• Owen J. Marshall
  • K.H Andy Choo


Almost all eukaryotic centromeres are marked by their accumulation of repetitive DNA. Such repeats are specific to the organism, and indicate some form of sequence sharing between centromeres. Generally, the pattern at the core of the centromere is of a tandem repeat unit, organised into higher order repeats. In humans, the repeat has been termed alpha-satellite (or alphoid) DNA and a consensus sequence exists between centromeres (Choo et al. 1991). As such, the concept of a relationship between DNA sequence and centromere formation was compelling.

All this changed, however, with the discovery in 1993 of an ectopic centromere, or ‘neocentromere’, formed on a marker chromosome without any alpha-satellite DNA (Voullaire et al. 1993). The centromere on this marker chromosome, designated mardel (10), was shown to have formed at 10q25––a euchromatic region of a chromosome arm that had not undergone any rearrangement or sequence change (du Sart et al. 1997; Lo et al. 2001a)....


Bacterial Artificial Chromosome Marker Chromosome Ring Chromosome Human Artificial Chromosome Centromeric Chromatin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank E. Northrop and M. Pertile for stimulating discussions and critical comments on the manuscript. This work was supported by the National Health and Medical Research Council of Australia and the National Institutes of Health.


  1. Abeliovich, D., Yehuda, O., Ben-Neriah, S., Kapelushnik, Y., and Ben-Yehuda, D., 1996. dup(10q) lacking alpha-satellite DNA in bone marrow cells of a patient with acute myeloid leukemia. Cancer Genet Cytogenet 89:1–6.PubMedCrossRefGoogle Scholar
  2. Adolph, K. W., Cheng, S. M., Paulson, J. R., and Laemmli, U. K., 1977. Isolation of a protein scaffold from mitotic HeLa cell chromosomes. Proc Natl Acad Sci U S A 74:4937–4941.Google Scholar
  3. Allshire, R., 2002. Molecular biology. RNAi and heterochromatin–a hushed-up affair. Science 297:1818–9.PubMedCrossRefGoogle Scholar
  4. Alonso, A., Fritz, B., Hasson, D., Abrusan, G., Cheung, F., Yoda, K., Radlwimmer, B., Ladurner, A., and Warburton, P., 2007. Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8:R148.PubMedCrossRefGoogle Scholar
  5. Alonso, A., Mahmood, R., Li, S., Cheung, F., Yoda, K., and Warburton, P. E., 2003. Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12:2711–2721.PubMedCrossRefGoogle Scholar
  6. Amor, D. J., Bentley, K., Ryan, J., Perry, J., Wong, L., Slater, H., and Choo, K. H. A., 2004. Human centromere repositioning “in progress”. Proc Natl Acad Sci USA 101:6542–6547.Google Scholar
  7. Amor, D. J. and Choo, K. H. A., 2002. Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714.PubMedCrossRefGoogle Scholar
  8. Amor, D. J., Voullaire, L., Bentley, K., Savarirayan, R., and Choo, K. H. A., 2005. Mosaic monosomy of a neocentric ring chromosome maps brachyphalangy and growth hormone deficiency to 13q31.1-13q32.3. Am J Med Genet A 133:151–157.Google Scholar
  9. Ando, S., Yang, H., Nozaki, N., Okazaki, T., and Yoda, K., 2002. CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol 22:2229–41.PubMedCrossRefGoogle Scholar
  10. Barwell, J., Mazzaschi, R., Bint, S., Ogilvie, C. M., and Elmslie, F., 2004. A new neocentromere locus on chromosome 13 resulting in mosaic tetrasomy for distal 13q and an asymmetric phenotype. Am J Med Genet A 130:295–298.CrossRefGoogle Scholar
