Human Artificial Centromeres: De novo Assembly of Functional Centromeres on Human Artificial Chromosomes

  • Hiroshi Masumoto
  • Teruaki Okada
  • Yasuhide Okamoto


The centromere is a chromosomal domain that is required for correct segregation of eukaryotic chromosomes during mitotic and meiotic cell division. CENP-A is a centromere-specific histone H3 variant highly conserved among eukaryotes, and thus has been used as a biochemical marker of centromeric chromatin. Maintenance of centromere structure and function is thought to involve epigenetic chromatin assembly mechanisms. However, the mechanism by which CENP-A is targeted to a specific region of the chromosome remains unclear. α-satellite (alphoid) DNA is a characteristic feature of the human centromere. De novo assembly of functional centromeres on human alphoid DNA has been demonstrated on Human/Mammalian Artificial Chromosomes (HAC/MACs) in human HT1080 cells and mouse embryonic cells. Thus, specific genomic sequences, as well as epigenetic mechanisms, appear to be able to support centromere assembly in human and mouse cells. This study focuses on de novo centromere assembly on HACs as a model system for understanding assembly of the human centromere.


Pericentromeric Heterochromatin Human Artificial Chromosome Centromeric Chromatin Functional Centromere Centromere Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to express our gratitude to Drs. Peter De Wulf and William C. Earnshaw for giving us the opportunity to write this review article. We also thank Dr. Brenda R. Grimes for critical reading. Due to space constraints, it was not possible to cite all of the excellent work in this area, and we regret omitting mention of many valuable studies in the field of human artificial chromosome technology/biology. This work was supported by Grants-In-Aid to HM for Scientific Research on Priority Areas and Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Science, Sports and Culture of Japan.


  1. Ainsztein, A.M., Kandels-Lewis, S.E., Mackay, A.M. and Earnshaw, W.C. (1998) INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol. 143, 1763–1774.PubMedGoogle Scholar
  2. Alexandrov, I., Kazakov, A., Tumeneva, I., Shepelev, V. and Yurov, Y. (2001) Alpha-satellite DNA of primates: old and new families. Chromosoma. 110, 253–266.PubMedGoogle Scholar
  3. Alonso, A., Mahmood, R., Li, S., Cheung, F., Yoda, K. and Warburton, P.E. (2003) Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum. Mol. Genet. 12, 2711–2721.PubMedGoogle Scholar
  4. Alonso, A., Fritz, B., Hasson, D., Abrusan, G., Cheung, F., Yoda, K., Radlwimmer, B., Ladurner, A.G. and Warburton, P.E. (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol. 8, R148PubMedGoogle Scholar
  5. Amor, D.J. and Choo, K.H. (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am. J. Hum. Genet. 71, 695–714.PubMedGoogle Scholar
  6. Amor, D.J., Bentley, K., Ryan, J. Perry, J., Wong, L., Stater, H. and Choo, K.H. (2004) Human centromere repositioning “in progress”. Proc. Natl. Acad. Sci. USA. 101, 6542–6547.Google Scholar
  7. Amor, D.J., Kalitsis, P., Sumer, H. and Choo, K.H. (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol. 14, 359–368.PubMedGoogle Scholar
  8. Ando, S., Yang, H., Nozaki, N., Okazaki, T. and Yoda, K. (2002) CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol. Cell Biol. 22, 2229–2241.PubMedGoogle Scholar
  9. Basu, J., Stromberg, G., Compitello, G., Willard, H.F. and Van Bokkelen, G. (2005) Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res. 33, 587–596.PubMedGoogle Scholar
  10. Bernard, P., Maure, J.F., Partridge, J.F., Genier, S., Javerzat, J.P. and Allshire, R.C. (2001) Requirement of heterochromatin for cohesion at centromeres. Science. 294, 2539–2542.PubMedGoogle Scholar
