Evolution of Centromeres and Kinetochores: A Two-Part Fugue

  • Paul B. Talbert
  • Joshua J. Bayes
  • Steven Henikoff

Kinetochores are essential and universal features of eukaryotic chromosomes with a conserved set of functions. They are complex protein structures that are normally found at a unique location on each chromosome known as a centromere, which is often visible as a ‘primary constriction’ in a metaphase chromosome. Kinetochores serve to attach chromosomes to spindle microtubules in mitosis and meiosis in order to accomplish orderly chromosome segregation. They help to recruit cohesins and work in partnership with them to hold sister chromatids together locally in order to generate spindle tension (Eckert et al. 2007). They also carry out the spindle assembly checkpoint pathway, which assures that all kinetochores are attached to spindle fibers before commencing anaphase (Musacchio and Salmon 2007).

These highly conserved kinetochore functions might lead to the expectation that kinetochore proteins and the centromeres on which they assemble would be well conserved, like the microtubules to...


Kinetochore Protein Meiotic Spindle Human Artificial Chromosome Centromeric Chromatin Holocentric Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmad, K. and Henikoff, S. 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9: 1191–200.PubMedGoogle Scholar
  2. Albertson, D.G., Rose, A.M. and Villeneuve, A.M. 1997. C. elegans II: Chromosome Organization, Mitosis and Meiosis.Google Scholar
  3. Albertson, D.G. and Thomson, J.N. 1982. The kinetochores of Caenorhabditis elegans. Chromosoma 86: 409–428.PubMedGoogle Scholar
  4. Albertson, D.G. and Thomson, J.N. 1993. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1: 15–26.PubMedGoogle Scholar
  5. Alonso, A., Mahmood, R., Li, S., et al. 2003. Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12: 2711–21.PubMedGoogle Scholar
  6. Amor, D.J. and Choo, K.H. 2002. Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71: 695–714.PubMedGoogle Scholar
  7. Amor, D.J., Kalitsis, P., Sumer, H., et al. 2004. Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14: 359–368.PubMedGoogle Scholar
  8. Ananiev, E.V., Phillips, R.L. and Rines, H.W. 1998. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95: 13073–8.PubMedGoogle Scholar
  9. Baker, R.E. and Rogers, K. 2006. Phylogenetic analysis of fungal centromere H3 proteins. Genetics 174: 1481–1492.PubMedGoogle Scholar
  10. Baum, M., Sanyal, K., Mishra, P.K., et al. 2006. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc Natl Acad Sci USA 103: 14877–14882.PubMedGoogle Scholar
  11. Bernard, P., Maure, J.F., Partridge, J.F., et al. 2001. Requirement of heterochromatin for cohesion at centromeres. Science 294: 2539–2542.PubMedGoogle Scholar
  12. Bidau, C.J. and Marti, D.A. 2004. B chromosomes and Robertsonian fusions of Dichroplus pratensis (Acrididae): intraspecific support for the centromeric drive theory. Cytogenet Genome Res 106: 347–350.PubMedGoogle Scholar
  13. Bloom, K. 1993. The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell 73: 621–624.PubMedGoogle Scholar
  14. Blower, M.D., Sullivan, B.A. and Karpen, G.H. 2002. Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2: 319–330.PubMedGoogle Scholar
  15. Bongiorni, S., Fiorenzo, P., Pippoletti, D., et al. 2004. Inverted meiosis and meiotic drive in mealybugs. Chromosoma 112: 331–341.PubMedGoogle Scholar
  16. Braselton, J.P. 1981. The ultrastructure of meiotic kinetochores of Luzula. Chromosoma 82: 143–151.Google Scholar
