Roles of Centromeres and Kinetochores in Meiosis

  • Adele L. Marston

Meiosis is the cell division process by which haploid gametes are produced from a diploid progenitor cell. Reduction of the genome by half requires that DNA replication is followed not by one nuclear division, as in mitosis, but by two consecutive divisions. The sorting and segregation of chromosomes during these two nuclear divisions is tightly controlled, thereby ensuring that each of the gametes inherits a complete haploid set of chromosomes. Errors in chromosome segregation during meiosis generate gametes with too few or too many chromosomes, a condition known as aneuploidy, which is associated with birth defects and infertility (Hassold and Hunt, 2001). This chapter reviews our current understanding of the role the centromere and kinetochore play in bringing about the specialized segregation of chromosomes during meiosis.

Overview of Meiosis and the Role of the Kinetochore

Centromere is the name given to the chromosomal DNA onto which the large macromolecular complex, known as the...


Sister Chromatid Fission Yeast Spindle Assembly Checkpoint Cohesin Complex Sister Kinetochore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Angelika Amon, Kevin Hardwick, Hiro Ohkura and Alison Pidoux for helpful comments on the manuscript and to the Wellcome Trust for funding. I apologise to those colleagues whose work I was unable to cite directly due to space restrictions.


  1. Alexandru, G., F. Uhlmann, K. Mechtler, M. A. Poupart and K. Nasmyth 2001. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105: 459–72.PubMedGoogle Scholar
  2. Asakawa, H., F. Hayashi, T. Haraguchi and Y. Hiraoka 2005. Dissociation of the Nuf2-Ndc80 complex releases centromeres from the spindle-pole body during meiotic prophase in fission yeast. Mol Biol Cell 16: 2325–38.PubMedGoogle Scholar
  3. Bernard, P., F. F. Maure and J. P. Javerzat 2001a. Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation. Nat Cell Biol 3: 522–6.Google Scholar
  4. Bernard, P., F. F. Maure, J. F. Partridge, S. Genier, J. P. Javerzat and R. C. Allshire 2001b. Requirement of heterochromatin for cohesion at centromeres. Science 294: 2539–42.Google Scholar
  5. Bishop, A. C., J. A. Ubersax, D. T. Petsch, D. P. Matheos, N. S. Gray, J. Blethrow, E. Shimizu, J. Z. Tsien, P. G. Schultz, M. D. Rose, J. L. Wood, D. O. Morgan and K. M. Shokat 2000. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407: 395–401.PubMedGoogle Scholar
  6. Blat, Y. and N. Kleckner 1999. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98: 249–59.PubMedGoogle Scholar
  7. Blower, M. D. and G. H. Karpen 2001. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3: 730–9.PubMedGoogle Scholar
  8. Boyarchuk, Y., F. Salic, M. Dasso and A. Arnaoutov 2007. Bub1 is essential for assembly of the functional inner centromere. J Cell Biol 176: 919–28.PubMedGoogle Scholar
  9. Brar, G. A., B. M. Kiburz, Y. Zhang, J. E. Kim, F. White and A. Amon 2006. Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 441: 532–6.PubMedGoogle Scholar
  10. Buonomo, S. B., R. K. Clyne, J. Fuchs, J. Loidl, F. Uhlmann and K. Nasmyth 2000. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103: 387–98.PubMedGoogle Scholar
  11. Chelysheva, L., F. Diallo, D. Vezon, G. Gendrot, N. Vrielynck, K. Belcram, N. Rocques, A. Marquez-Lema, A. M. Bhatt, C. Horlow, R. Mercier, C. Mezard and M. Grelon 2005. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118: 4621–32.PubMedGoogle Scholar
  12. Cheslock, P. S., B. J. Kemp, R. M. Boumil and D. S. Dawson 2005. The roles of MAD1, MAD2 and MAD3 in meiotic progression and the segregation of nonexchange chromosomes. Nat Genet 37: 756–60.PubMedGoogle Scholar
  13. Ciosk, R., F. Shirayama, A. Shevchenko, T. Tanaka, A. Toth, A. Shevchenko and K. Nasmyth 2000. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5: 243–54.PubMedGoogle Scholar
  14. Clarke, A. S., T. T. Tang, D. L. Ooi and T. L. Orr-Weaver 2005. POLO kinase regulates the Drosophila centromere cohesion protein MEI-S332. Dev Cell 8: 53–64.PubMedGoogle Scholar