  11. Basu, J., Stromberg, G., Compitello, G., Willard, H. F., and Bokkelen, G. V., 2005. Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res 33:587–596.PubMedCrossRefGoogle Scholar
  12. Bernard, P., Maure, J. F., Partridge, J. F., Genier, S., Javerzat, J. P., and Allshire, R. C., 2001. Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542.PubMedCrossRefGoogle Scholar
  13. Black, B. E., Foltz, D. R., Chakravarthy, S., Luger, K., Woods, V. L., and Cleveland, D. W., 2004. Structural determinants for generating centromeric chromatin. Nature 430:578–582.PubMedCrossRefGoogle Scholar
  14. Black, B. E., Jansen, L. E. T., Maddox, P. S., Foltz, D. R., Desai, A. B., Shah, J. V., and Cleveland, D. W., 2007. Centromere Identity Maintained by Nucleosomes Assembled with Histone H3 Containing the CENP-A Targeting Domain. Mol Cell 25:309–322.PubMedCrossRefGoogle Scholar
  15. Blower, M. D., Sullivan, B. A., and Karpen, G. H., 2002. Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–30.PubMedCrossRefGoogle Scholar
  16. Bukvic, N., Susca, F., Gentile, M., Tangari, E., Ianniruberto, A., and Guanti, G., 1996. An unusual dicentric Y chromosome with a functional centromere with no detectable alpha-satellite. Hum Genet 97:453–456.PubMedCrossRefGoogle Scholar
  17. Capozzi, O., Purgato, S., di Cantogno, L. V., Grosso, E., Ciccone, R., Zuffardi, O., Valle, G. D., and Rocchi, M., 2008. Evolutionary and clinical neocentromeres: two faces of the same coin? Chromosoma 117:339–44.Google Scholar
  18. Cardone, M. F., Alonso, A., Pazienza, M., Ventura, M., Montemurro, G., Carbone, L., de Jong, P. J., Stanyon, R., D’Addabbo, P., Archidiacono, N., She, X., Eichler, E. E., Warburton, P. E., and Rocchi, M., 2006. Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol 7:R91.PubMedCrossRefGoogle Scholar
  19. Choo, K. H., Vissel, B., Nagy, A., Earle, E., and Kalitsis, P., 1991. A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence. Nucleic Acids Res 19:1179–1182.PubMedCrossRefGoogle Scholar
  20. Christensen, M. O., Larsen, M. K., Barthelmes, H. U., Hock, R., Andersen, C. L., Kjeldsen, E., Knudsen, B. R., Westergaard, O., Boege, F., and Mielke, C., 2002. Dynamics of human DNA topoisomerases IIalpha and IIbeta in living cells. J Cell Biol 157:31–44.PubMedCrossRefGoogle Scholar
  21. Chueh, A. C., Wong, L. H., Wong, N., and Choo, K. H. A., 2005. Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere. Hum Mol Genet 14:85–93.PubMedCrossRefGoogle Scholar
  22. Coelho, P. A., Queiroz-Machado, J., and Sunkel, C. E., 2003. Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis. J Cell Sci 116:4763–4776.PubMedCrossRefGoogle Scholar
  23. Collins, K. A., Furuyama, S., and Biggins, S., 2004. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr Biol 14:1968–1972.PubMedCrossRefGoogle Scholar
  24. Craig, J. M., Earle, E., Canham, P., Wong, L. H., Anderson, M., and Choo, K. H. A., 2003a. Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns. Hum Mol Genet 12:3109–3121.Google Scholar
  25. Craig, J. M., Wong, L. H., Lo, A. W. I., Earle, E., and Choo, K. H. A., 2003b. Centromeric chromatin pliability and memory at a human neocentromere. EMBO J 22:2495–2504.Google Scholar