  17. Brown, M.T. 1995. Sequence similarities between the yeast chromosome segregation protein Mif2 and the mammalian centromere protein CENP-C. Gene 160: 111–116.PubMedGoogle Scholar
  18. Brunet, S., Maria, A.S., Guillaud, P., et al. 1999. Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J Cell Biol 146: 1–12.PubMedGoogle Scholar
  19. Buchwitz, B.J., Ahmad, K., Moore, L.L., et al. 1999. A histone-H3-like protein in C. elegans. Nature 401: 547–548.PubMedGoogle Scholar
  20. Camahort, R., Li, B., Florens, L., et al. 2007. Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26: 853–865.PubMedGoogle Scholar
  21. Cambareri, E.B., Aisner, R. and Carbon, J. 1998. Structure of the chromosome VII centromere region in Neurospora crassa: degenerate transposons and simple repeats. Mol Cell Biol 18: 5465–5477.PubMedGoogle Scholar
  22. Cao, Y.K., Zhong, Z.S., Chen, D.Y., et al. 2005. Cell cycle-dependent localization and possible roles of the small GTPase Ran in mouse oocyte maturation, fertilization and early cleavage. Reproduction 130: 431–440.PubMedGoogle Scholar
  23. Cardone, M.F., Alonso, A., Pazienza, M., et al. 2006. Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol 7: R91.PubMedGoogle Scholar
  24. Chan, R.C., Severson, A.F. and Meyer, B.J. 2004. Condensin restructures chromosomes in preparation for meiotic divisions. J Cell Biol 167: 613–625.PubMedGoogle Scholar
  25. Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M., et al. 2006. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127: 983–997.PubMedGoogle Scholar
  26. Cheng, Z., Dong, F., Langdon, T., et al. 2002. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14: 1691–704.PubMedGoogle Scholar
  27. Choo, K.H. 1997. The Centromere. Oxford: Oxford University Press.Google Scholar
  28. Clarke, L. 1990. Centromeres of budding and fission yeasts. Trends Genet 6: 150–4.PubMedGoogle Scholar
  29. Collet, C. and Westerman, M. 1984. Interspersed distribution patterns of C-bands and satellite DNA in the holocentric chromosomes of Luzula flaccida. Genetica 63: 175–179.Google Scholar
  30. Collet, C. and Westerman, M. 1987. Interspecies comparison of the highly-repeated DNA of Australasian Luzula (Juncaceae). Genetica 74: 95–103.PubMedGoogle Scholar
  31. Collins, K.A., Furuyama, S. and Biggins, S. 2004. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr Biol 14: 1968–1972.PubMedGoogle Scholar
  32. Cooper, J.L. and Henikoff, S. 2004. Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol 21: 1712–8.PubMedGoogle Scholar
  33. Dalal, Y., Furuyama, T., Vermaak, D., et al. 2007a. Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci USA 104: 15974–15981.Google Scholar
  34. Dalal, Y., Wang, H., Lindsay, S., et al. 2007b. Tetrameric Structure of Centromeric Nucleosomes in Interphase Drosophila Cells. PLoS Biol 5: e218.Google Scholar
  35. Dawe, R.K. and Henikoff, S. 2006. Centromeres put epigenetics in the driver's seat. Trends Biochem Sci 31: 662–669.PubMedGoogle Scholar
  36. Dawe, R.K. and Hiatt, E.N. 2004. Plant neocentromeres: fast, focused, and driven. Chromosome Res 12: 655–669.PubMedGoogle Scholar
  37. Dawson, S.C., Sagolla, M.S. and Cande, W.Z. 2007. The cenH3 histone variant defines centromeres in Giardia intestinalis. Chromosoma 116: 175–184.PubMedGoogle Scholar
  38. Dolan, M.F., Melnitsky, H., Margulis, L., et al. 2002. Motility proteins and the origin of the nucleus. Anat Rec 268: 290–301.PubMedGoogle Scholar
  39. Douglas, S., Zauner, S., Fraunholz, M., et al. 2001. The highly reduced genome of an enslaved algal nucleus. Nature 410: 1091–1096.PubMedGoogle Scholar