  15. Clyne, R. K., V. L. Katis, L. Jessop, K. R. Benjamin, I. Herskowitz, M. Lichten and K. Nasmyth 2003. Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nat Cell Biol 5: 480–5.PubMedGoogle Scholar
  16. Dai, J., F. A. Sullivan and J. M. Higgins 2006. Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell 11: 741–50.PubMedGoogle Scholar
  17. Davis, E. S., L. Wille, B. A. Chestnut, P. L. Sadler, D. C. Shakes and A. Golden 2002. Multiple subunits of the Caenorhabditis elegans anaphase-promoting complex are required for chromosome segregation during meiosis I. Genetics 160: 805–13.PubMedGoogle Scholar
  18. Dernburg, A. F., J. W. Sedat and R. S. Hawley 1996. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86: 135–46.PubMedGoogle Scholar
  19. Ding, D. Q., A. Yamamoto, T. Haraguchi and Y. Hiraoka 2004. Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 6: 329–41.PubMedGoogle Scholar
  20. Ding, R., F. L. McDonald and J. R. McIntosh 1993. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J Cell Biol 120: 141–51.PubMedGoogle Scholar
  21. Eijpe, M., F. Offenberg, R. Jessberger, E. Revenkova and C. Heyting 2003. Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC 3. J Cell Biol 160: 657–70.PubMedGoogle Scholar
  22. Fan, H. Y., Q. Y. Sun and H. Zou 2006. Regulation of Separase in meiosis: Separase is activated at the metaphase I-II transition in Xenopus oocytes during meiosis. Cell Cycle 5: 198–204.PubMedGoogle Scholar
  23. Fernius, J. and K. G. Hardwick 2007. Bub1 kinase targets Sgo1 to ensure efficient chromsoome biorientation in budding yeast mitosis. PLoS Genet 3: e213.PubMedGoogle Scholar
  24. Fukagawa, T., F. Nogami, M. Yoshikawa, M. Ikeno, T. Okazaki, Y. Takami, T. Nakayama and M. Oshimura 2004. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6: 784–91.PubMedGoogle Scholar
  25. Glynn, E. F., P. C. Megee, H. G. Yu, C. Mistrot, E. Unal, D. E. Koshland, J. L. DeRisi and J. L. Gerton 2004. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2: E259.PubMedGoogle Scholar
  26. Goldstein, L. S. 1981. Kinetochore structure and its role in chromosome orientation during the first meiotic division in male D. melanogaster. Cell 25: 591–602.PubMedGoogle Scholar
  27. Gomez, R., F. Valdeolmillos, M. T. Parra, A. Viera, C. Carreiro, F. Roncal, J. S. Rufas, J. L. Barbero and J. A. Suja 2007. Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis. EMBO Rep.Google Scholar
  28. Gorr, I. H., D. Boos and O. Stemmann 2005. Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol Cell 19: 135–41.PubMedGoogle Scholar
  29. Gregan, J., F. G. Riedel, A. L. Pidoux, Y. Katou, C. Rumpf, A. Schleiffer, S. E. Kearsey, K. Shirahige, R. C. Allshire and K. Nasmyth 2007. The kinetochore proteins pcs1 and mde4 and heterochromatin are required to prevent merotelic orientation. Curr Biol 17: 1190–200.PubMedGoogle Scholar
  30. Haering, C. H. and K. Nasmyth 2003. Building and breaking bridges between sister chromatids. Bioessays 25: 1178–91.PubMedGoogle Scholar
  31. Hamant, O., F. Golubovskaya, R. Meeley, E. Fiume, L. Timofejeva, A. Schleiffer, K. Nasmyth and W. Z. Cande 2005. A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol 15: 948–54.PubMedGoogle Scholar
  32. Hardwick, K. G., R. Li, C. Mistrot, R. H. Chen, P. Dann, A. Rudner and A. W. Murray 1999. Lesions in many different spindle components activate the spindle checkpoint in the budding yeast Saccharomyces cerevisiae. Genetics 152: 509–18.PubMedGoogle Scholar
  33. Hassold, T., F. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, D. Saker, J. Shen and M. Zaragoza 1996. Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen 28: 167–75.PubMedGoogle Scholar
  34. Hassold, T. and P. Hunt 2001. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2: 280–91.PubMedGoogle Scholar
  35. Hauf, S., F. Biswas, M. Langegger, S. A. Kawashima, T. Tsukahara and Y. Watanabe 2007. Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I. Embo J 26: 4475–86.PubMedGoogle Scholar