  11. Black, B.E., Foltz, D.R., Chakravarthy, S., Luger, K., Woods, V.L. and Cleveland, D.W. (2004) Structural determinants for generating centromeric chromatin. Nature, 430, 578–582.PubMedGoogle Scholar
  12. Black, B.E., Brock, M.A., Bédard, S., Woods, V.L. Jr and Cleveland, D.W. (2007) An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc. Natl. Acad. Sci. USA. 104, 5008–5013.PubMedGoogle Scholar
  13. Blower, M.D., Sullivan, B.A. and Karpen, G.H. (2002) Conserved organization of centromeric chromatin in flies and humans. Dev. Cell. 2, 319–330.PubMedGoogle Scholar
  14. Camahort, R., Li, B., Florens, L., Swanson, S.K., Washburn, M.P. and Gerton, J.L. (2007) Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell. 26, 853–865.PubMedGoogle Scholar
  15. Chan, G.K., Liu, S.T. and Yen, T.J. (2005) Kinetochore structure and function. Trends Cell Biol. 15, 589–598.PubMedGoogle Scholar
  16. Chueh, A.C., Wong, L.H., Wong, N. and Choo, K.H. (2005) Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere. Hum. Mol. Genet. 14, 85–93.PubMedGoogle Scholar
  17. Cimini, D., Moree, B., Canman, J.C. and Salmon, E.D. (2003) Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms. J. Cell Sci. 116, 4213–4225.PubMedGoogle Scholar
  18. Cleveland, D.W., Mao, Y. and Sullivan, K.F. (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell. 112, 407–421.PubMedGoogle Scholar
  19. Conde e Silva, N., Black, B.E., Sivolob, A., Filipski, J., Cleveland, D.W. and Prunell, A. (2007) CENP-A-conaining nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol. 370, 555–573.PubMedGoogle Scholar
  20. Csink, A.K. and Henikoff, S. (1998) Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 14, 200–204.PubMedGoogle Scholar
  21. DeLuca, J.G., Gall, W.E., Ciferri, C., Cimini, D., Musacchio, A. and Salmon, E.D. (2006) Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell. 127, 969–982.PubMedGoogle Scholar
  22. Earnshaw, W.C. & Migeon, B. (1985). Three related centromere proteins are absent from the latent centromere of a stable isodicentric chromosome. Chromosoma. 92, 290–296.PubMedGoogle Scholar
  23. Earnshaw, W.C. and Rothfield, N. (1985). Identification of a family of human centromere pro¬teins using autoimmune sera from patients with scleroderma. Chromosoma. 91, 313–321.PubMedGoogle Scholar
  24. Earnshaw, W.C., Sullivan, K.F., Machlin, P.S., Cooke, C.A., Kaiser, D.A., Pollard, T.D., Rothfield, N.F. and Cleveland, D.W. (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J. Cell Biol. 104, 817–829.PubMedGoogle Scholar
  25. Earnshaw, W.C., Ratrie, H. 3rd and Stetten, G. (1989) Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma. 98, 1–12.PubMedGoogle Scholar
  26. Ebersole, T.A., Ross, A., Clark, E., McGill, N., Schindelhauer, D., Cooke, H. and Grimes, B. (2000) Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. Hum. Mol. Genet. 9, 1623–1631.PubMedGoogle Scholar
  27. Ebersole, T., Okamoto, Y., Noskov, V.N., Kouprina, N., Kim, J.H., Leem, S.H., Barrett, J.C., Masumoto, H. and Larionov, V. (2005) Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucleic Acids Res. 33, e130PubMedGoogle Scholar
  28. Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. and Allshire, R.C. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell. 91, 1021–1032.PubMedGoogle Scholar
  29. Fitzgerald-Hayes, M., Clarke, L. and Carbon, J. (1982) Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell. 29, 235–244.PubMedGoogle Scholar
  30. Foltz, D.R., Jansen, L.E., Back, B.E., Bailey, A.O., Yates, J.R., 3rd and Cleveland, D.W. (2006) The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8, 458–469.PubMedGoogle Scholar
  31. Fujita, Y., Hayashi, T., Kiyomitsu, T., Toyoda, Y., Kokubu, A., Obuse, C. and Yanagida, M. (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev. Cell. 12, 17–30.PubMedGoogle Scholar