  40. Dumont, J., Petri, S., Pellegrin, F., et al. 2007. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 176: 295–305.PubMedGoogle Scholar
  41. Earnshaw, W.C. and Rothfield, N. 1985. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313–321.PubMedGoogle Scholar
  42. Eckert, C.A., Gravdahl, D.J. and Megee, P.C. 2007. The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev 21: 278–291.PubMedGoogle Scholar
  43. Ersfeld, K. and Gull, K. 1997. Partitioning of large and minichromosomes in Trypanosoma brucei. Science 276: 611–614.PubMedGoogle Scholar
  44. Esteban, M.R., Giovinazzo, G. and Goday, C. 1995. Chromatin diminution is strictly correlated to somatic cell behavior in early development of the nematode Parascaris univalens. J Cell Sci 108(Pt 6): 2393–2404.PubMedGoogle Scholar
  45. Ferreri, G.C., Liscinsky, D.M., Mack, J.A., et al. 2005. Retention of latent centromeres in the Mammalian genome. J Hered 96: 217–224.PubMedGoogle Scholar
  46. Furuyama, S. and Biggins, S. 2007. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA 104: 14706–14711.PubMedGoogle Scholar
  47. Furuyama, T., Dalal, Y. and Henikoff, S. 2006. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci USA 103: 6172–6177.PubMedGoogle Scholar
  48. Gard, D.L. 1992. Microtubule organization during maturation of Xenopus oocytes: assembly and rotation of the meiotic spindles. Dev Biol 151: 516–530.PubMedGoogle Scholar
  49. Gard, D.L. 1993. Ectopic spindle assembly during maturation of Xenopus oocytes: evidence for functional polarization of the oocyte cortex. Dev Biol 159: 298–310.PubMedGoogle Scholar
  50. Goday, C. and Pimpinelli, S. 1989. Centromere organization in meiotic chromosomes of Parascaris univalens. Chromosoma 98: 160–166.PubMedGoogle Scholar
  51. Hackett, J.D., Scheetz, T.E., Yoon, H.S., et al. 2005. Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genomics 6: 80.PubMedGoogle Scholar
  52. Haizel, T., Lim, Y.K., Leitch, A.R., et al. 2005. Molecular analysis of holocentric centromeres of Luzula species. Cytogenet. Genome Res 109: 134–143.PubMedGoogle Scholar
  53. Hall, S.E., Luo, S., Hall, A.E., et al. 2005. Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives. Genetics 170: 1913–1927.PubMedGoogle Scholar
  54. Hartman, H. and Fedorov, A. 2002. The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99: 1420–1425.PubMedGoogle Scholar
  55. Hayashi, T., Fujita, Y., Iwasaki, O., et al. 2004. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118: 715–729.PubMedGoogle Scholar
  56. Henikoff, S., Ahmad, K. and Malik, H.S. 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.PubMedGoogle Scholar
  57. Heun, P., Erhardt, S., Blower, M.D., et al. 2006. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10: 303–315.PubMedGoogle Scholar
  58. Heus, J.J., Zonneveld, B.J., Steensma, H.Y., et al. 1994. Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae. Mol Gen Genet 243: 325–333.PubMedGoogle Scholar
  59. Hiatt, E.N. and Dawe, R.K. 2003. Four loci on abnormal chromosome 10 contribute to meiotic drive in maize. Genetics 164: 699–709.PubMedGoogle Scholar
  60. Holy, T.E. and Leibler, S. 1994. Dynamic instability of microtubules as an efficient way to search in space. Proc Natl Acad Sci USA 91: 5682–5685.PubMedGoogle Scholar
  61. Houben, A., Schroeder-Reiter, E., Nagaki, K., et al. 2007. CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116: 275–283.PubMedGoogle Scholar
  62. Howe, M., McDonald, K.L., Albertson, D.G., et al. 2001. HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes. J Cell Biol 153: 1227–1238.PubMedGoogle Scholar