  36. Hauf, S., F. Roitinger, B. Koch, C. M. Dittrich, K. Mechtler and J. M. Peters 2005. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol 3: e69.PubMedGoogle Scholar
  37. Hauf, S., F. C. Waizenegger and J. M. Peters 2001. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293: 1320–3.PubMedGoogle Scholar
  38. Hauf, S. and Y. Watanabe 2004. Kinetochore orientation in mitosis and meiosis. Cell 119: 317–27.PubMedGoogle Scholar
  39. Hayashi, A., F. Asakawa, T. Haraguchi and Y. Hiraoka 2006. Reconstruction of the kinetochore during meiosis in fission yeast Schizosaccharomyces pombe. Mol Biol Cell 17: 5173–84.PubMedGoogle Scholar
  40. Herbert, M., F. Levasseur, H. Homer, K. Yallop, A. Murdoch and A. McDougall 2003. Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nat Cell Biol 5: 1023–5.PubMedGoogle Scholar
  41. Hodges, C. A., E. Revenkova, R. Jessberger, T. J. Hassold and P. A. Hunt 2005. SMC1beta-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet 37: 1351–5.PubMedGoogle Scholar
  42. Homer, H. A., A. McDougall, M. Levasseur, K. Yallop, A. P. Murdoch and M. Herbert 2005. Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securin during meiosis I in mouse oocytes. Genes Dev 19: 202–7.PubMedGoogle Scholar
  43. Huang, C. E., M. Milutinovich and D. Koshland 2005. Rings, bracelet or snaps: fashionable alternatives for Smc complexes. Philos Trans R Soc Lond B Biol Sci 360: 537–42.PubMedGoogle Scholar
  44. Huang, H., F. Feng, J. Famulski, J. B. Rattner, S. T. Liu, G. D. Kao, R. Muschel, G. K. Chan and T. J. Yen 2007. Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J Cell Biol 177: 413–24.PubMedGoogle Scholar
  45. Huang, J., F. L. Brito, J. Villen, S. P. Gygi, A. Amon and D. Moazed 2006. Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes Dev 20: 2887–901.PubMedGoogle Scholar
  46. Huo, L. J., Z. S. Zhong, C. G. Liang, Q. Wang, S. Yin, J. S. Ai, L. Z. Yu, D. Y. Chen, H. Schatten and Q. Y. Sun 2006. Degradation of securin in mouse and pig oocytes is dependent on ubiquitin-proteasome pathway and is required for proteolysis of the cohesion subunit, Rec8, at the metaphase-to-anaphase transition. Front Biosci 11: 2193–202.PubMedGoogle Scholar
  47. Indjeian, V. B., B. M. Stern and A. W. Murray 2005. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307: 130–3.PubMedGoogle Scholar
  48. Johnson, V. L., M. I. Scott, S. V. Holt, D. Hussein and S. S. Taylor 2004. Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J Cell Sci 117: 1577–89.PubMedGoogle Scholar
  49. Karpen, G. H., M. H. Le and H. Le 1996. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273: 118–22.PubMedGoogle Scholar
  50. Katis, V. L., M. Galova, K. P. Rabitsch, J. Gregan and K. Nasmyth 2004a. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol 14: 560–72.Google Scholar
  51. Katis, V. L., J. Matos, S. Mori, K. Shirahige, W. Zachariae and K. Nasmyth 2004b. Spo13 facilitates monopolin recruitment to kinetochores and regulates maintenance of centromeric cohesion during yeast meiosis. Curr Biol 14: 2183–96.Google Scholar
  52. Kawashima, S. A., T. Tsukahara, M. Langegger, S. Hauf, T. S. Kitajima and Y. Watanabe 2007. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev 21: 420–35.PubMedGoogle Scholar
  53. Kemp, B., F. M. Boumil, M. N. Stewart and D. S. Dawson 2004. A role for centromere pairing in meiotic chromosome segregation. Genes Dev 18: 1946–51.PubMedGoogle Scholar
  54. Kerrebrock, A. W., W. Y. Miyazaki, D. Birnby and T. L. Orr-Weaver 1992. The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genetics 130: 827–41.PubMedGoogle Scholar
  55. Kerrebrock, A. W., D. P. Moore, J. S. Wu and T. L. Orr-Weaver 1995. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell 83: 247–56.PubMedGoogle Scholar
  56. Kiburz, B. M., A. Amon and A. L. Marston 2008. Shugoshin Promotes Sister Kinetochore Biorientation in Saccharomyces cerevisiae. Mol Biol Cell 19: 1199–209.PubMedGoogle Scholar