  26. Dalprà, L., Giardino, D., Finelli, P., Corti, C., Valtorta, C., Guerneri, S., Ilardi, P., Fortuna, R., Coviello, D., Nocera, G., Amico, F. P., Martinoli, E., Sala, E., Villa, N., Crosti, F., Chiodo, F., di Cantogno, L. V., Savin, E., Croci, G., Franchi, F., Venti, G., Donti, E., Migliori, V., Pettinari, A., Bonifacio, S., Centrone, C., Torricelli, F., Rossi, S., Simi, P., Granata, P., Casalone, R., Lenzini, E., Artifoni, L., Pecile, V., Barlati, S., Bellotti, D., Caufin, D., Police, A., Cavani, S., Piombo, G., Pierluigi, M., and Larizza, L., 2005. Cytogenetic and molecular evaluation of 241 small supernumerary marker chromosomes: cooperative study of 19 Italian laboratories. Genet Med 7:620–625.PubMedCrossRefGoogle Scholar
  27. Dawe, R. K. and Hiatt, E. N., 2004. Plant neocentromeres: fast, focused, and driven. Chromosome Res 12:655–669.PubMedCrossRefGoogle Scholar
  28. du Sart, D., Cancilla, M. R., Earle, E., Mao, J. I., Saffery, R., Tainton, K. M., Kalitsis, P., Martyn, J., Barry, A. E., and Choo, K. H., 1997. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144–153.PubMedCrossRefGoogle Scholar
  29. Eder, V., Ventura, M., Ianigro, M., Teti, M., Rocchi, M., and Archidiacono, N., 2003. Chromosome 6 phylogeny in primates and centromere repositioning. Mol Biol Evol 20:1506–1512.PubMedCrossRefGoogle Scholar
  30. Filipski, J., Leblanc, J., Youdale, T., Sikorska, M., and Walker, P. R., 1990. Periodicity of DNA folding in higher order chromatin structures. EMBO J 9:1319–1327.PubMedGoogle Scholar
  31. Foltz, D. R., Jansen, L. E. T., Black, B. E., Bailey, A. O., Yates, J. R., and Cleveland, D. W., 2006. The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469.PubMedCrossRefGoogle Scholar
  32. Forus, A., Bjerkehagen, B., Sirvent, N., Meza-Zepeda, L. A., Coindre, J. M., Berner, J. M., Myklebost, O., and Pedeutour, F., 2001. A well-differentiated liposarcoma with a new type of chromosome 12-derived markers. Cancer Genet Cytogenet 131:13–18.PubMedCrossRefGoogle Scholar
  33. Fukagawa, T., Mikami, Y., Nishihashi, A., Regnier, V., Haraguchi, T., Hiraoka, Y., Sugata, N., Todokoro, K., Brown, W., and Ikemura, T., 2001. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J 20:4603–4617.PubMedCrossRefGoogle Scholar
  34. Gisselsson, D., Höglund, M., Mertens, F., Johansson, B., Cin, P. D., den Berghe, H. V., Earnshaw, W. C., Mitelman, F., and Mandahl, N., 1999. The structure and dynamics of ring chromosomes in human neoplastic and non-neoplastic cells. Hum Genet 104:315–325.PubMedCrossRefGoogle Scholar
  35. Henikoff, S., Ahmad, K., and Malik, H. S., 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–102.PubMedCrossRefGoogle Scholar
  36. Heun, P., Erhardt, S., Blower, M. D., Weiss, S., Skora, A. D., and Karpen, G. H., 2006. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315.PubMedCrossRefGoogle Scholar
  37. Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T., Durbin, R., Eyras, E., Gilbert, J., Hammond, M., Huminiecki, L., Kasprzyk, A., Lehvaslaiho, H., Lijnzaad, P., Melsopp, C., Mongin, E., Pettett, R., Pocock, M., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A., Vastrik, I., and Clamp, M., 2002. The Ensembl genome database project. Nucleic Acids Res 30:38–41.PubMedCrossRefGoogle Scholar
  38. Irvine, D. V., Amor, D. J., Perry, J., Sirvent, N., Pedeutour, F., Choo, K. H. A., and Saffery, R., 2004. Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res 12:805–815.PubMedCrossRefGoogle Scholar
