

    PubMed  CAS  Google Scholar 

  • Tsou, M. F. and Stearns, T. 2006. Controlling centrosome number: licenses and blocks. Curr Opin Cell Biol 18: 74–78.

    PubMed  CAS  Google Scholar 

  • Tulu, U. S., Fagerstrom, C., Ferenz, N. P. and Wadsworth, P. 2006. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr Biol 16: 536–541.

    PubMed  CAS  Google Scholar 

  • Tytell, J. D. and Sorger, P. K. 2006. Analysis of kinesin motor function at budding yeast kinetochores. J Cell Biol 172: 861–874.

    PubMed  CAS  Google Scholar 

  • Ubersax, J. A., Woodbury, E. L., Quang, P. N., Paraz, M., Blethrow, J. D., Shah, K., Shokat, K. M. and Morgan, D. O. 2003. Targets of the cyclin-dependent kinase Cdk1. Nature 425: 859–864.

    PubMed  CAS  Google Scholar 

  • Uchiyama, S., et al. 2005. Proteome analysis of human metaphase chromosomes. J Biol Chem 280: 16994–17004.

    PubMed  CAS  Google Scholar 

  • Usui, T., Maekawa, H., Pereira, G. and Schiebel, E. 2003. The XMAP215 homologue Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage. Embo J 22: 4779–4793.

    PubMed  CAS  Google Scholar 

  • Vaisberg, E. A., Koonce, M. P. and McIntosh, J. R. 1993. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J Cell Biol 123: 849–858.

    PubMed  CAS  Google Scholar 

  • van Breugel, M., Drechsel, D. and Hyman, A. 2003. Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J Cell Biol 161: 359–369.

    PubMed  Google Scholar 

  • van de Weerdt, B. C. and Medema, R. H. 2006. Polo-like kinases: a team in control of the division. Cell Cycle 5: 853–864.

    PubMed  Google Scholar 

  • Varga, V., Helenius, J., Tanaka, K., Hyman, A. A., Tanaka, T. U. and Howard, J. 2006. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8: 957–962.

    PubMed  CAS  Google Scholar 

  • Verde, F., Berrez, J.-M., Antony, C. and Karsenti, E. 1991. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J Cell Biol 112: 1177–1188.

    PubMed  CAS  Google Scholar 

  • Vernos, I., Raats, J., Hirano, T., Heasman, J., Karsenti, E. and Wylie, C. 1995. Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 81: 117–127.

    PubMed  CAS  Google Scholar 

  • Walczak, C. E. and Mitchison, T. J. 1996. Kinesin-related proteins at mitotic spindle poles: function and regulation. Cell 85: 943–946.

    PubMed  CAS  Google Scholar 

  • Walczak, C. E., Mitchison, T. J. and Desai, A. 1996. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84: 37–47.

    PubMed  CAS  Google Scholar 

  • Walczak, C. E., Verma, S. and Mitchison, T. J. 1997. XCTK2: A Kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J Cell Biol. 136: 859–870.

    PubMed  CAS  Google Scholar 

  • Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. and Heald, R. 1998. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr Biol 8: 903–913.

    PubMed  CAS  Google Scholar 

  • Walker, D. L., Wang, D., Jin, Y., Rath, U., Wang, Y., Johansen, J. and Johansen, K. M. 2000. Skeletor, a novel chromosomal protein that redistributes during mitosis provides evidence for the formation of a spindle matrix. J Cell Biol 151: 1401–1412.

    PubMed  CAS  Google Scholar 

  • Walker, R. A., O'Brien, E. T., Pryer, N. K., Soboeiro, M. F., Voter, W. A., Erickson, H. P. and Salmon, E. D. 1988. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107: 1437–1448.

    PubMed  CAS  Google Scholar 

  • West, R. R., Malmstrom, T. and McIntosh, J. R. 2002. Kinesins klp5 + and klp6 + are required for normal chromosome movement in mitosis. J Cell Sci 115: 931–940.

    PubMed  CAS  Google Scholar 

  • West, R. R., Malmstrom, T., Troxell, C. L. and McIntosh, J. R. 2001. Two related kinesins, klp5 + and klp6 +, foster microtubule disassembly and are required for meiosis in fission yeast. Mol Biol Cell 12: 3919–3932.

    PubMed  CAS  Google Scholar 

  • Wickstead, B. and Gull, K. 2007. Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8: 1708–1721.

    PubMed  CAS  Google Scholar 

  • Wiese, C., Wilde, A., Moore, M. S., Adam, S. A., Merdes, A. and Zheng, Y. 2001. Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science 291: 653–656.

    PubMed  CAS  Google Scholar 

  • Wilde, A., Lizarraga, S. B., Zhang, L., Wiese, C., Gliksman, N. R., Walczak, C. E. and Zheng, Y. 2001. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol 3: 221–227.