  57. Kiburz, B. M., D. B. Reynolds, P. C. Megee, A. L. Marston, B. H. Lee, T. I. Lee, S. S. Levine, R. A. Young and A. Amon 2005. The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I. Genes Dev 19: 3017–30.PubMedGoogle Scholar
  58. Kitajima, T. S., S. Hauf, M. Ohsugi, T. Yamamoto and Y. Watanabe 2005. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr Biol 15: 353–9.PubMedGoogle Scholar
  59. Kitajima, T. S., S. A. Kawashima and Y. Watanabe 2004. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427: 510–7.PubMedGoogle Scholar
  60. Kitajima, T. S., Y. Miyazaki, M. Yamamoto and Y. Watanabe 2003a. Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. Embo J 22: 5643–53.Google Scholar
  61. Kitajima, T. S., T. Sakuno, K. Ishiguro, S. Iemura, T. Natsume, S. A. Kawashima and Y. Watanabe 2006. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441: 46–52.PubMedGoogle Scholar
  62. Kitajima, T. S., S. Yokobayashi, M. Yamamoto and Y. Watanabe 2003b. Distinct cohesin complexes organize meiotic chromosome domains. Science 300: 1152–5.Google Scholar
  63. Klein, F., F. Mahr, M. Galova, S. B. Buonomo, C. Michaelis, K. Nairz and K. Nasmyth 1999. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98: 91–103.PubMedGoogle Scholar
  64. Knippschild, U., F. Gocht, S. Wolff, N. Huber, J. Lohler and M. Stoter 2005. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17: 675–89.PubMedGoogle Scholar
  65. Koch, B., F. Kueng, C. Ruckenbauer, K. S. Wendt and J. M. Peters 2008. The Suv39h-HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 117: 199–210.PubMedGoogle Scholar
  66. Koehler, K. E., C. L. Boulton, H. E. Collins, R. L. French, K. C. Herman, S. M. Lacefield, L. D. Madden, C. D. Schuetz and R. S. Hawley 1996. Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories. Nat Genet 14: 406–14.PubMedGoogle Scholar
  67. Kouznetsova, A., F. Lister, M. Nordenskjold, M. Herbert and C. Hoog 2007. Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nat Genet.Google Scholar
  68. Kudo, N. R., K. Wassmann, M. Anger, M. Schuh, K. G. Wirth, H. Xu, W. Helmhart, H. Kudo, M. McKay, B. Maro, J. Ellenberg, P. de Boer and K. Nasmyth 2006. Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 126: 135–46.PubMedGoogle Scholar
  69. Kueng, S., F. Hegemann, B. H. Peters, J. J. Lipp, A. Schleiffer, K. Mechtler and J. M. Peters 2006. Wapl controls the dynamic association of cohesin with chromatin. Cell 127: 955–67.PubMedGoogle Scholar
  70. Laloraya, S., F. Guacci and D. Koshland 2000. Chromosomal addresses of the cohesin component Mcd1p. J Cell Biol 151: 1047–56.PubMedGoogle Scholar
  71. Lamb, N. E., E. Feingold and S. L. Sherman 1997. Estimating meiotic exchange patterns from recombination data: an application to humans. Genetics 146: 1011–7.PubMedGoogle Scholar
  72. Lamb, N. E., S. B. Freeman, A. Savage-Austin, D. Pettay, L. Taft, J. Hersey, Y. Gu, J. Shen, D. Saker, K. M. May, D. Avramopoulos, M. B. Petersen, A. Hallberg, M. Mikkelsen, T. J. Hassold and S. L. Sherman 1996. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet 14: 400–5.PubMedGoogle Scholar
  73. Lamb, N. E., S. L. Sherman and T. J. Hassold 2005. Effect of meiotic recombination on the production of aneuploid gametes in humans. Cytogenet Genome Res 111: 250–5.PubMedGoogle Scholar
  74. Lambie, E. J. and G. S. Roeder 1986. Repression of meiotic crossing over by a centromere (CEN3) in Saccharomyces cerevisiae. Genetics 114: 769–89.PubMedGoogle Scholar
  75. Lambie, E. J. and G. S. Roeder 1988. A yeast centromere acts in cis to inhibit meiotic gene conversion of adjacent sequences. Cell 52: 863–73.PubMedGoogle Scholar
  76. Lee, B. H. and A. Amon 2003. Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300: 482–6.PubMedGoogle Scholar
  77. Lee, B. H., A. Amon and S. Prinz 2002. Spo13 regulates cohesin cleavage. Genes Dev 16: 1672–81.PubMedGoogle Scholar
  78. Lee, B. H., B. M. Kiburz and A. Amon 2004a. Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr Biol 14: 2168–82.Google Scholar