  39. Italiano, A., Attias, R., Aurias, A., Pérot, G., Burel-Vandenbos, F., Otto, J., Venissac, N., and Pedeutour, F., 2006. Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C. Cancer Genet Cytogenet 167:122–130.PubMedCrossRefGoogle Scholar
  40. Jackson, D. A., Dickinson, P., and Cook, P. R., 1990. The size of chromatin loops in HeLa cells. EMBO J 9:567–571.PubMedGoogle Scholar
  41. Jansen, L. E. T., Black, B. E., Foltz, D. R., and Cleveland, D. W., 2007. Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805.PubMedCrossRefGoogle Scholar
  42. Kasai, F., Garcia, C., Arruga, M. V., and Ferguson-Smith, M. A., 2003. Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102:326–330.PubMedCrossRefGoogle Scholar
  43. Kireeva, N., Lakonishok, M., Kireev, I., Hirano, T., and Belmont, A. S., 2004. Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol 166:775–785.PubMedCrossRefGoogle Scholar
  44. Knegt, A. C., Li, S., Engelen, J. J. M., Bijlsma, E. K., and Warburton, P. E., 2003. Prenatal diagnosis of a karyotypically normal pregnancy in a mother with a supernumerary neocentric 13q21 –>13q22 chromosome and balancing reciprocal deletion. Prenat Diagn 23:215–220.PubMedCrossRefGoogle Scholar
  45. Kosztolányi, G., 1987. Does “ring syndrome” exist? An analysis of 207 case reports on patients with a ring autosome. Hum Genet 75:174–179.PubMedCrossRefGoogle Scholar
  46. Laemmli, U. K., Cheng, S. M., Adolph, K. W., Paulson, J. R., Brown, J. A., and Baumbach, W. R., 1978. Metaphase chromosome structure: the role of nonhistone proteins. Cold Spring Harb Symp Quant Biol 42 Pt 1:351–360.Google Scholar
  47. Lam, A. L., Boivin, C. D., Bonney, C. F., Rudd, M. K., and Sullivan, B. A., 2006. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci USA 103:4186–4191.Google Scholar
  48. Li, S., Malafiej, P., Levy, B., Mahmood, R., Field, M., Hughes, T., Lockhart, L. H., Wu, Z., Huang, M., Hirschhorn, K., Velagaleti, G. V. N., Daniel, A., and Warburton, P. E., 2002. Chromosome 13q neocentromeres: molecular cytogenetic characterization of three additional cases and clinical spectrum. Am J Med Genet 110:258–267.PubMedCrossRefGoogle Scholar
  49. Liehr, T., Claussen, U., and Starke, H., 2004. Small supernumerary marker chromosomes (sSMC) in humans. Cytogenet Genome Res 107:55–67.PubMedCrossRefGoogle Scholar
  50. Lo, A. W., Craig, J. M., Saffery, R., Kalitsis, P., Irvine, D. V., Earle, E., Magliano, D. J., and Choo, K. H., 2001a. A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J 20:2087–96.Google Scholar
  51. Lo, A. W., Magliano, D. J., Sibson, M. C., Kalitsis, P., Craig, J. M., and Choo, K. H., 2001b. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 11:448–57.Google Scholar
  52. Maeshima, K. and Laemmli, U. K., 2003. A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 4:467–480.PubMedCrossRefGoogle Scholar
  53. Maggert, K. A. and Karpen, G. H., 2001. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158:1615–1628.PubMedGoogle Scholar
  54. Marshall, O. J., Chueh, A. C., Wong, L. H., and Choo, K. H. A., 2008. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282.PubMedCrossRefGoogle Scholar