  32. Furuyama, T., Dalal, Y. and Henikoff, S. (2006) Chaperone-mediated assembly of centromeric nucleosome assembly in vitro. Proc. Natl. Acad. Sci. USA. 103, 6172–6177.PubMedGoogle Scholar
  33. Gassmann, R., Carvalho, A., Henzing, A.J., Ruchaud, S., Hudson, D.F., Honda, R., Nigg, E.A., Gerloff, D.L. and Earnshaw, W.C. (2004) Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J. Cell Biol. 166, 179–191.PubMedGoogle Scholar
  34. Goshima, G., Kiyomitsu, T., Yoda, K. and Yanagida, M. (2003) Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J. Cell Biol. 160, 25–39.PubMedGoogle Scholar
  35. Greaves, I.K,, Rangasamy, D., Ridgway, P. and Tremethick, D.J. (2007) H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl. Acad. Sci. USA. 104, 525–530.PubMedGoogle Scholar
  36. Grewal, S.I. and Moazed, D. (2003) Heterochromatin and epigenetic control of gene expression. Science. 301, 798–802.PubMedGoogle Scholar
  37. Grimes, B.R., Babcock, J., Rudd, M.K., Chadwick, B. and Willard, H.F. (2004) Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol. 5, R89PubMedGoogle Scholar
  38. Grimes, B.R., Rhoades, A.A. and Willard, H.F. (2002) Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol. Ther. 5, 798–805.PubMedGoogle Scholar
  39. Grimes, B.R., Schindelhauer, D., McGill, N. I., Ross, A., Ebersole, T.A. and Cooke, H.J. (2001) Stable gene expression from a mammalian artificial chromosome. EMBO Rep. 2, 910–914.PubMedGoogle Scholar
  40. Guenatri, M., Bailly, D., Maison, C. and Almouzni, G. (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505.PubMedGoogle Scholar
  41. Haaf, T. and Ward, D.C. (1994) Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum. Mol. Genet. 3, 697–709.PubMedGoogle Scholar
  42. Hahnenberger, K.M., Baum, M.P., Polizzi, C.M., Carbon, J. and Clarke, L. (1989) Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA. 86, 577–581.PubMedGoogle Scholar
  43. Harrington, J.J., Van Bokkelen, G., Mays, R.W., Gustashaw, K. and Willard, H.F. (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15, 345–355.PubMedGoogle Scholar
  44. Hayakawa, T., Haraguchi, T., Masumoto, H. and Hiraoka, Y. (2003) Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J. Cell Sci. 116, 3327–3338.PubMedGoogle Scholar
  45. Hayashi, T., Fujita, Y., Iwasaki, O., Adachi, Y., Takahashi, K. and Yanagida, M. (2004) Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell. 118, 715–729.PubMedGoogle Scholar
  46. Heller, R., Brown, K.E., Burgtorf, C. and Brown, W.R. (1996) Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc. Natl. Acad. Sci. USA. 93, 7125–7130.PubMedGoogle Scholar
  47. Henikoff, S., Ahmad, K. and Malik, H.S. (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 293, 1098–1102.PubMedGoogle Scholar
  48. Higgins, A.W., Gustashaw, K.M. and Willard, H.F. (2005) Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res. 13, 745–762.PubMedGoogle Scholar
  49. Howman, E.V., Fowler, K.J., Newson, A.J., Redward, S., MacDonald, A.C., Kalitsis, P. and Choo, K.H. (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl. Acad. Sci. USA. 97, 1148–1153.PubMedGoogle Scholar
  50. Hudson, D.F., Fowler, K.J., Earle, E., Saffery, R., Kalitsis, P., Trowell, H., Hill, J., Wreford, N.G., de Kretser, D.M., Cancilla, M.R., Howman, E., Hii, L., Cutts, S.M., Irvine, D.V. and Choo, K.H. (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J. Cell Biol. 141, 309–319.PubMedGoogle Scholar
  51. Ikeno, M., Grimes, B., Okazaki, T., Nakano, M., Saitoh, K., Hoshino, H., McGill, N.I., Cooke, H. and Masumoto, H. (1998) Construction of YAC-based mammalian artificial chromosomes. Nat. Biotechnol. 16, 431–439.PubMedGoogle Scholar
  52. Ikeno, M., Masumoto, H. and Okazaki, T. (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21. Hum. Mol. Genet. 3, 1245–1257.Google Scholar
  53. Irvine, D.V., Amor, D.J., Perry, J., Sirvent, N., Pedeutour, F., Choo, K.H. and Saffery, R. (2004) Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res. 12, 805–815.PubMedGoogle Scholar