  63. Huang, L., Wang, J., Nie, W., et al. 2006. Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis. Chromosome Res 14: 637–647.PubMedGoogle Scholar
  64. Hunt, P.A. and Hassold, T.J. 2002. Sex matters in meiosis. Science 296: 2181–2183.PubMedGoogle Scholar
  65. Irvine, D.V., Amor, D.J., Perry, J., et al. 2004. Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res 12: 805–815.PubMedGoogle Scholar
  66. Ito, H., Miura, A., Takashima, K., et al. 2007. Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana. Mol Genet Genomics 277: 23–30.PubMedGoogle Scholar
  67. Jin, W., Melo, J.R., Nagaki, K., et al. 2004. Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16: 571–581.PubMedGoogle Scholar
  68. Kasai, F., Garcia, C., Arruga, M.V., et al. 2003. Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102: 326–330.PubMedGoogle Scholar
  69. Kato, A., Lamb, J.C. and Birchler, J.A. 2004. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101: 13554–13559.PubMedGoogle Scholar
  70. Kawabe, A., Nasuda, S. and Charlesworth, D. 2006. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics 174: 2021–2032.PubMedGoogle Scholar
  71. Keith, K.C., Baker, R.E., Chen, Y., et al. 1999. Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol Cell Biol 19: 6130–6139.PubMedGoogle Scholar
  72. Kelly, J.M., McRobert, L. and Baker, D.A. 2006. Evidence on the chromosomal location of centromeric DNA in Plasmodium falciparum from etoposide-mediated topoisomerase-II cleavage. Proc Natl Acad Sci USA 103: 6706–6711.PubMedGoogle Scholar
  73. Kitada, K., Yamaguchi, E., Hamada, K., et al. 1997. Structural analysis of a Candida glabrata centromere and its functional homology to the Saccharomyces cerevisiae centromere. Curr Genet 31: 122–127.PubMedGoogle Scholar
  74. Kuta, E., Bohanec, B., Dubas, E., et al. 2004. Chromosome and nuclear DNA study on Luzula – a genus with holokinetic chromosomes. Genome 47: 246–256.PubMedGoogle Scholar
  75. Lam, A.L., Boivin, C.D., Bonney, C.F., et al. 2006. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci USA 103: 4186–4191.PubMedGoogle Scholar
  76. Langdon, T., Seago, C., Mende, M., et al. 2000. Retrotransposon evolution in diverse plant genomes. Genetics 156: 313–325.PubMedGoogle Scholar
  77. Lavelle, C. and Prunell, A. 2007. Chromatin polymorphism and the nucleosome superfamily: a genealogy. Cell Cycle 6: 2113–2119.PubMedGoogle Scholar
  78. Lee, H.R., Zhang, W., Langdon, T., et al. 2005. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102: 11793–11798.PubMedGoogle Scholar
  79. LeMaire-Adkins, R. and Hunt, P.A. 2000. Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive. Genetics 156: 775–783.PubMedGoogle Scholar
  80. Liu, S.T., Rattner, J.B., Jablonski, S.A., et al. 2006. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol 175: 41–53.PubMedGoogle Scholar
  81. Lohe, A.R., Hilliker, A.J. and Roberts, P.A. 1993. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134: 1149–74.PubMedGoogle Scholar
  82. Loiodice, I., Alves, A., Rabut, G., et al. 2004. The entire Nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol Biol Cell 15: 3333–3344.PubMedGoogle Scholar
  83. Lowell, J.E. and Cross, G.A. 2004. A variant histone H3 is enriched at telomeres in Trypanosoma brucei. J Cell Sci 117: 5937–5947.PubMedGoogle Scholar
  84. Luger, K., Mader, A.W., Richmond, R.K., et al. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.PubMedGoogle Scholar
