The Basics of Chromosome Segregation



Sister Chromatid Chromosome Segregation Spindle Pole Spindle Checkpoint Mitotic Checkpoint 


  1. Aono, N., Sutani, T., Tomonaga, T., Mochida, S., and Yanagida, M. 2002. Cnd2 has dual roles in mitotic condensation and interphase. Nature 417: 197–202.PubMedGoogle Scholar
  2. Ball, A.R. Jr., and Yokomori, K. 2008. Damage-induced reactivation of cohesin in postreplicative DNA repair. Bioassays 30: 5–9.Google Scholar
  3. Bates, A.D., and Maxwell, A. 2007. Energy coupling in type II topoisomerases: why do they hydrolyze ATP? Biochemistry 46: 7929–7941.PubMedGoogle Scholar
  4. Baumann, C., Körner, R., Hofmann, K., and Nigg, E.A. 2007. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128: 101–114.PubMedGoogle Scholar
  5. Belmont, A.S. 2006. Mitotic chromosome structure and condensation. Curr. Opin. Cell Biol. 18: 632–638.PubMedGoogle Scholar
  6. Birkenbihl, R.P., and Subramani, S. 1992. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 20: 6605–6611.PubMedGoogle Scholar
  7. Braunstein, I., Miniowitz, S., Moshe, Y., and Hershko, A. 2007. Inhibitory factors associated with anaphase-promoting complex/cylosome in mitotic checkpoint. Proc. Natl. Acad. Sci. U.S.A. 104: 4870–4875.Google Scholar
  8. Brouhard, G.J., Stear, J.H., Noetzel, T.L., Al-Bassam, J., Kinoshita, K., Harrison, S.C., Howard, J., and Hyman, A.A. 2008. XMAP215 is a processive microtubule polymerase. Cell 132: 79–88.PubMedGoogle Scholar
  9. Carpenter, A.T. 1991. Distributive segregation: motors in the polar wind? Cell 64: 885–890.PubMedGoogle Scholar
  10. Ciosk, R., Zachariae, W., Michaelis, C., Shevchenko, A., Mann, M., and Nasmyth, K. 1998. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93: 1067–1076.PubMedGoogle Scholar
  11. Clarke, A., and Orr-Weaver, T.L. 2006. Sister chromatid cohesion at the centromere: confrontation between kinases and phosphatases? Dev. Cell 10: 544–547.PubMedGoogle Scholar
  12. Clarke, L., Amstutz, H., Fishel, B., and Carbon, J. 1986. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. U.S.A. 83: 8253–8257.Google Scholar
  13. Clarke, L., and Carbon, J. 1980. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287: 504–509.PubMedGoogle Scholar
  14. Cohen-Fix, O., and Koshland, D. 1997. The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway. Proc. Natl. Acad. Sci. U.S.A. 94: 14361–14366.Google Scholar
  15. DeAntoni, A., Sala, V., and Musacchio, A. 2005. Explaining the oligomerization properties of the spindle assembly checkpoint protein Mad2. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 637–647, discussion 447–638.Google Scholar
  16. Doree, M., and Hunt, T. 2002. From Cdc2 to Cdk1: when did the cell cycle kinase join its cyclin partner? J. Cell Sci. 115: 2461–2464.PubMedGoogle Scholar
  17. Dorsett, D. 2004. Adherin: key to the cohesin ring and Cornelia de Lange syndrome. Curr Biol. 14: R834-R836.PubMedGoogle Scholar
  18. Dorsett, D. 2007. Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 116: 1–13.PubMedGoogle Scholar
  19. Dorsett, D., Eissenberg, J.C., Misulovin, Z., Martens, A., Redding, B., and McKim, K. 2005. Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132: 4743–4753.PubMedGoogle Scholar
  20. Draviam, V.M., Shapiro, I., Aldridge, B., and Sorger, P.K. 2006. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J. 25: 2814–2827.PubMedGoogle Scholar
  21. Earnshaw, W.C., and Rothfield, N. 1985. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313–321.PubMedGoogle Scholar
  22. Epstein, C.J. 2007. The consequences of chromosome imbalance. Principles, mechanisms and models. Cambridge University Press. pp. 508.Google Scholar
  23. Fujita, Y., Hayashi, T., Kiyomitsu, T., Toyoda, Y., Kokubu, A., Obuse, C., and Yanagida, M. 2007. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev. Cell 12: 17–30.Google Scholar