  55. Masumoto, H., Ikeno, M., Nakano, M., Okazaki, T., Grimes, B., Cooke, H., and Suzuki, N., 1998. Assay of centromere function using a human artificial chromosome. Chromosoma 107:406–416.PubMedCrossRefGoogle Scholar
  56. Montefalcone, G., Tempesta, S., Rocchi, M., and Archidiacono, N., 1999. Centromere repositioning. Genome Res 9:1184–1188.PubMedCrossRefGoogle Scholar
  57. Moreno-Moreno, O., Torras-Llort, M., and Azorín, F., 2006. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res 34:6247–6255.PubMedCrossRefGoogle Scholar
  58. Morrissette, J. D., Celle, L., Owens, N. L., Shields, C. L., Zackai, E. H., and Spinner, N. B., 2001. Boy with bilateral retinoblastoma due to an unusual ring chromosome 13 with activation of a latent centromere. Am J Med Genet 99:21–28.PubMedCrossRefGoogle Scholar
  59. Nagaki, K., Cheng, Z., Ouyang, S., Talbert, P. B., Kim, M., Jones, K. M., Henikoff, S., Buell, C. R., and Jiang, J., 2004. Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145.PubMedCrossRefGoogle Scholar
  60. Nasuda, S., Hudakova, S., Schubert, I., Houben, A., and Endo, T. R., 2005. Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847.Google Scholar
  61. Nonaka, N., Kitajima, T., Yokobayashi, S., Xiao, G., Yamamoto, M., Grewal, S. I. S., and Watanabe, Y., 2002. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4:89–93.PubMedCrossRefGoogle Scholar
  62. Ohzeki, J., Nakano, M., Okada, T., and Masumoto, H., 2002. CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159:765–775.PubMedCrossRefGoogle Scholar
  63. Okamoto, Y., Nakano, M., Ohzeki, J.-I., Larionov, V., and Masumoto, H., 2007. A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J 26:1279–1291.PubMedCrossRefGoogle Scholar
  64. Paulson, J. R. and Laemmli, U. K., 1977. The structure of histone-depleted metaphase chromosomes. Cell 12:817–828.PubMedCrossRefGoogle Scholar
  65. Pedeutour, F., Forus, A., Coindre, J. M., Berner, J. M., Nicolo, G., Michiels, J. F., Terrier, P., Ranchere-Vince, D., Collin, F., Myklebost, O., and Turc-Carel, C., 1999. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 24:30–41.PubMedCrossRefGoogle Scholar
  66. Platero, J. S., Ahmad, K., and Henikoff, S., 1999. A distal heterochromatic block displays centromeric activity when detached from a natural centromere. Mol Cell 4:995–1004.PubMedCrossRefGoogle Scholar
  67. Rhoades, M. M. and Vilkomerson, H., 1942. On the Anaphase Movement of Chromosomes. Proc Natl Acad Sci USA 28:433–436.Google Scholar
  68. Rivera, H., Vassquez, A. I., Ayala-Madrigal, M. L., Ramirez-Dueñas, M. L., and Davalos, I. P., 1996. Alphoidless centromere of a familial unstable inverted Y chromosome. Ann Genet 39:236–239.PubMedGoogle Scholar
  69. Saffery, R., Irvine, D. V., Grifiths, B., Kalitsis, P., Wordeman, L., and Choo, K. H., 2000. Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum Mol Genet 9:175–185.PubMedCrossRefGoogle Scholar
  70. Saffery, R., Sumer, H., Hassan, S., Wong, L. H., Craig, J. M., Todokoro, K., Anderson, M., Stafford, A., and Choo, K. H. A., 2003. Transcription within a functional human centromere. Mol Cell 12:509–516.PubMedCrossRefGoogle Scholar
  71. Schuh, M., Lehner, C. F., and Heidmann, S., 2007. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 17:237–243.PubMedCrossRefGoogle Scholar