  79. Lee, J., F. Iwai, T. Yokota and M. Yamashita 2003. Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J Cell Sci 116: 2781–90.PubMedGoogle Scholar
  80. Lee, J., F. S. Kitajima, Y. Tanno, K. Yoshida, T. Morita, T. Miyano, M. Miyake and Y. Watanabe 2008. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol 10: 42–52.PubMedGoogle Scholar
  81. Lee, J., F. Okada, S. Ogushi, T. Miyano, M. Miyake and M. Yamashita 2006. Loss of Rec8 from chromosome arm and centromere region is required for homologous chromosome separation and sister chromatid separation, respectively, in mammalian meiosis. Cell Cycle 5: 1448–55.PubMedGoogle Scholar
  82. Lee, J. Y., K. J. Dej, J. M. Lopez and T. L. Orr-Weaver 2004b. Control of centromere localization of the MEI-S332 cohesion protection protein. Curr Biol 14: 1277–83.Google Scholar
  83. Lengronne, A., F. Katou, S. Mori, S. Yokobayashi, G. P. Kelly, T. Itoh, Y. Watanabe, K. Shirahige and F. Uhlmann 2004. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430: 573–8.PubMedGoogle Scholar
  84. Li, X. and R. B. Nicklas 1995. Mitotic forces control a cell-cycle checkpoint. Nature 373: 630–2.PubMedGoogle Scholar
  85. Losada, A., F. Hirano and T. Hirano 2002. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev 16: 3004–16.PubMedGoogle Scholar
  86. Losada, A. and T. Hirano 2005. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19: 1269–87.PubMedGoogle Scholar
  87. MacDonald, M., F. Hassold, J. Harvey, L. H. Wang, N. E. Morton and P. Jacobs 1994. The origin of 47,XXY and 47,XXX aneuploidy: heterogeneous mechanisms and role of aberrant recombination. Hum Mol Genet 3: 1365–71.PubMedGoogle Scholar
  88. Marston, A. L., W. H. Tham, H. Shah and A. Amon 2004. A genome-wide screen identifies genes required for centromeric cohesion. Science 303: 1367–70.PubMedGoogle Scholar
  89. Martinez-Perez, E., F. Shaw and G. Moore 2001. The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411: 204–7.PubMedGoogle Scholar
  90. McGuinness, B. E., T. Hirota, N. R. Kudo, J. M. Peters and K. Nasmyth 2005. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol 3: e86.PubMedGoogle Scholar
  91. Meraldi, P. and P. K. Sorger 2005. A dual role for Bub1 in the spindle checkpoint and chromosome congression. Embo J 24: 1621–33.PubMedGoogle Scholar
  92. Milutinovich, M. and D. E. Koshland 2003. Molecular biology. SMC complexes--wrapped up in controversy. Science 300: 1101–2.PubMedGoogle Scholar
  93. Monje-Casas, F., F. R. Prabhu, B. H. Lee, M. Boselli and A. Amon 2007. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128: 477–90.PubMedGoogle Scholar
  94. Moore, D. P. and T. L. Orr-Weaver 1998. Chromosome segregation during meiosis: building an unambivalent bivalent. Curr Top Dev Biol 37: 263–99.PubMedGoogle Scholar
  95. Moore, D. P., A. W. Page, T. T. Tang, A. W. Kerrebrock and T. L. Orr-Weaver 1998. The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate. J Cell Biol 140: 1003–12.PubMedGoogle Scholar
  96. Morton, N. E., P. A. Jacobs, T. Hassold and D. Wu 1988. Maternal age in trisomy. Ann Hum Genet 52: 227–35.PubMedGoogle Scholar
  97. Musacchio, A. and E. D. Salmon 2007. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8: 379–93.PubMedGoogle Scholar
  98. Nasmyth, K. 2001. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35: 673–745.PubMedGoogle Scholar
  99. Nasmyth, K. 2005. How might cohesin hold sister chromatids together? Philos Trans R Soc Lond B Biol Sci 360: 483–96.PubMedGoogle Scholar
  100. Nasmyth, K. and C. H. Haering 2005. The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74: 595–648.PubMedGoogle Scholar
  101. Nicklas, R. B. 1967. Chromosome micromanipulation. II. Induced reorientation and the experimental control of segregation in meiosis. Chromosoma 21: 17–50.PubMedGoogle Scholar
  102. Nicklas, R. B. and C. A. Koch 1969. Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J Cell Biol 43: 40–50.PubMedGoogle Scholar
  103. Nicklas, R. B., J. C. Waters, E. D. Salmon and S. C. Ward 2001. Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J Cell Sci 114: 4173–83.PubMedGoogle Scholar