  24. Gassmann, R., Vagnarelli, P., Hudson, D., and Earnshaw, W.C. 2004. Mitotic chromosome formation and the condensin paradox. Exp. Cell Res. 296: 35–42.PubMedGoogle Scholar
  25. Gerlich, D., Hirota, T., Koch, B., Peters, J. M., and Ellenberg, J. 2006. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16: 333–344.PubMedGoogle Scholar
  26. Gillett, E.S., Espelin, C.W., and Sorger, P.K. 2004. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J. Cell Biol. 164: 535–546.PubMedGoogle Scholar
  27. Gorr, I. H., Boos, D., and Stemmann, O. 2005. Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol. Cell 19: 135–141.PubMedGoogle Scholar
  28. Grewal, S.I., and Klar, A.J. 1997. A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating-type switching in fission yeast. Genetics 146: 1221–1238.PubMedGoogle Scholar
  29. Guacci, V., Koshland, D., and Strunnikov, A. 1997. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91: 47–57.PubMedGoogle Scholar
  30. Gullerova, M., and Proudfoot, N.J. 2008. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132: 983–995.PubMedGoogle Scholar
  31. Habu, T., Kim, S.H., Weinstein, J., and Matsumoto, T. 2002. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J. 21: 6419–6428.PubMedGoogle Scholar
  32. Hayashi, T., Fujita, Y., Iwasaki, O., Adachi, Y., Takahashi, K., and Yanagida, M. 2004. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118: 715–729.PubMedGoogle Scholar
  33. Heale, J.T., Ball, A.R., Jr., Schmiesing, J.A., Kim, J.S., Kong, X., Zhou, S., Hudson, D.F., Earnshaw, W.C., and Yokomori, K. 2006. Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Mol. Cell 21: 837–848.PubMedGoogle Scholar
  34. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. and Howard, J. 2006. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441: 115–119.PubMedGoogle Scholar
  35. Hershko, A. 2005. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ. 12: 1191–1197.PubMedGoogle Scholar
  36. Herzig, A., Lehner, C.F., and Heidmann, S. 2002. Proteolytic cleavage of the THR subunit during anaphase limits Drosophila separase function. Genes Dev. 16: 2443–2454.PubMedGoogle Scholar
  37. Hirano, T. 2005. Condensins: organizing and segregating the genome. Curr. Biol. 15: R265-R275.PubMedGoogle Scholar
  38. Hirano, T. 2006. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell. Biol. 7: 311–322.PubMedGoogle Scholar
  39. Hirano, T., and Mitchison, T.J. 1994. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79: 449–458.PubMedGoogle Scholar
  40. Holland, A. J., Bottger, F., Stemmann, O., and Taylor, S.S. 2007. Protein phosphatase 2A and separase form a complex regulated by separase autocleavage. J. Biol. Chem. 282: 24623–24632.PubMedGoogle Scholar
  41. Hudson, D.F., Vagnarelli, P., Gassmann, R., and Earnshaw, W.C. 2003. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev. Cell 5: 323–336.PubMedGoogle Scholar
  42. Hwang, L.H., Lau, L.F., Smith, D.L., Mistrot, C.A., Hardwick, K.G., Hwang, E.S., Amon, A., and Murray, A.W. 1998. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279: 1041–1044.PubMedGoogle Scholar
  43. Kim, S.H., Lin, D.P., Matsumoto, S., Kitazono, A., and Matsumoto, T. 1998. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279: 1045–1047.PubMedGoogle Scholar
  44. Kimura, K., and Hirano, T. 1997. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90: 625–634.PubMedGoogle Scholar
  45. King, R.W., Peters, J.M., Tugendreich, S., Rolfe, M., Hieter, P., and Kirschner, M.W. 1995. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81: 279–288.Google Scholar
  46. Kiyomitsu, T., Obuse, C., and Yanagida, M. 2007. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev. Cell 13: 663–676.PubMedGoogle Scholar