  85. Lutz, D.A., Hamaguchi, Y. and Inoue, S. 1988. Micromanipulation studies of the asymmetric positioning of the maturation spindle in Chaetopterus sp. oocytes: I. Anchorage of the spindle to the cortex and migration of a displaced spindle. Cell Motil Cytoskeleton 11: 83–96.PubMedGoogle Scholar
  86. Lysak, M.A., Berr, A., Pecinka, A., et al. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103: 5224–5229.PubMedGoogle Scholar
  87. Ma, J., Wing, R.A., Bennetzen, J.L., et al. 2007a. Evolutionary History and Positional Shift of a Rice Centromere. Genetics Jul 29: [epub ahead of print].Google Scholar
  88. Ma, J., Wing, R.A., Bennetzen, J.L., et al. 2007b. Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23: 134–9.Google Scholar
  89. Maddox, P.S., Hyndman, F., Monen, J., et al. 2007. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 176: 757–763.PubMedGoogle Scholar
  90. Maiato, H., Rieder, C.L. and Khodjakov, A. 2004. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167: 831–840.PubMedGoogle Scholar
  91. Malik, H.S. and Henikoff, S. 2001. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157: 1293–1298.PubMedGoogle Scholar
  92. Malik, H.S. and Henikoff, S. 2003. Phylogenomics of the nucleosome. Nat Struct Biol 10: 882–891.PubMedGoogle Scholar
  93. Malik, H.S., Vermaak, D. and Henikoff, S. 2002. Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proc Natl Acad Sci USA 99: 1449–1454.PubMedGoogle Scholar
  94. Maruyama, S., Kuroiwa, H., Miyagishima, S.Y., et al. 2007. Centromere dynamics in the primitive red alga Cyanidioschyzon merolae. Plant J 49: 1122–1129.PubMedGoogle Scholar
  95. Masumoto, H., Nakano, M. and Ohzeki, J. 2004. The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 12: 543–556.PubMedGoogle Scholar
  96. McClintock, B. 1938. The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. Genetics 23: 315–376.PubMedGoogle Scholar
  97. Meluh, P.B. and Koshland, D. 1997. Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev 11: 3401–3412.PubMedGoogle Scholar
  98. Meraldi, P., McAinsh, A.D., Rheinbay, E., et al. 2006. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7: R23.PubMedGoogle Scholar
  99. Mishra, P.K., Baum, M. and Carbon, J. 2007. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol Genet Genomics 278: 455–465.Google Scholar
  100. Monen, J., Maddox, P.S., Hyndman, F., et al. 2005. Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7: 1248–1255.PubMedGoogle Scholar
  101. Moore, L.L. and Roth, M.B. 2001. HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J Cell Biol 153: 1199–1208.PubMedGoogle Scholar
  102. Moreno-Moreno, O., Torras-Llort, M. and Azorin, F. 2006. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res 34: 6247–6255.PubMedGoogle Scholar
  103. Morey, L., Barnes, K., Chen, Y., et al. 2004. The histone fold domain of Cse4 is sufficient for CEN targeting and propagation of active centromeres in budding yeast. Eukaryot. Cell 3: 1533–1543.PubMedGoogle Scholar
  104. Murata, M., Ogura, Y. and Motoyoshi, F. 1994. Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet 69: 361–370.PubMedGoogle Scholar
  105. Musacchio, A. and Salmon, E.D. 2007. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8: 379–393.PubMedGoogle Scholar
  106. Nabeshima, K., Villeneuve, A.M. and Colaiacovo, M.P. 2005. Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC. J Cell Biol 168: 683–689.PubMedGoogle Scholar
  107. Nagaki, K., Cheng, Z., Ouyang, S., et al. 2004. Sequencing of a rice centromere uncovers active genes. Nat Genet 36: 138–145.PubMedGoogle Scholar
  108. Nagaki, K., Kashihara, K. and Murata, M. 2005. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17: 1886–1893.PubMedGoogle Scholar