  54. Izuta, H., Ikeno, M., Suzuki, N., Tomonaga, T., Nozaki, N., Obuse, C., Kisu, Y., Goshima, N., Nomura, F., Nomura, N. and Yoda, K. (2006) Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells. 11, 673–684.PubMedGoogle Scholar
  55. Jansen, L.E., Black, B.E., Foltz, D.R. and Cleveland, D.W. (2007) Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805.PubMedGoogle Scholar
  56. Kaname, T., McGuigan, A., Georghiou, A., Yurov, Y., Osoegawa, K., De Jong, P.J., Ioannou, P. and Huxley, C. (2005) Alphoid DNA from different chromosomes forms de novo minichromosomes with high efficiency. Chromosome Res. 13, 411–422.PubMedGoogle Scholar
  57. Kapoor, M., Montes, de Oca Luna, R., Liu, G., Lozano, G., Cummings, C., Mancini, M., Ouspenski, I., Brinkly, B.R. and May, G.S. (1998) The cenpB gene is not essential in mice. Chromosoma. 107, 570–576.Google Scholar
  58. Kipling, D., Mitchell, A.R., Masumoto, H., Wilson, H.E., Nicol, L. and Cooke, H.J. (1995) CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli. Mol. Cell. Biol. 15, 4009–4020.PubMedGoogle Scholar
  59. Kitagawa, K. and Hieter, P. (2001) Evolutionary conservation between budding yeast and human kinetochores. Nat. Rev. Mol. Cell Biol. 2, 678–687.PubMedGoogle Scholar
  60. Kline, S.L., Cheeseman, I.M., Hori, T., Fukagawa, T. and Desai, A. (2006) The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J. Cell Biol. 173, 9–17.PubMedGoogle Scholar
  61. Kouprina, N, Ebersole, T., Koriabine, M., Pak, E., Rogozin, I.B., Katoh, M., Oshimura, M., Ogi, K., Peredelchuk, M., Solomon, G., Brown, W., Barrett, J.C. and Larionov, V. (2003) Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res. 31, 922–934.PubMedGoogle Scholar
  62. Lachner, M., O'Sullivan, R.J. and Jenuwein, T. (2003) An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124.PubMedGoogle Scholar
  63. Lam, A.L., Boivin, C.D., Bonney, C.F., Rudd, M.K. and Sullivan, B.A. (2006) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc. Natl. Acad. Sci. USA. 103, 4186–4191.Google Scholar
  64. Laner, A., Schwarz, T., Christan, S. and Schindelhauer, D. (2004) Suitability of a CMV/EGFP cassette to monitor stable expression from artificial chromosomes but not transient transfer in the cells forming viable clones. Cytogenet. Genome Res. 107, 9–13.PubMedGoogle Scholar
  65. Laurent, A.M., Puechberty, J. and Roize`s, G. (1999) Hypothesis: for the worst and for the best L1Hs retrotransposons actively participate in the evolution of the human centromeric alphoid sequences. Chromosome Res. 7, 305–317.PubMedGoogle Scholar
  66. Lo, A.W., Magliano, D.J., Sibson, M.C., Kalitsis, P., Craig, J.M. and Choo, K. H. (2001) A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A binding neocentromere DNA. Genome Res. 11, 448–457.PubMedGoogle Scholar
  67. Loiodice, I., Alves, A., Rabut, G., Van Overbeek, M., Ellenberg, J., Sibarita, J.B. and Doye, V. (2004) The entire Nup107-160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell. 15, 3333–3344.PubMedGoogle Scholar
  68. Maddox, P.S., Hyndman, F., Monen, J., Oegema, K. and Desai, A. (2007) Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176, 757–763.PubMedGoogle Scholar
  69. Maggert, K.A. and Karpen G.H. (2007) The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics. 158, 1615–1628.Google Scholar
  70. Maiato, H., DeLuca, J., Salmon, E.D. and Earnshaw, W.C. (2004) The dynamic kinetochore-microtubule interface. J. Cell Sci. 117, 5461–5477.PubMedGoogle Scholar
  71. Masumoto, H., Ikeno, M., Nakano, M., Okazaki, T., Grimes, B., Cooke, H. and Suzuki, N. (1998) Assay of centromere function using a human artificial chromosome. Chromosoma. 107, 406–416.PubMedGoogle Scholar
  72. Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. and Okazaki, T. (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109, 1963–1973.PubMedGoogle Scholar