  72. Sirvent, N., Forus, A., Lescaut, W., Burel, F., Benzaken, S., Chazal, M., Bourgeon, A., Vermeesch, J. R., Myklebost, O., Turc-Carel, C., Ayraud, N., Coindre, J. M., and Pedeutour, F., 2000. Characterization of centromere alterations in liposarcomas. Genes Chromosomes Cancer 29:117–129.PubMedCrossRefGoogle Scholar
  73. Strissel, P. L., Espinosa, R., Rowley, J. D., and Swift, H., 1996. Scaffold attachment regions in centromere-associated DNA. Chromosoma 105:122–133.PubMedCrossRefGoogle Scholar
  74. Sullivan, B. A. and Willard, H. F., 1998. Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20:227–228.PubMedCrossRefGoogle Scholar
  75. Sumer, H., Craig, J. M., Sibson, M., and Choo, K. H. A., 2003. A rapid method of genomic array analysis of scaffold/matrix attachment regions (S/MARs) identifies a 2.5-Mb region of enhanced scaffold/matrix attachment at a human neocentromere. Genome Res 13:1737–1743.PubMedCrossRefGoogle Scholar
  76. Sumer, H., Saffery, R., Wong, N., Craig, J. M., and Choo, K. H. A., 2004. Effects of scaffold/matrix alteration on centromeric function and gene expression. J Biol Chem 279:37631–37639.PubMedCrossRefGoogle Scholar
  77. Szpirer, C., Rivière, M., VanVooren, P., Moisan, M.-P., Haller, O., and Szpirer, J., 2005. Chromosome evolution of MMU16 and RNO11: conserved synteny associated with gene order rearrangements explicable by intrachromosomal recombinations and neocentromere emergence. Cytogenet Genome Res 108:322–327.PubMedCrossRefGoogle Scholar
  78. Tavormina, P. A., Côme, M.-G., Hudson, J. R., Mo, Y.-Y., Beck, W. T., and Gorbsky, G. J., 2002. Rapid exchange of mammalian topoisomerase II alpha at kinetochores and chromosome arms in mitosis. J Cell Biol 158:23–29.PubMedCrossRefGoogle Scholar
  79. Tomonaga, T., Matsushita, K., Ishibashi, M., Nezu, M., Shimada, H., Ochiai, T., Yoda, K., and Nomura, F., 2005. Centromere protein H is up-regulated in primary human colorectal cancer and its overexpression induces aneuploidy. Cancer Res 65:4683–4689.PubMedCrossRefGoogle Scholar
  80. Tomonaga, T., Matsushita, K., Yamaguchi, S., Oohashi, T., Shimada, H., Ochiai, T., Yoda, K., and Nomura, F., 2003. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63:3511–3516.PubMedGoogle Scholar
  81. Tonnies, H., Gerlach, A., Heineking, B., Starke, H., Neitzel, H., and Neumann, L. M., 2006. Molecular cytogenetic identification and characterization of a de novo supernumerary neocentromeric derivative chromosome 13. Cytogenet Genome Res 114:325–329.PubMedCrossRefGoogle Scholar
  82. Tyler-Smith, C., Gimelli, G., Giglio, S., Floridia, G., Pandya, A., Terzoli, G., Warburton, P. E., Earnshaw, W. C., and Zuffardi, O., 1999. Transmission of a fully functional human neocentromere through three generations. Am J Hum Genet 64:1440–1444.PubMedCrossRefGoogle Scholar
  83. Van Hooser, A. A., Ouspenski, I. I., Gregson, H. C., Starr, D. A., Yen, T. J., Goldberg, M. L., Yokomori, K., Earnshaw, W. C., Sullivan, K. F., and Brinkley, B. R., 2001. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114:3529–42.PubMedGoogle Scholar
  84. Ventura, M., Antonacci, F., Cardone, M. F., Stanyon, R., D’Addabbo, P., Cellamare, A., Sprague, L. J., Eichler, E. E., Archidiacono, N., and Rocchi, M., 2007. Evolutionary formation of new centromeres in macaque. Science 316:243–246.PubMedCrossRefGoogle Scholar
  85. Ventura, M., Archidiacono, N., and Rocchi, M., 2001. Centromere emergence in evolution. Genome Res 11:595–599.PubMedCrossRefGoogle Scholar