  109. Nasuda, S., Hudakova, S., Schubert, I., et al. 2005. Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102: 9842–9847.PubMedGoogle Scholar
  110. Ng, R. and Carbon, J. 1987. Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. Mol Cell Biol 7: 4522–34.PubMedGoogle Scholar
  111. Niedermaier, J. and Moritz, K.B. 2000. Organization and dynamics of satellite and telomere DNAs in Ascaris: implications for formation and programmed breakdown of compound chromosomes. Chromosoma 109: 439–452.PubMedGoogle Scholar
  112. Nordenskiold, H. 1951. Cyto-taxonomical studies in the genus Luzula I. Somatic chromosomes and chromosome numbers. Hereditas 37: 325–355.Google Scholar
  113. Nordenskiold, H. 1962. Studies of meiosis in Luzula purpurea. Hereditas 48: 503–519.Google Scholar
  114. Nordenskiold, H. 1963. A study of meiosis in the progeny of X-irradiated Luzula purpurea. Hereditas 49: 33–47.Google Scholar
  115. Obado, S.O., Bot, C., Nilsson, D., et al. 2007. Repetitive DNA is associated with centromeric domains in Trypanosoma brucei but not Trypanosoma cruzi. Genome Biol 8: R37.PubMedGoogle Scholar
  116. Oegema, K., Desai, A., Rybina, S., et al. 2001. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153: 1209–1226.PubMedGoogle Scholar
  117. Ogbadoyi, E., Ersfeld, K., Robinson, D., et al. 2000. Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108: 501–513.PubMedGoogle Scholar
  118. Ogur, G., Van Assche, E., Vegetti, W., et al. 2006. Chromosomal segregation in spermatozoa of 14 Robertsonian translocation carriers. Mol Hum Reprod 12: 209–215.PubMedGoogle Scholar
  119. Okamoto, Y., Nakano, M., Ohzeki, J., et al. 2007. A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J 26: 1279–1291.PubMedGoogle Scholar
  120. Orjalo, A.V., Arnaoutov, A., Shen, Z., et al. 2006. The Nup107–160 nucleoporin complex is required for correct bipolar spindle assembly. Mol Biol Cell 17: 3806–3818.PubMedGoogle Scholar
  121. Palestis, B.G., Burt, A., Jones, R.N., et al. 2004. B chromosomes are more frequent in mammals with acrocentric karyotypes: support for the theory of centromeric drive. Proc Biol Sci 271(Suppl 3): S22–4.PubMedGoogle Scholar
  122. Palmer, D.K., O'Day, K., Wener, M.H., et al. 1987. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104: 805–815.PubMedGoogle Scholar
  123. Pardo-Manuel de Villena, F. and Sapienza, C. 2001a. Female meiosis drives karyotypic evolution in mammals. Genetics 159: 1179–1189.Google Scholar
  124. Pardo-Manuel de Villena, F. and Sapienza, C. 2001b. Nonrandom segregation during meiosis: the unfairness of females. Mamm. Genome 12: 331–339.Google Scholar
  125. Pardo-Manuel de Villena, F. and Sapienza, C. 2001c. Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Hum Genet 108: 31–36.Google Scholar
  126. Pidoux, A.L. and Allshire, R.C. 2004. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12: 521–34.PubMedGoogle Scholar
  127. Pluta, A.F., Mackay, A.M., Ainsztein, A.M., et al. 1995. The centromere: hub of chromosomal activities. Science 270: 1591–1594.PubMedGoogle Scholar
  128. Politi, V., Perini, G., Trazzi, S., et al. 2002. CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. J Cell Sci 115: 2317–2327.PubMedGoogle Scholar
  129. Powers, J., Rose, D.J., Saunders, A., et al. 2004. Loss of KLP-19 polar ejection force causes misorientation and missegregation of holocentric chromosomes. J Cell Biol 166: 991–1001.PubMedGoogle Scholar