  104. Nonaka, N., F. Kitajima, S. Yokobayashi, G. Xiao, M. Yamamoto, S. I. Grewal and Y. Watanabe 2002. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4: 89–93.PubMedGoogle Scholar
  105. Oelschlaegel, T., F. Schwickart, J. Matos, A. Bogdanova, A. Camasses, J. Havlis, A. Shevchenko and W. Zachariae 2005. The yeast APC/C subunit Mnd2 prevents premature sister chromatid separation triggered by the meiosis-specific APC/C-Ama1. Cell 120: 773–88.PubMedGoogle Scholar
  106. Paliulis, L. V. and R. B. Nicklas 2000. The reduction of chromosome number in meiosis is determined by properties built into the chromosomes. J Cell Biol 150: 1223–32.PubMedGoogle Scholar
  107. Parra, M. T., A. Viera, R. Gomez, J. Page, R. Benavente, J. L. Santos, J. S. Rufas and J. A. Suja 2004. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 117: 1221–34.PubMedGoogle Scholar
  108. Parra, M. T., A. Viera, R. Gomez, J. Page, M. Carmena, W. C. Earnshaw, J. S. Rufas and J. A. Suja 2003. Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. J Cell Sci 116: 961–74.PubMedGoogle Scholar
  109. Pasierbek, P., F. Jantsch, M. Melcher, A. Schleiffer, D. Schweizer and J. Loidl 2001. A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15: 1349–60.PubMedGoogle Scholar
  110. Penkner, A. M., S. Prinz, S. Ferscha and F. Klein 2005. Mnd2, an essential antagonist of the anaphase-promoting complex during meiotic prophase. Cell 120: 789–801.PubMedGoogle Scholar
  111. Peter, M., F. Castro, T. Lorca, C. Le Peuch, L. Magnaghi-Jaulin, M. Doree and J. C. Labbe 2001. The APC is dispensable for first meiotic anaphase in Xenopus oocytes. Nat Cell Biol 3: 83–7.PubMedGoogle Scholar
  112. Petronczki, M., F. Matos, S. Mori, J. Gregan, A. Bogdanova, M. Schwickart, K. Mechtler, K. Shirahige, W. Zachariae and K. Nasmyth 2006. Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell 126: 1049–64.PubMedGoogle Scholar
  113. Pinsky, B. A., C. Kung, K. M. Shokat and S. Biggins 2006. The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol 8: 78–83.PubMedGoogle Scholar
  114. Pouwels, J., F. M. Kukkonen, W. Lan, J. R. Daum, G. J. Gorbsky, T. Stukenberg and M. J. Kallio 2007. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plk1. Cell Cycle 6: 1579–85.PubMedGoogle Scholar
  115. Prieto, I., F. Pezzi, J. M. Buesa, L. Kremer, I. Barthelemy, C. Carreiro, F. Roncal, A. Martinez, L. Gomez, R. Fernandez, A. C. Martinez and J. L. Barbero 2002. STAG2 and Rad21 mammalian mitotic cohesins are implicated in meiosis. EMBO Rep 3: 543–50.PubMedGoogle Scholar
  116. Prieto, I., F. A. Suja, N. Pezzi, L. Kremer, A. C. Martinez, J. S. Rufas and J. L. Barbero 2001. Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol 3: 761–6.PubMedGoogle Scholar
  117. Rabitsch, K. P., J. Gregan, A. Schleiffer, J. P. Javerzat, F. Eisenhaber and K. Nasmyth 2004. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol 14: 287–301.PubMedGoogle Scholar
  118. Rabitsch, K. P., M. Petronczki, J. P. Javerzat, S. Genier, B. Chwalla, A. Schleiffer, T. U. Tanaka and K. Nasmyth 2003. Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Dev Cell 4: 535–48.PubMedGoogle Scholar
  119. Resnick, T. D., D. L. Satinover, F. MacIsaac, P. T. Stukenberg, W. C. Earnshaw, T. L. Orr-Weaver and M. Carmena 2006. INCENP and Aurora B promote meiotic sister chromatid cohesion through localization of the Shugoshin MEI-S332 in Drosophila. Dev Cell 11: 57–68.PubMedGoogle Scholar
  120. Riedel, C. G., V. L. Katis, Y. Katou, S. Mori, T. Itoh, W. Helmhart, M. Galova, M. Petronczki, J. Gregan, B. Cetin, I. Mudrak, E. Ogris, K. Mechtler, L. Pelletier, F. Buchholz, K. Shirahige and K. Nasmyth 2006. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441: 53–61.PubMedGoogle Scholar
  121. Risch, N., F. Stein, J. Kline and D. Warburton 1986. The relationship between maternal age and chromosome size in autosomal trisomy. Am J Hum Genet 39: 68–78.PubMedGoogle Scholar