  73. Masumoto, H., Nakano, M. and Ohzeki, J. (2004) The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res. 12, 543–556.PubMedGoogle Scholar
  74. McIntosh, J.R., Grishchuk, E.L. and West, R.R. (2002) Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 18, 193–219.PubMedGoogle Scholar
  75. Mejia, J.E., Willmott, A., Levy, E., Earnshaw, W.C. and Larin, Z. (2001) Functional complementation of a genetic deficiency with human artificial chromosomes. Am. J. Hum. Genet. 69, 315–326.PubMedGoogle Scholar
  76. Mejia, J.E., Alazami, A., Willmott, A., Marschall, P., Levy, E., Earnshaw, W.C. and Larin, Z. (2002) Efficiency of de novo centromere formation in human artificial chromosomes. Genomics. 79, 297–304.PubMedGoogle Scholar
  77. Mellone, B.G. and Allshire, R.C. (2003) Stretching it: putting the CEN(P-A) in centromere. Curr. Opin. Genet. Dev. 13, 191–198.PubMedGoogle Scholar
  78. Mills, W., Critcher, R., Lee, C. and Farr, C.J. (1999) Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum. Mol. Genet. 8, 751–761.Google Scholar
  79. Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M.M. and Wu, C. (2007) Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell. 129, 1153–1164.PubMedGoogle Scholar
  80. Moralli, D., Simpson, K.M., Wade-Martins, R. and Monaco, Z.L. (2006) A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors. EMBO Rep. 7, 911–918.PubMedGoogle Scholar
  81. Nagaki, K., Cheng, Z., Ouyang, S., Talbert, P.B., Kim, M., Jones, K.M., Henikoff, S., Buell, C.R. and Jiang, J. (2004) Sequencing of a rice centromere uncovers active genes. Nat. Genet. 36, 138–145.PubMedGoogle Scholar
  82. Nakano, M., Okamoto, Y., Ohzeki, J. and Masumoto, H. (2003) Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes. J. Cell Sci. 116, 4021–4034.PubMedGoogle Scholar
  83. Nakano, M., Cardinale, S., Noskov, V.N., Gassmann, R., Vagnarelli, P., Kandels-Lewis, S., Larionov, V., Earnshaw W.C. and Masumoto. H. (2008). Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell. 14, 507–522.Google Scholar
  84. Nakashima, H., Nakano, M., Ohnishi, R., Hiraoka, Y., Kaneda, Y., Sugino, A. and Masumoto, H. (2005) Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome. J. Cell Sci. 118, 5885–5898.PubMedGoogle Scholar
  85. Nicklas, R.B. (1997) How cells get the right chromosomes. Science. 275, 632–637.PubMedGoogle Scholar
  86. Nonaka, N., Kitajima, T., Yokobayashi, S., Xiao, G., Yamamoto, M., Grewal, S.I. and Watanabe, Y. (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat. Cell Biol. 4, 89–93.PubMedGoogle Scholar
  87. Obuse, C., Iwasaki, O., Kiyomitsu, T., Goshima, G., Toyoda, Y. and Yanagida, M. (2004) A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat. Cell Biol. 6, 1135–1141.Google Scholar
  88. Okada, M., Cheeseman, I.M., Hori, T., Okawa, K., McLeod, I.X., Yates, J.R. 3rd, Desai, A. and Fukagawa, T. (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8, 446–457.PubMedGoogle Scholar
  89. Okada, T., Ohzeki, J., Nakano, M., Yoda, K., Brinkly, B.R., Larionov, V. and Masumoto, H. (2007) CENP-B controls centromere formation depending on the chromatin context. Cell. 131, 1287–1300.Google Scholar
  90. Okamoto, Y., Nakano, M., Ohzeki, J., Larionov, V. and Masumoto, H. (2007) A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J. 26, 1279–1291.PubMedGoogle Scholar
  91. Oegema, K., Desai, A., Rybina, S., Kirkham, M. and Hyman, A.A. (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209–1226.PubMedGoogle Scholar
  92. Ohzeki, J., Nakano, M., Okada, T. and Masumoto, H. (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J. Cell Biol. 159, 765–775.PubMedGoogle Scholar
  93. Palmer, D. K., O'Day, K., Trong, H. L., Charbonneau, H. & Margolis, R. L. (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl Acad. Sci. USA. 88, 3734–3738.PubMedGoogle Scholar