  130. Presgraves, D.C. and Stephan, W. 2007. Pervasive adaptive evolution among interactors of the Drosophila hybrid inviability gene, Nup96. Mol Biol Evol 24: 306–314.PubMedGoogle Scholar
  131. Rhoades, M.M. 1952. Preferential segregation in maize. In Heterosis, ed, J.W. Gowen, pp. 66–80. Ames. IA: Iowa State College Press.Google Scholar
  132. Rudd, M.K., Wray, G.A. and Willard, H.F. 2006. The evolutionary dynamics of alpha-satellite. Genome Res 16: 88–96.PubMedGoogle Scholar
  133. Saffery, R., Sumer, H., Hassan, S., et al. 2003. Transcription within a functional human centromere. Mol Cell 12: 509–516.PubMedGoogle Scholar
  134. Sansome, E. and Brasier, C.M. 1973. Diploidy and chromosomal structure in Phytophthora infestans. Nature 241: 344–345.Google Scholar
  135. Sanyal, K., Baum, M. and Carbon, J. 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci USA 101: 11374–11379.PubMedGoogle Scholar
  136. Schittenhelm, R.B., Heeger, S., Althoff, F., et al. 2007. Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes. Chromosoma 116: 385–402.PubMedGoogle Scholar
  137. Schueler, M.G., Dunn, J.M., Bird, C.P., et al. 2005. Progressive proximal expansion of the primate X chromosome centromere. Proc Natl Acad Sci USA102: 10563–10568.PubMedGoogle Scholar
  138. Schueler, M.G., Higgins, A.W., Rudd, M.K., et al. 2001. Genomic and genetic definition of a functional human centromere. Science 294: 109–115.PubMedGoogle Scholar
  139. Schueler, M.G. and Sullivan, B.A. 2006. Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet 7: 301–13.PubMedGoogle Scholar
  140. Schwartz, B.E. and Ahmad, K. 2005. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev. 19: 804–814.PubMedGoogle Scholar
  141. Shelby, R.D., Vafa, O. and Sullivan, K.F. 1997. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol 136: 501–513.PubMedGoogle Scholar
  142. Sheldon, B.C. 1999. Sex allocation: At the females' whim. Curr Biol 9: R487–9.PubMedGoogle Scholar
  143. Shibata, F. and Murata, M. 2004. Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117: 2963–2970.PubMedGoogle Scholar
  144. Skold, H.N., Komma, D.J. and Endow, S.A. 2005. Assembly pathway of the anastral Drosophila oocyte meiosis I spindle. J Cell Sci 118: 1745–1755.PubMedGoogle Scholar
  145. Smith, G.P. 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191: 528–535.PubMedGoogle Scholar
  146. Stear, J.H. and Roth, M.B. 2002. Characterization of HCP-6, a C. elegans protein required to prevent chromosome twisting and merotelic attachment. Genes Dev 16: 1498–1508.PubMedGoogle Scholar
  147. Stoler, S., Rogers, K., Weitze, S., et al. 2007. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci USA. 104: 10571–10576.Google Scholar
  148. Sun, X., Le, H.D., Wahlstrom, J.M., et al. 2003. Sequence analysis of a functional Drosophila centromere. Genome Res 13: 182–194.PubMedGoogle Scholar
  149. Surzycki, S.A. and Belknap, W.R. 2000. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proc Natl Acad Sci USA 97: 245–249.PubMedGoogle Scholar
  150. Takahashi, K., Chen, E.S. and Yanagida, M. 2000. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288: 2215–2219.PubMedGoogle Scholar
  151. Talbert, P.B., Bryson, T.D. and Henikoff, S. 2004. Adaptive evolution of centromere proteins in plants and animals. J Biol 3: 18.PubMedGoogle Scholar
  152. Talbert, P.B., Masuelli, R., Tyagi, A.P., et al. 2002. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14: 1053–1066.PubMedGoogle Scholar
  153. Tomkiel, J., Cooke, C.A., Saitoh, H., et al. 1994. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J Cell Biol 125: 531–545.PubMedGoogle Scholar