  47. Krantz, I.D., McCallum, J., DeScipio, C., Kaur, M., Gillis, L.A., Yaeger, D., Jukovsky, L., Wassarman, N., Bottani, A., Morris, C.A., Nowaczyk, M.J., Toriello, H., Bamshad, M.J., Carey, J.C., Rappaport, E., Kawauchi, S., Lander, A.D., Calof, A.L., Li, H.H., Devoto, M., and Jackson, L.G. 2004. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of the Drosophila Nipped-B gene. Nat. Genet. 36: 631–635.PubMedGoogle Scholar
  48. Larsen, A.K., Escargueil, A.E., and Skladanowski, A. 2003. From DNA damage to G2 arrest: the many roles of topoisomerase II. Prog. Cell Cycle Res. 5: 295–300.PubMedGoogle Scholar
  49. Mapelli, M., Massimiliano, L., Santaguida, S., and Musacchio, A. 2007. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131: 730–743.PubMedGoogle Scholar
  50. Mapelli M, and Musacchio, A. 2007. MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Curr. Opin. Struct. Biol. 17: 716–725.PubMedGoogle Scholar
  51. Martin-Lluesma, S., Stucke V.M., and Nigg, E.A. 2002. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297: 2267–2270.PubMedGoogle Scholar
  52. Maruyama, T., Nakamura, T., Hayashi, T., and Yanagida, M. 2006. Histone H2B mutations in inner region affect ubiquitination, centromere function, silencing and chromosome segregation. EMBO J. 25: 2420–2431.PubMedGoogle Scholar
  53. Mazia, D. 1961. Mitosis and the physiology of cell division. In: The Cell. Biochemistry, Physiology, Morphology. Brachet, J., and Mirsky, A.E., eds. Academic press, New York, pp. 77–412.Google Scholar
  54. Mitchison, T., and Kirschner, M. 1984. Dynamic instability of microtubule growth. Nature 312: 237–242.PubMedGoogle Scholar
  55. Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M.M., and Wu, C. 2007. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129: 1153–1164.PubMedGoogle Scholar
  56. Morgan, D.O. 2006. The Cell Cycle: principles of control. New Science Press, Ltd. London, U.K. 327 pp.Google Scholar
  57. Murray, A.W., and Szostak, J.W. 1983. Construction of artificial chromosomes in yeast. Nature 305: 189–193.PubMedGoogle Scholar
  58. Musacchio, A., and Salmon, E.D. 2007. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell. Biol. 8: 379–393.Google Scholar
  59. Nagao, K., Adachi, Y., and Yanagida, M. 2004. Separase-mediated cleavage of cohesin at interphase is required for DNA repair. Nature 430: 1044–1048.PubMedGoogle Scholar
  60. Nakamura, T., Nagao, K., Nakaseko, Y., and Yanagida, M. 2002. Cut1/separase C-terminus affects spindle pole body positioning in interphase of fission yeast: pointed nuclear formation. Genes Cells 7: 1113–1124.PubMedGoogle Scholar
  61. Nakaseko, Y., Adachi, Y., Funahashi, S., Niwa, O., and Yanagida, M. 1986. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 5: 1011–1021.PubMedGoogle Scholar
  62. Nakazawa, N., Nakamura, T., Kokubu, A., Ebe, M., Nagao, K., and Yanagida, M. 2008. Dissection of the essential steps for condensin accumulation at kinetochores and rDNAs during fission yeast mitosis. J. Cell Biol. 180: 1115–1131.PubMedGoogle Scholar
  63. Nasmyth, K. 2005a. How might cohesin hold sister chromatids together? Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 483–496.Google Scholar
  64. Nasmyth, K. 2005b. How do so few control so many? Cell 120: 739–746.Google Scholar
  65. Nasmyth, K., and Haering, C.H. 2005. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74: 595–648.PubMedGoogle Scholar
  66. Nicklas, R.B. 1983. Measurements of the force produced by the mitotic spindle in anaphase. J. Cell Biol. 97: 542–548.PubMedGoogle Scholar
  67. Nicklas, R.B., and Kubai, D.F. 1985. Microtubules, chromosome movement, and reorientation after chromosomes are detached from the spindle by micromanipulation. Chromosoma 92: 313–324.PubMedGoogle Scholar