  94. Perez-Castro, A.V., Shamanski, F.L., Meneses, J.J., Lovato, T.L., Vogel, K.G., Moyzis, R.K. and Pedersen, R. (1998) Centromeric protein B null mice are viable with no apparent abnormalities. Dev. Biol. 201, 135–143.PubMedGoogle Scholar
  95. Peters, A.H., Kubicek, S., Mechtler, K., O'Sullivan, R.J., Derijck, A.A., Perez Burgos, L., Kohlmaier, A., Opravil, S., Tachibana, M., Shinkai, Y., Martens, J.H. and Jenuwein, T. (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell. 12, 1577–1589.PubMedGoogle Scholar
  96. Peters, A.H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A., Opravil, S., Doyle, M., Sibilia, M. and Jenuwein, T. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 107, 323–337.PubMedGoogle Scholar
  97. Politi, V., Perini, G., Trazzi, S., Pliss, A., Raska, I., Earnshaw, W.C. and Della Valle, G. (2002) CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. J. Cell Sci. 115, 2317–2327.PubMedGoogle Scholar
  98. Robinett, C.C., Straight, A., Li, G., Willhelm, C., Sudlow, G., Murray, A. and Belmont, A.S. (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700.PubMedGoogle Scholar
  99. Ruchaud, S., Carmena, M. and Earnshaw, W.C. (2007) Chromosomal passenger: conducting cell division. Nat. Rev. Mol. Biol. 8, 798–812.Google Scholar
  100. Rudd, M. K., Mays, R.W., Schwartz, S. and Willard, H.F. (2003) Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol. Cell. Biol. 23, 7689–7697.PubMedGoogle Scholar
  101. Saffery, R., Sumer, H., Hassan, S., Wong, L.H., Craig, J.M., Todokoro, K., Anderson, M., Stafford, A. and Choo, K.H. (2003) Transcription within a functional human centromere. Mol. Cell. 12, 509–516.PubMedGoogle Scholar
  102. Saffery. R., Wong, L.H., Irvine, D.V., Bateman, M.A., Griffiths, B., Cutts, S.M., Cancilla, M.R., Cendron, A.C., Stafford, A.J. and Choo, K.H. (2001) Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc. Natl. Acad. Sci. USA. 98, 5705–5710.PubMedGoogle Scholar
  103. Salmon, E.D., Cimini, D., Cameron, L.A. and DeLuca, J.G. (2005) Merotelic kinetochores in mammalian tissue cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 553–568.PubMedGoogle Scholar
  104. Schuh, M., Lehner, C.F. and Heidmann, S. (2007) Incorporation of Drosophila CID/CENP-A and CENP-C into centromere during early embryonic anaphase. Curr. Biol. 17, 237–243.PubMedGoogle Scholar
  105. Shelby, R.D., Monier, K. and Sullivan, K.F. (2000) Chromatin assembly at kinetochore is uncoupled from DNA replication. J. Cell Biol. 151, 1113–1118.PubMedGoogle Scholar
  106. Sonoda, E., Matsusaka, T., Morrison, C., Vagnarelli, P., Hoshi, O., Ushiki, T., Nojima, K., Fukagawa, T., Waizenegger, I.C., Peters, J.M., Earnshaw, W.C. and Takeda, S. (2001) Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell. 1, 759–770.PubMedGoogle Scholar
  107. Spence, J.M., Critcher, R., Ebersole, T.A., Valdivia, M.M., Earnshaw, W.C., Fukagawa, T. and Farr, C.J. (2002) Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J. 21, 5269–5280.PubMedGoogle Scholar
  108. Stoler, S., Rogers, K., Weitze, S., Morey, L., Fitzgerald-Hayes, M. and Baker, R.E. (2007) Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl. Acad. Sci. USA. 104, 10571–10576.PubMedGoogle Scholar
  109. Sullivan, B.A., Blower, M.D. and Karpen, G.H. (2001) Determining centromere identity: cyclical stories and forking paths. Nat. Rev. Genet. 2, 584–596.PubMedGoogle Scholar
  110. Sullivan, B.A. and Karpen, G.H. (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 11, 1076–1083.PubMedGoogle Scholar
  111. Sullivan, B.A. and Schwartz, S. (1995) Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4, 2189–2197.PubMedGoogle Scholar
  112. Sullivan, K.F., Hechenberger, M. and Masri, K. (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592.PubMedGoogle Scholar