  154. Topp, C.N., Zhong, C.X. and Dawe, R.K. 2004. Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101: 15986–91.PubMedGoogle Scholar
  155. Trazzi, S., Bernardoni, R., Diolaiti, D., et al. 2002. In vivo functional dissection of human inner kinetochore protein CENP-C. J Struct Biol 140: 39–48.PubMedGoogle Scholar
  156. Underkoffler, L.A., Mitchell, L.E., Abdulali, Z.S., et al. 2005. Transmission ratio distortion in offspring of mouse heterozygous carriers of a (7.18) Robertsonian translocation. Genetics 169: 843–848.PubMedGoogle Scholar
  157. Ventura, M., Antonacci, F., Cardone, M.F., et al. 2007. Evolutionary formation of new centromeres in macaque. Science 316: 243–246.PubMedGoogle Scholar
  158. Ventura, M., Archidiacono, N. and Rocchi, M. 2001. Centromere emergence in evolution. Genome Res 11: 595–599.PubMedGoogle Scholar
  159. Ventura, M., Mudge, J.M., Palumbo, V., et al. 2003. Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13: 2059–2068.PubMedGoogle Scholar
  160. Ventura, M., Weigl, S., Carbone, L., et al. 2004. Recurrent sites for new centromere seeding. Genome Res 14: 1696–703.PubMedGoogle Scholar
  161. Verlhac, M.H., Lefebvre, C., Guillaud, P., et al. 2000. Asymmetric division in mouse oocytes: with or without Mos. Curr Biol 10: 1303–1306.PubMedGoogle Scholar
  162. Vermaak, D., Hayden, H.S. and Henikoff, S. 2002. Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22: 7553–61.PubMedGoogle Scholar
  163. Villasante, A., Abad, J.P. and Mendez-Lago, M. 2007. Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc Natl Acad Sci USA 104: 10542–10547.PubMedGoogle Scholar
  164. Warburton, P.E., Waye, J.S. and Willard, H.F. 1993. Nonrandom localization of recombination events in human alpha satellite repeat unit variants: implications for higher-order structural characteristics within centromeric heterochromatin. Mol Cell Biol 13: 6520–6529.PubMedGoogle Scholar
  165. Westermann, S., Drubin, D.G. and Barnes, G. 2007. Structures and functions of yeast kinetochore complexes. Annu Rev Biochem 76: 563–591.PubMedGoogle Scholar
  166. White, M.J.D. 1973. Animal Cytology and Evolution. 3rd edn. London: Cambridge Universtiy Press.Google Scholar
  167. Wickstead, B., Ersfeld, K. and Gull, K. 2004. The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res 14: 1014–1024.PubMedGoogle Scholar
  168. Willard, H.F. 1991. Evolution of alpha satellite. Curr Opin Genet Dev 1: 509–14.PubMedGoogle Scholar
  169. Wollman, R., Cytrynbaum, E.N., Jones, J.T., et al. 2005. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr Biol 15: 828–832.PubMedGoogle Scholar
  170. Wong, L.H., Brettingham-Moore, K.H., Chan, L., et al. 2007. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17: 1146–1160 Google Scholar
  171. Yoda, K., Ando, S., Morishita, S., et al. 2000. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci USA 97: 7266–7271.PubMedGoogle Scholar
  172. Yu, H.G., Hiatt, E.N., Chan, A., et al. 1997. Neocentromere-mediated chromosome movement in maize. J Cell Biol 139: 831–840.PubMedGoogle Scholar
  173. Zhong, C.X., Marshall, J.B., Topp, C., et al. 2002. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14: 2825–36.PubMedGoogle Scholar
  174. Zinkowski, R.P., Meyne, J. and Brinkley, B.R. 1991. The centromere-kinetochore complex: a repeat subunit model. J Cell Biol 113: 1091–1110.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Paul B. Talbert
    • 1
  • Joshua J. Bayes
  • Steven Henikoff
  1. 1.Howard Hughes Medical Institute and Fred Hutchinson Cancer Research CenterSeattleU.S.A

Personalised recommendations