Chronic Myeloid Leukemia: Pathophysiology and Therapeutics



Chronic Myeloid Leukemia (CML) is a clonal myeloproliferative disorder ­characterized by a translocation between the long arms of chromosomes 9 and 22. Often referred to as the Philadelphia (Ph) chromosome, this genetic rearrangement results in an oncogenic tyrosine kinase, Bcr-Abl. The disease may smolder for years before terminating in a blast crisis. Once curable, mostly with bone marrow transplantation and only seldom with interferon alpha-based therapy, its management has been radically changed with the introduction of imatinib mesylate, an orally available Abl kinase inhibitor, in 1998. More common in adults, only an estimated 50 pediatric cases occur annually in North America. The treatment of CML will remain in flux as second-generation Bcr-Abl kinase inhibitors are studied clinically. Because of its rarity in pediatrics, clinical insights must come from ­experience with adult CML. CML serves as the paradigm of how molecular understanding of a cancer’s pathophysiology can produce a revolutionary form of ­targeted therapy, providing hope for those pediatric cancers with a well-defined genetic lesion.


Chronic Myeloid Leukemia Chronic Myeloid Leukemia Patient Cytogenetic Response Major Molecular Response T315I Mutation 


  1. Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 2007;7:441–53.PubMedCrossRefGoogle Scholar
  2. Sherbenou DW, Druker BJ. Applying the discovery of the Philadelphia chromosome. J Clin Invest 2007;117:2067–74.PubMedCrossRefGoogle Scholar
  3. Nowell PC, Hungerford DA. A minute chromosome in human granulocytic leukemia. Science 1960;132:1497–501.Google Scholar
  4. Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290–3PubMedCrossRefGoogle Scholar
  5. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific P210 protein is the product of the Bcr/Abl hybrid gene. Science 1986;233:212–4.PubMedCrossRefGoogle Scholar
  6. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of Abl and Bcr genes in chronic myelogenous leukaemia. Nature 1985;315:550–4.PubMedCrossRefGoogle Scholar
  7. Chan LC, Karhi KK, Rayter SI, et al. A novel Abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 1987;325:635–7.PubMedCrossRefGoogle Scholar
  8. Diekmann D, Brill S, Garrett MD, et al. Bcr encodes a GTPase-activating protein for p21rac. Nature 1991;351:400–2.PubMedCrossRefGoogle Scholar
  9. Maru Y, Witte ON. The Bcr gene encodes a novel serine/threonine kinase activity within a single exon. Cell 1991;67:459–68.PubMedCrossRefGoogle Scholar
  10. Abelson HT, Rabstein LS. Lymphosarcoma: virus-induced thymic-independent disease in mice. Cancer Res 1970;30:2213–22.PubMedGoogle Scholar
  11. Wang JY, Ledley F, Goff S, Lee R, Groner Y, Baltimore D. The mouse c-Abl locus: molecular cloning and characterization. Cell 1984;36:349–56.PubMedCrossRefGoogle Scholar
  12. Groffen J, Heisterkamp N, Reynolds FH, Jr., Stephenson JR. Homology between phosphotyrosine acceptor site of human c-Abl and viral oncogene products. Nature 1983;304:167–9.PubMedCrossRefGoogle Scholar
  13. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210Bcr/Abl gene of the Philadelphia chromosome. Science 1990;247:824–30.PubMedCrossRefGoogle Scholar
  14. Lydon NB, Druker BJ. Lessons learned from the development of imatinib. Leuk Res 2004;28 Suppl 1:S29–38.PubMedCrossRefGoogle Scholar
  15. Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996;56:100–4.PubMedGoogle Scholar
  16. Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996;2:561–6.PubMedCrossRefGoogle Scholar
  17. le Coutre P, Mologni L, Cleris L, et al. In vivo eradication of human Bcr/Abl-positive leukemia cells with an Abl kinase inhibitor. J Natl Cancer Inst 1999;91:163–8.PubMedCrossRefGoogle Scholar
  18. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the Bcr-Abl tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031–7.PubMedCrossRefGoogle Scholar
  19. Shah NP, Skaggs BJ, Branford S, et al. Sequential Abl kinase inhibitor therapy selects for compound drug-resistant Bcr-Abl mutations with altered oncogenic potency. J Clin Invest 2007;117:2562–9.PubMedCrossRefGoogle Scholar
  20. Pendergast AM, Quilliam LA, Cripe LD, et al. Bcr-Abl-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993;75:175–85.PubMedGoogle Scholar
  21. Sattler M, Mohi MG, Pride YB, et al. Critical role for Gab2 in transformation by Bcr/Abl. Cancer Cell 2002;1:479–92.PubMedCrossRefGoogle Scholar