    PubMed  CAS  Google Scholar 

  • Wilson, P. G., Heck, M. and Fuller, M. T. 1992. Monastral spindles are generated by mutations in urchin, a bimC homolog in Drosophila. Mol Biol Cell 3: 343a.

    Google Scholar 

  • Wittmann, T., Wilm, M., Karsenti, E. and Vernos, I. 2000. TPX2, A novel xenopus MAP involved in spindle pole organization. J Cell Biol 149: 1405–1418.

    PubMed  CAS  Google Scholar 

  • Wolyniak, M. J., Blake-Hodek, K., Kosco, K., Hwang, E., You, L. and Huffaker, T. C. 2006. The regulation of microtubule dynamics in Saccharomyces cerevisiae by three interacting plus-end tracking proteins. Mol Biol Cell 17: 2789–2798.

    PubMed  CAS  Google Scholar 

  • Wong, J. and Fang, G. 2006. HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol 173: 879–891.

    PubMed  CAS  Google Scholar 

  • Wood, K. W., Sakowicz, R., Goldstein, L. S. B. and Cleveland, D. W. 1997. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91: 357–366.

    PubMed  CAS  Google Scholar 

  • Yan, X., Li, F., Liang, Y., Shen, Y., Zhao, X., Huang, Q. and Zhu, X. 2003. Human Nudel and NudE as regulators of cytoplasmic dynein in poleward protein transport along the mitotic spindle. Mol Cell Biol 23: 1239–1250.

    PubMed  CAS  Google Scholar 

  • Yang, Z., Tulu, U. S., Wadsworth, P. and Rieder, C. L. 2007. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr Biol 17: 973–980.

    PubMed  CAS  Google Scholar 

  • Yao, X., Anderson, K. L. and Cleveland, D. W. 1997. The microtubule-dependent motor centromere-associated protein E (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules. J Cell Biol139: 435–447.

    PubMed  CAS  Google Scholar 

  • Yeh, E., Yang, C., Chin, E., Maddox, P., Salmon, E. D., Lew, D. J. and Bloom, K. 2000. Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol Biol Cell 11: 3949–3961.

    PubMed  CAS  Google Scholar 

  • Yen, T. J., Li, G., Schaar, B. T., Szilak, I. and Cleveland, D. W. 1992. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359: 536–539.

    PubMed  CAS  Google Scholar 

  • Yu, C. T., Hsu, J. M., Lee, Y. C., Tsou, A. P., Chou, C. K. and Huang, C. Y. 2005. Phosphorylation and stabilization of HURP by Aurora-A: implication of HURP as a transforming target of Aurora-A. Mol Cell Biol 25: 5789–5800.

    PubMed  CAS  Google Scholar 

  • Zhai, Y., Kronebusch, P. J., Simon, P. M. and Borisy, G. G. 1996. Microtubule dynamics at the G2/M transition: Abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J Cell Biol 135: 201–214.

    PubMed  CAS  Google Scholar 

  • Zhang, D., Rogers, G. C., Buster, D. W. and Sharp, D. J. 2007. Three microtubule severing enzymes contribute to the “Pacman-flux” machinery that moves chromosomes. J Cell Biol 177: 231–242.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Lan, W., Ems-McClung, S. C., Stukenberg, P. T. and Walczak, C. E. 2007. Aurora B Phosphorylates Multiple Sites on Mitotic Centromere-associated Kinesin to Spatially and Temporally Regulate Its Function. Mol Biol Cell 18: 3264–3276.

    PubMed  CAS  Google Scholar 

  • Zheng, Y. and Tsai, M. Y. 2006. The mitotic spindle matrix: a fibro-membranous lamin connection. Cell Cycle 5: 2345–2347.

    PubMed  CAS  Google Scholar 

  • Zheng, Y., Wong, M. L., Alberts, B. and Mitchison, T. 1995. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378: 578–583.

    PubMed  CAS  Google Scholar 

  • Zhu, C., Zhao, J., Bibikova, M., Leverson, J. D., Bossy-Wetzel, E., Fan, J. B., Abraham, R. T. and Jiang, W. 2005. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16: 3187–3199.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all members of their lab for constant discussions. We are especially grateful to Anne-Lore Schlaitz and Benjamin Freedman for critical reading of this manuscript. Research in the authors’ labs was supported by grants from the NIH (R01GM057839, R01GM065232, and DP1OD000818 to RH and R01GM059618 to CEW), and the ACS (RSG CSM-106128 to CEW). The research in the lab of CEW was supported in part by the Indiana METACyt Initiative of Indiana University, funded in part through a major grant from the Lilly Endowment, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Heald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Heald, R., Walczak, C.E. (2009). Mitotic Spindle Assembly Mechanisms. In: De Wulf, P., Earnshaw, W. (eds) The Kinetochore:. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69076-6_8

Download citation

Publish with us

Policies and ethics