  68. Nigg, E.A. 2007. Centrosome duplication: of rules and licenses. Trends Cell. Biol. 17: 215–221.PubMedGoogle Scholar
  69. Niwa, O., Matsumoto, T., Chikashige, Y., and Yanagida, M. 1987. Characterization of Schizosaccharomyces pombe minichromosome deletion derivatives and a functional allocation of their centromere. EMBO J. 8: 3045–3052.Google Scholar
  70. Noetzel, T.L., Drechsel, D.N., Hyman, A.A., and Kinoshita, K. 2005. A comparison of the ability of XMAP215 and tau to inhibit the microtubule destabilizing activity of XKCM1. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:591–594.Google Scholar
  71. Oegema, K., Desai, A., Rybina, S., Kirkham, M., and Hyman, A.A. 2001. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153: 1209–1226.PubMedGoogle Scholar
  72. Oliveira, R.A., Coelho, P. A., and Sunkel, C.E. 2005. The condensin I subunit Barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis. Mol. Cell. Biol. 25: 8971–8984.PubMedGoogle Scholar
  73. Ono, T., Losada, A., Hirano, M., Myers, M.P., Neuwald, A.F., and Hirano, T. 2003. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115: 109–121.PubMedGoogle Scholar
  74. Palmer, D.K., O’Day K., Trong, H.L., Charbonneau, H., and Margolis, R.L. 1991. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl. Acad. Sci. U.S.A. 88: 3734–3738.Google Scholar
  75. Passmore, L.A., Booth, C.R., Vénien-Bryan, C., Ludtke, S.J., Fioretto, C., Johnson, L.N., Chiu, W., and Barford, D. 2005. Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Mol. Cell 20: 855–866.PubMedGoogle Scholar
  76. Pederson, T. 2003. Historical review: An energy reservoir for mitosis, and its productive wake. Trends Biochem. Sci. 28: 125–129.PubMedGoogle Scholar
  77. Rieder, C.L., Davison, E.A., Jensen, L.C., Cassimeris, L., and Salmon, E.D. 1986. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103: 581–591.PubMedGoogle Scholar
  78. Rieder, C.L., Schultz, A., Cole, R., and Sluder, G. 1994. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127: 1301–1310.PubMedGoogle Scholar
  79. Salmon, E.D. 1989. Microtubule dynamics and chromosome movement. In: Mitosis. Hyams, J.S., and Brinkley, B.R., eds. Academic Press, New York, pp. 119–181.Google Scholar
  80. Sánchez, I., and Dynlacht, B.D. 2005. New insights into cyclins, CDKs, and cell cycle control. Semin. Cell. Dev. Biol. 16: 311–21.PubMedGoogle Scholar
  81. Skibbens, R.W. 2005. Unzipped and loaded: the role of DNA helicases and RFC clamp-loading complexes in sister chromatid cohesion. J. Cell Biol. 169: 841–846.PubMedGoogle Scholar
  82. Sonoda, E., Matsusaka, T., Morrison, C., Vagnarelli, P., Hoshi, O., Ushiki, T., Nojima, K., Fukagawa, T., Waizenegger, I.C., Peters, J.M., Earnshaw, W.C., and Takeda, S. 2001. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 6: 759–770.Google Scholar
  83. Stallings, R.L. 2007. Are chromosomal imbalances important in cancer? Trends Genet. 23: 278–283.PubMedGoogle Scholar
  84. Ström, L., Karlsson, C., Lindroos, H.B., Wedahl, S., Katou, Y., Shirahige, K., and Sjogren, C. 2007. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317: 242–245.PubMedGoogle Scholar
  85. Sudakin, V., Chan, G.K., and Yen, T.J. 2001. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154: 925–936.PubMedGoogle Scholar
  86. Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F.C., Ruderman, J.V., and Hershko, A. 1995. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6: 185–197.PubMedGoogle Scholar
  87. Sudakin, V., and Yen, T.J. 2004. Purification of the mitotic checkpoint complex, an inhibitor of the APC/C from HeLa cells. Methods Mol. Biol. 281: 199–212.PubMedGoogle Scholar
  88. Sullivan, M., and Morgan, D.O. 2007. Finishing mitosis one step at a time. Nat. Rev. Mol. Cell. Biol. 8: 894–903.PubMedGoogle Scholar