  22. Skorski T, Bellacosa A, Nieborowska-Skorska M, et al. Transformation of hematopoietic cells by Bcr/Abl requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997;16:6151–61.PubMedCrossRefGoogle Scholar
  23. Danhauser-Riedl S, Warmuth M, Druker BJ, Emmerich B, Hallek M. Activation of Src kinases p53/56lyn and p59hck by p210Bcr/Abl in myeloid cells. Cancer Res 1996;56:3589–96.PubMedGoogle Scholar
  24. Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996;183:811–20.PubMedCrossRefGoogle Scholar
  25. Ilaria RL, Jr., Van Etten RA. P210 and P190(Bcr/Abl) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996;271:31704–10.PubMedCrossRefGoogle Scholar
  26. Salgia R, Li JL, Ewaniuk DS, et al. Bcr/Abl induces multiple abnormalities of cytoskeletal function. J Clin Invest 1997;100:46–57.PubMedCrossRefGoogle Scholar
  27. Skorski T. Bcr/Abl regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene 2002;21:8591–604.PubMedCrossRefGoogle Scholar
  28. Schuster C, Forster K, Dierks H, et al. The effects of Bcr-Abl on C/EBP transcription-factor regulation and neutrophilic differentiation are reversed by the Abl kinase inhibitor imatinib mesylate. Blood 2003;101:655–63.PubMedCrossRefGoogle Scholar
  29. Linet MS, Ries LA, Smith MA, Tarone RE, Devesa SS. Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Cancer Inst 1999;91:1051–8.PubMedCrossRefGoogle Scholar
  30. Millot F, Traore P, Guilhot J, et al. Clinical and biological features at diagnosis in 40 children with chronic myeloid leukemia. Pediatrics 2005;116:140–3.PubMedCrossRefGoogle Scholar
  31. Cortes JE, Talpaz M, O’Brien S, et al. Staging of chronic myeloid leukemia in the imatinib era: an evaluation of the World Health Organization proposal. Cancer 2006;106:1306–15.PubMedCrossRefGoogle Scholar
  32. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347:472–80.PubMedCrossRefGoogle Scholar
  33. O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003;348:994–1004.PubMedCrossRefGoogle Scholar
  34. Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006;355:2408–17.PubMedCrossRefGoogle Scholar
  35. Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2006;108:1809–20.PubMedCrossRefGoogle Scholar
  36. Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 2005;44:879–94.PubMedCrossRefGoogle Scholar
  37. Deininger MW, O’Brien SG, Ford JM, Druker BJ. Practical management of patients with chronic myeloid leukemia receiving imatinib. J Clin Oncol 2003;21:1637–47.PubMedCrossRefGoogle Scholar
  38. Cohen MH, Moses ML, Pazdur R. Gleevec for the treatment of chronic myelogenous leukemia: U.S. Food and Drug Administration regulatory mechanisms, accelerated approval, and orphan drug status. Oncologist 2002;7:390–2.PubMedCrossRefGoogle Scholar
  39. Esmaeli B, Prieto VG, Butler CE, et al. Severe periorbital edema secondary to STI571 (Gleevec). Cancer 2002; 95:881–7.PubMedCrossRefGoogle Scholar
  40. Kerkela R, Grazette L, Yacobi R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 2006; 12:908–16.PubMedCrossRefGoogle Scholar
  41. Verweij J, Casali PG, Kotasek D, et al. Imatinib does not induce cardiac left ventricular failure in gastrointestinal stromal tumours patients: analysis of EORTC-ISG-AGITG study 62005. Eur J Cancer 2007;43:974–8.PubMedCrossRefGoogle Scholar
  42. Atallah E, Kantarjian H, Cortes J. In reply to Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 2007;13:14; author reply 5–6.Google Scholar
  43. Atallah E, Durand JB, Kantarjian H, Cortes J. Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood 2007;110:1233–7.PubMedCrossRefGoogle Scholar
  44. Bond M, Bernstein ML, Pappo A, et al. A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: A Children’s Oncology Group study. Pediatr Blood Cancer 2007;50:254–258.CrossRefGoogle Scholar
  45. Millot F, Guilhot J, Nelken B, et al. Results of a phase II trial testing interferon-alpha 2b and cytarabine in children and adolescents with chronic myelogenous leukemia. Pediatr Blood Cancer 2006;47:555–9.PubMedCrossRefGoogle Scholar
  46. Millot F, Guilhot J, Nelken B, et al. Imatinib mesylate is effective in children with chronic myelogenous leukemia in late chronic and advanced phase and in relapse after stem cell transplantation. Leukemia 2006;20:187–92.PubMedCrossRefGoogle Scholar
  47. Champagne MA, Capdeville R, Krailo M, et al. Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: results from a Children’s Oncology Group phase 1 study. Blood 2004;104:2655–60.PubMedCrossRefGoogle Scholar