  122. Rockmill, B., F. Voelkel-Meiman and G. S. Roeder 2006. Centromere-proximal crossovers are associated with precocious separation of sister chromatids during meiosis in Saccharomyces cerevisiae. Genetics 174: 1745–54.PubMedGoogle Scholar
  123. Rogers, E., F. D. Bishop, J. A. Waddle, J. M. Schumacher and R. Lin 2002. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J Cell Biol 157: 219–29.PubMedGoogle Scholar
  124. Ross, L. O., S. Rankin, M. F. Shuster and D. S. Dawson 1996. Effects of homology, size and exchange of the meiotic segregation of model chromosomes in Saccharomyces cerevisiae. Genetics 142: 79–89.PubMedGoogle Scholar
  125. Ross-Macdonald, P. and G. S. Roeder 1994. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79: 1069–80.PubMedGoogle Scholar
  126. Ruchaud, S., F. Carmena and W. C. Earnshaw 2007. Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8: 798–812.PubMedGoogle Scholar
  127. Salah, S. M. and K. Nasmyth 2000. Destruction of the securin Pds1p occurs at the onset of anaphase during both meiotic divisions in yeast. Chromosoma 109: 27–34.PubMedGoogle Scholar
  128. Salic, A., F. C. Waters and T. J. Mitchison 2004. Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118: 567–78.PubMedGoogle Scholar
  129. Scherthan, H. 2006. Factors directing telomere dynamics in synaptic meiosis. Biochem Soc Trans 34: 550–3.PubMedGoogle Scholar
  130. Sears, D. D., J. H. Hegemann, J. H. Shero and P. Hieter 1995. Cis-acting determinants affecting centromere function, sister-chromatid cohesion and reciprocal recombination during meiosis in Saccharomyces cerevisiae. Genetics 139: 1159–73.PubMedGoogle Scholar
  131. Shonn, M. A., R. McCarroll and A. W. Murray 2000. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 289: 300–3.PubMedGoogle Scholar
  132. Shonn, M. A., R. McCarroll and A. W. Murray 2002. Spo13 protects meiotic cohesin at centromeres in meiosis I. Genes Dev 16: 1659–71.PubMedGoogle Scholar
  133. Shonn, M. A., A. L. Murray and A. W. Murray 2003. Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes. Curr Biol 13: 1979–84.PubMedGoogle Scholar
  134. Siomos, M. F., A. Badrinath, P. Pasierbek, D. Livingstone, J. White, M. Glotzer and K. Nasmyth 2001. Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. Curr Biol 11: 1825–35.PubMedGoogle Scholar
  135. Smith, J. S., E. Caputo and J. D. Boeke 1999. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol Cell Biol 19: 3184–97.PubMedGoogle Scholar
  136. Stein, K. K., E. S. Davis, T. Hays and A. Golden 2007. Components of the spindle assembly checkpoint regulate the anaphase-promoting complex during meiosis in Caenorhabditis elegans. Genetics 175: 107–23.PubMedGoogle Scholar
  137. Stemmann, O., F. Zou, S. A. Gerber, S. P. Gygi and M. W. Kirschner 2001. Dual inhibition of sister chromatid separation at metaphase. Cell 107: 715–26.PubMedGoogle Scholar
  138. Sumara, I., F. Vorlaufer, P. T. Stukenberg, O. Kelm, N. Redemann, E. A. Nigg and J. M. Peters 2002. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 9: 515–25.PubMedGoogle Scholar
  139. Sym, M. and G. S. Roeder 1994. Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79: 283–92.PubMedGoogle Scholar
  140. Taieb, F. E., S. D. Gross, A. L. Lewellyn and J. L. Maller 2001. Activation of the anaphase-promoting complex and degradation of cyclin B is not required for progression from Meiosis I to II in Xenopus oocytes. Curr Biol 11: 508–13.PubMedGoogle Scholar
  141. Tanaka, T. U., N. Rachidi, C. Janke, G. Pereira, M. Galova, E. Schiebel, M. J. Stark and K. Nasmyth 2002. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108: 317–29.PubMedGoogle Scholar
  142. Tang, Z., F. Shu, W. Qi, N. A. Mahmood, M. C. Mumby and H. Yu 2006. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev Cell 10: 575–85.PubMedGoogle Scholar
  143. Tang, Z., F. Sun, S. E. Harley, H. Zou and H. Yu 2004. Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc Natl Acad Sci U S A 101: 18012–7.Google Scholar
  144. Terret, M. E., K. Wassmann, I. Waizenegger, B. Maro, J. M. Peters and M. H. Verlhac 2003. The meiosis I-to-meiosis II transition in mouse oocytes requires separase activity. Curr Biol 13: 1797–802.PubMedGoogle Scholar