  113. Sullivan K.F., (2001) A solid foundation: functional specialization of centromeric chromatin. Curr. Opin. Genet. Dev. 11, 182–188.PubMedGoogle Scholar
  114. Suzuki, N., Nakano, M., Nozaki, N., Egashira, S., Okazaki, T. and Masumoto, H. (2004) CENP-B interacts with CENP-C domains containing Mif2 regions responsible for centromere localization. J. Biol. Chem. 279, 5934–5946.PubMedGoogle Scholar
  115. Taddei, A., Maison, C., Roche, D. and Almouzni, G. (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat. Cell Biol. 3, 114–120.PubMedGoogle Scholar
  116. Trowell, H.E., Nagy, A., Vissel, B. and Choo, K.H. (1993) Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum. Mol. Genet. 2, 1639–1649.PubMedGoogle Scholar
  117. Tsuduki, T., Nakano, M., Yasuoka, N., Yamazaki, S., Okada, T., Okamoto, Y. and Masumoto, H. (2006) An artificially constructed de novo human chromosome behaves almost identically to its natural counterpart during metaphase and anaphase in living cells. Mol. Cell. Biol. 26, 7682–7695.PubMedGoogle Scholar
  118. Tyler-Smith, C., Gimelli, G., Giglio, S., Floridia, G., Pandya, A., Terzoli, G., Warburton, P.E., Earnshaw, W.C. and Zuffardi, O. (1999) Transmission of a fully functional human neocentromere through three generations. Am. J. Hum. Genet. 64, 1440–1444.PubMedGoogle Scholar
  119. Vagnarelli, P.B. and Earnshaw, W.C. (2001) INCENP loss from an inactive centromere correlates with the loss of sister chromatid cohesion. Chromosoma. 110, 393–401.PubMedGoogle Scholar
  120. Valdeolmillos, A., Rufas, J.S., Suja, J.A., Vass, S., Heck, M.M., Martinez, A.C. and Barbero, J.L. (2004) Drosophila cohesins DSA1 and Drad21 persist and colocalize along the centromeric heterochromatin during mitosis. Biol. Cell. 96, 457–462.PubMedGoogle Scholar
  121. Van Hooser, A.A., Ouspenski, II, Gregson, H.C., Starr, D.A., Yen, T.J., Goldberg, M.L., Yokomori, K., Earnshaw, W.C., Sullivan, K.F. and Brinkley, B.R. (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 114, 3529–3542.Google Scholar
  122. Vass, S., Cotterill, S., Valdeolmillos, A.M., Barbero, J.L., Lin, E., Warren, W.D. and Heck, M.M. (2003) Depletion of Drad21/Scc1 in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr. Biol. 13, 208–218.PubMedGoogle Scholar
  123. Ventura, M., Antonacci, F., Cardone, M.F., Stanyon, R., D'Addabbo, P., Cellamare, A., Sprague, L.J., Eichler, E.E., Archidiacono, N.. and Rocchi, M. (2006), Evolutionary formation of new centromeres in macaque. Science. 316, 243–246.Google Scholar
  124. Warburton, P.E. (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res. 12, 617–626.PubMedGoogle Scholar
  125. Warburton, P. E., Cooke, C.A., Bourassa, S., Vafa, O., Sullivan, B.A., Stetten, G., Gimelli, G., Warburton, D., Tyler-Smith, C., Sullivan, K.F., Poirier, G.G. and Earnshaw, W.C. (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7, 901–904.PubMedGoogle Scholar
  126. Willard, H.F. and Waye, J.S. (1987) Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet. 3, 192–198.Google Scholar
  127. Yoda, K., Ando, S., Morishita, S., Houmura, K., Hashimoto, K., Takeyasu, K. and Okazaki, T. (2000) Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc. Natl. Acad. Sci. USA. 97, 7266–7271PubMedGoogle Scholar
  128. Zinkowski, R.P., Meyne, J. and Brinkley, B.R. (1991) The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol. 113, 1091–1110.PubMedGoogle Scholar
  129. Zuccolo, M., Alves, A., Galy, V., Bolhy, S., Formstecher, E., Racine, V., Sibarita, J. B., Fukagawa, T., Shiekhattar, R., Yen, T. and Doye, V. (2007) The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J. 26, 1853–1864.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hiroshi Masumoto
    • 1
  • Teruaki Okada
  • Yasuhide Okamoto
  1. 1.Lab of Cell Function and RegulationDepartment of Human Genome Research, Kazusa DNA Research Institute2-6-7 Kazusa-kamatari, KisarazuJapan

Personalised recommendations