  48. Berman E, Nicolaides M, Maki RG, et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 2006;354:2006–13.PubMedCrossRefGoogle Scholar
  49. Peng B, Hayes M, Resta D, et al. Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 2004;22:935–42.PubMedCrossRefGoogle Scholar
  50. Kovitz C, Kantarjian H, Garcia-Manero G, Abruzzo LV, Cortes J. Myelodysplastic syndromes and acute leukemia developing after imatinib mesylate therapy for chronic myeloid leukemia. Blood 2006;108:2811–3.PubMedCrossRefGoogle Scholar
  51. Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting Bcr-Abl transcripts and kinase domain mutations and for expressing results. Blood 2006;108:28–37.PubMedCrossRefGoogle Scholar
  52. Goldman JM. How I treat chronic myeloid leukemia in the imatinib era. Blood 2007;110:2242–2249.CrossRefGoogle Scholar
  53. Hughes TP, Kaeda J, Branford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003;349:1423–32.PubMedCrossRefGoogle Scholar
  54. Michor F, Hughes TP, Iwasa Y, et al. Dynamics of chronic myeloid leukaemia. Nature 2005;435:1267–70.PubMedCrossRefGoogle Scholar
  55. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by Bcr-Abl gene mutation or amplification. Science 2001;293:876–80.PubMedCrossRefGoogle Scholar
  56. Shah NP, Nicoll JM, Nagar B, et al. Multiple Bcr-Abl kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002;2:117–25.PubMedCrossRefGoogle Scholar
  57. Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004;104:3739–45.PubMedCrossRefGoogle Scholar
  58. Dai Y, Rahmani M, Corey SJ, Dent P, Grant S. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem 2004;279:34227–39.PubMedCrossRefGoogle Scholar
  59. Donato NJ, Wu JY, Stapley J, et al. Bcr-Abl independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003;101:690–8.PubMedCrossRefGoogle Scholar
  60. Elrick LJ, Jorgensen HG, Mountford JC, Holyoake TL. Punish the parent not the progeny. Blood 2005;105:1862-6.PubMedCrossRefGoogle Scholar
  61. Hazarika M, Jiang X, Liu Q, et al. Tasigna for chronic and accelerated phase Philadelphia chromosome–positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clin Cancer Res 2008;14:5325–31.PubMedCrossRefGoogle Scholar
  62. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006;354:2531–41.PubMedCrossRefGoogle Scholar
  63. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006;354:2542–51.PubMedCrossRefGoogle Scholar
  64. Cortes J, Kantarjian H, Baccarani M, et al. A phase I/II study of SKI-606, a dual inhibitor of Src and Abl kinases, in adult patients with Philadelphia chromosome positive (Ph+) chronic meylogenous leukemia (CML) or acute lymphoblastic leukemia relapsed, refractory or intolerant of imatinib. Blood 2007;108:54a, (abstract 168)Google Scholar
  65. Aplenc R, Strauss LC, Shusterman S, et al. Pediatric phase I trial and pharmacokinetic (PK) study of dasatinib: a report from the Children’s Oncology Group. J Clin Oncol 2007;25 (Suppl):14094.Google Scholar
  66. Quintas-Cardama A, Kantarjian H, Cortes J. Flying under the radar: the new wave of Bcr-Abl inhibitors. Nat Rev Drug Discov 2007;6:834–48.PubMedCrossRefGoogle Scholar
  67. Quintas-Cardama A, Kantarjian H, Garcia-Manero G, et al. Phase I/II study of subcutaneous homoharringtonine in patients with chronic myeloid leukemia who have failed prior therapy. Cancer 2007;109:248–55PubMedCrossRefGoogle Scholar
  68. Pulsipher MA. Treatment of CML in pediatric patients: should imatinib mesylate (STI-571, Gleevec) or allogeneic hematopoietic cell transplant be front-line therapy? Pediatr Blood Cancer 2004;43:523–33.PubMedCrossRefGoogle Scholar
  69. Cwynarski K, Roberts IA, Iacobelli S, et al. Stem cell transplantation for chronic myeloid leukemia in children. Blood 2003;102:1224–31.PubMedCrossRefGoogle Scholar
  70. Unal S, Fidan G, Tavil B, Cetin M, Cetinkaya DU. Allogeneic hematopoietic stem cell transplantation in pediatric chronic myelogenous leukemia cases: Hacettepe experience. Pediatr Transplant 2007;11:645–9.PubMedCrossRefGoogle Scholar
  71. Creutzig U, Ritter J, Zimmermann M, Klingebiel T. [Prognosis of children with chronic myeloid leukemia: a retrospective analysis of 75 patients]. Klin Padiatr 1996;208:236–41.PubMedCrossRefGoogle Scholar
  72. Guilhot F, Apperley J, Kim DW, et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood 2007;109:4143–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departments of Pediatrics and Cell & Molecular Biology, Children’s Memorial Hospital and the Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoUSA

Personalised recommendations