  145. Topp, C. N. and R. K. Dawe 2006. Reinterpreting pericentromeric heterochromatin. Curr Opin Plant Biol 9: 647–53.PubMedGoogle Scholar
  146. Toth, A., F. P. Rabitsch, M. Galova, A. Schleiffer, S. B. Buonomo and K. Nasmyth 2000. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103: 1155–68.PubMedGoogle Scholar
  147. Tsubouchi, T. and G. S. Roeder 2005. A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308: 870–3.PubMedGoogle Scholar
  148. Vanoosthuyse, V., F. Prykhozhij and K. G. Hardwick 2007. Shugoshin 2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis. Mol Biol Cell 18: 1657–69.PubMedGoogle Scholar
  149. Vaur, S., F. Cubizolles, G. Plane, S. Genier, P. K. Rabitsch, J. Gregan, K. Nasmyth, V. Vanoosthuyse, K. G. Hardwick and J. P. Javerzat 2005. Control of Shugoshin function during fission-yeast meiosis. Curr Biol 15: 2263–70.PubMedGoogle Scholar
  150. Waizenegger, I. C., S. Hauf, A. Meinke and J. M. Peters 2000. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103: 399–410.PubMedGoogle Scholar
  151. Wang, X., F. Yang, Q. Duan, N. Jiang, Y. Huang, Z. Darzynkiewicz and W. Dai 2008. sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1. Dev Cell 14: 331–41.PubMedGoogle Scholar
  152. Warburton, P. E. 2004. Chromosomal dynamics of human neocentromere formation. Chromosome Res 12: 617–26.PubMedGoogle Scholar
  153. Watanabe, Y. and P. Nurse 1999. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400: 461–4.PubMedGoogle Scholar
  154. Watanabe, Y., F. Yokobayashi, M. Yamamoto and P. Nurse 2001. Pre-meiotic S phase is linked to reductional chromosome segregation and recombination. Nature 409: 359–63.PubMedGoogle Scholar
  155. Weber, S. A., J. L. Gerton, J. E. Polancic, J. L. DeRisi, D. Koshland and P. C. Megee 2004. The kinetochore is an enhancer of pericentric cohesin binding. PLoS Biol 2: E260.PubMedGoogle Scholar
  156. Winey, M., F. L. Mamay, E. T. O'Toole, D. N. Mastronarde, T. H. Giddings, Jr., K. L. McDonald and J. R. McIntosh 1995. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129: 1601–15.PubMedGoogle Scholar
  157. Winey, M., F. P. Morgan, P. D. Straight, T. H. Giddings, Jr. and D. N. Mastronarde 2005. Three-dimensional ultrastructure of Saccharomyces cerevisiae meiotic spindles. Mol Biol Cell 16: 1178–88.PubMedGoogle Scholar
  158. Xu, H., F. Beasley, S. Verschoor, A. Inselman, M. A. Handel and M. J. McKay 2004. A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep 5: 378–84.PubMedGoogle Scholar
  159. Xu, H., F. D. Beasley, W. D. Warren, G. T. van der Horst and M. J. McKay 2005. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8: 949–61.PubMedGoogle Scholar
  160. Yeh, E., J. Haase, L. V. Paliulis, A. Joglekar, L. Bond, D. Bouck, E. D. Salmon and K. S. Bloom 2008. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr Biol 18: 81–90.PubMedGoogle Scholar
  161. Yokobayashi, S. and Y. Watanabe 2005. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123: 803–17.PubMedGoogle Scholar
  162. Yokobayashi, S., F. Yamamoto and Y. Watanabe 2003. Cohesins determine the attachment manner of kinetochores to spindle microtubules at meiosis I in fission yeast. Mol Cell Biol 23: 3965–73.PubMedGoogle Scholar
  163. Yu, H. 2007. Cdc20: a WD40 activator for a cell cycle degradation machine. Mol Cell 27: 3–16.PubMedGoogle Scholar
  164. Yu, H. G. and R. K. Dawe 2000. Functional redundancy in the maize meiotic kinetochore. J Cell Biol 151: 131–42.PubMedGoogle Scholar
  165. Yu, H. G. and D. Koshland 2005. Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis. Cell 123: 397–407.PubMedGoogle Scholar
  166. Yu, H. G. and D. Koshland 2007. The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis. J Cell Biol 176: 911–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The Wellcome Trust Centre for Cell Biology, University of Edinburgh, School of Biological SciencesMichael Swann BuildingU.K

Personalised recommendations