  89. Sutani, T., and Yanagida, M. 1997. DNA renaturation activity of the SMC complex implicated in chromosome condensation. Nature 388: 798–801.PubMedGoogle Scholar
  90. Takahashi, K., Chen, E.S., and Yanagida, M. 2000. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288: 2215–2219.PubMedGoogle Scholar
  91. Takahashi, K., Murakami, S., Chikashige, Y., Funabiki, H., Niwa, O., and Yanagida, M. 1992. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 3: 819–835.PubMedGoogle Scholar
  92. Takahashi, K., Yamada, H., and Yanagida, M. 1994. Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol. Biol. Cell 5: 1145–1158.PubMedGoogle Scholar
  93. Tomonaga, T., Nagao, K., Kawasaki, Y., Furuya, K., Murakami, A., Morishita, J., Yuasa, T., Sutani, T., Kearsey, S.E., Uhlmann, F., Nasmyth, K., and Yanagida, M. 2000. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev. 14: 2757–2770.PubMedGoogle Scholar
  94. Tonkin, E.T., Wang, T.J., Lisgo, S., Bamshad, M.J., and Strachan, T. 2004. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat. Genet. 36: 636–641.PubMedGoogle Scholar
  95. Tsou, M.F., and Stearns, T. 2006. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442: 947–951.PubMedGoogle Scholar
  96. Uhlmann, F., Lottspeich, F., and Nasmyth, K. 1999. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400: 37–42.PubMedGoogle Scholar
  97. Unal, E., Heidinger-Pauli, J.M., and Koshland, D. 2007. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317: 245–248.PubMedGoogle Scholar
  98. Valdivia, M.M., and Brinkley, B.R. 1985. Fractionation and initial characterization of the kinetochore from mammalian metaphase chromosomes. J. Cell Biol. 101: 1124–1134.PubMedGoogle Scholar
  99. van Roessel, P., Elliott, D.A., Robinson, I.M., Prokop, A., and Brand, A.H. 2004. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119: 707–718.PubMedGoogle Scholar
  100. Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I., and Martienssen, R.A. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297: 1833–1837.PubMedGoogle Scholar
  101. Walczak, C.E., Mitchison, T.J., and Desai, A. 1996. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84: 37–47.PubMedGoogle Scholar
  102. Weaver, B.A., and Cleveland, D.W. 2007. Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res. 67: 10103–10105.PubMedGoogle Scholar
  103. Wendt, K.S., Yoshida, K., Itoh, T., Bando, M., Koch, B., Schirghuber, E., Tsutsumi, S., Nagae, G., Ishihara, K., Mishiro, T., Yahata, K., Imamoto, F., Aburatani, H., Nakao, M., Imamoto, N., Maeshima, K., Shirahige, K., and Peters, J.M. 2008. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451: 796–801.PubMedGoogle Scholar
  104. Yanagida, M. 1998. Fission yeast cut mutations revisited: control of anaphase. Trends Cell Biol. 8: 144–149.PubMedGoogle Scholar
  105. Yanagida, M. 2000. Cell cycle mechanisms of sister chromatid separation; roles of Cut1/separin and Cut2/securin. Genes Cells 5: 1–8.PubMedGoogle Scholar
  106. Yanagida, M. 2005. Basic mechanism of eukaryotic chromosome segregation. Trans. R. Soc. Lond. B Biol. Sci. 360: 609–621.Google Scholar
  107. Yang, M., Li, B., Tomchick, D.R., Machius, M., Rizo, J., Yu, H., and Luo, X. 2007. p31comet blocks Mad2 activation through structural mimicry. Cell 131: 744–755.PubMedGoogle Scholar
  108. Zarnescu, D.C., and Moses, K. 2004. Born again at the synapse: a new function for the anaphase promoting complex/cyclosome. Dev. Cell 7: 777–778.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.CREST Research Program, Japan Science and Technology Corporation (JST), Graduate School of BiostudiesKyoto University, Japan and Initial Research Program (IRP), Okinawa Institute of Science and Technology (OIST) Promotion CorporationUruma 904-2234Japan

Personalised recommendations