  86. Ventura, M., Mudge, J. M., Palumbo, V., Burn, S., Blennow, E., Pierluigi, M., Giorda, R., Zuffardi, O., Archidiacono, N., Jackson, M. S., and Rocchi, M., 2003. Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13:2059–2068.PubMedCrossRefGoogle Scholar
  87. Ventura, M., Weigl, S., Carbone, L., Cardone, M. F., Misceo, D., Teti, M., D’Addabbo, P., Wandall, A., Björck, E., de Jong, P. J., She, X., Eichler, E. E., Archidiacono, N., and Rocchi, M., 2004. Recurrent sites for new centromere seeding. Genome Res 14:1696–1703.PubMedCrossRefGoogle Scholar
  88. Voullaire, L., Saffery, R., Earle, E., Irvine, D. V., Slater, H., Dale, S., du Sart, D., Fleming, T., and Choo, K. H., 2001. Mosaic inv dup(8p) marker chromosome with stable neocentromere suggests neocentromerization is a post-zygotic event. Am J Med Genet 102:86–94.PubMedCrossRefGoogle Scholar
  89. Voullaire, L. E., Slater, H. R., Petrovic, V., and Choo, K. H., 1993. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52:1153–1163.PubMedGoogle Scholar
  90. Wandall, A., Tranebjaerg, L., and Tommerup, N., 1998. A neocentromere on human chromosome 3 without detectable alpha-satellite DNA forms morphologically normal kinetochores. Chromosoma 107:359–65.PubMedCrossRefGoogle Scholar
  91. Warburton, P. C., Barwell, J., Splitt, M., Maxwell, D., Bint, S., and Ogilvie, C. M., 2003. Class II neocentromeres: a putative common neocentromere site in band 4q21.2. Eur J Hum Genet 11:749–753.PubMedCrossRefGoogle Scholar
  92. Warburton, P. E., 2004. Chromosomal dynamics of human neocentromere formation. Chromosome Res 12:617–626.PubMedCrossRefGoogle Scholar
  93. Warburton, P. E., Dolled, M., Mahmood, R., Alonso, A., Li, S., Naritomi, K., Tohma, T., Nagai, T., Hasegawa, T., Ohashi, H., Govaerts, L. C., Eussen, B. H., Van Hemel, J. O., Lozzio, C., Schwartz, S., Dowhanick-Morrissette, J. J., Spinner, N. B., Rivera, H., Crolla, J. A., Yu, C., and Warburton, D., 2000. Molecular cytogenetic analysis of eight inversion duplications of human chromosome 13q that each contain a neocentromere. Am J Hum Genet 66:1794–806.PubMedCrossRefGoogle Scholar
  94. Williams, B. C., Murphy, T. D., Goldberg, M. L., and Karpen, G. H., 1998. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18:30–7.PubMedCrossRefGoogle Scholar
  95. Wong, N. C., Wong, L. H., Quach, J. M., Canham, P., Craig, J. M., Song, J. Z., Clark, S. J., and Choo, K. H. A., 2006. Permissive transcriptional activity at the centromere through pockets of DNA hypomethylation. PLoS Genet 2:e17.PubMedCrossRefGoogle Scholar
  96. Yan, H., Ito, H., Nobuta, K., Ouyang, S., Jin, W., Tian, S., Lu, C., Venu, R. C., Wang, G.-L., Green, P. J., Wing, R. A., Buell, C. R., Meyers, B. C., and Jiang, J., 2006. Genomic and geneticcharacterization of rice Cen3 reveals extensive transcription and evolutionary implications of acomplex centromere. Plant Cell 18:2123–2133.PubMedCrossRefGoogle Scholar
  97. Zinkowski, R. P., Meyne, J., and Brinkley, B. R., 1991. The centromere-kinetochore complex: a repeat subunit model. J Cell Biol 113:1091–1110.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratory of Chromosome and Chromatin ResearchMurdoch Children’s Research Institute, Royal Children’s HospitalParkville Victoria 3052Australia

Personalised recommendations