Targeting RAS Signaling Pathways in Juvenile Myelomonocytic Leukemia (JMML)



Juvenile myelomonocytic leukemia (JMML) is an aggressive, clonal ­myeloproliferative disorder (MPD) of childhood characterized by the overproduction of myelomonocytic cells that infiltrate the spleen, lung, and gastrointestinal tract (Arico et al. 1997; Emanuel et al. 1996). Children frequently present with anemia, thrombocytopenia, splenomegaly, and failure to thrive. The median age of diagnosis is 2 years of age. Without definitive treatment, the median survival of JMML patients is less than 1 year. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative therapy with a probability of event-free survival at 5 years of 50% (Liu et al. 2004). The main cause of treatment failure continues to be leukemia relapse with death due to organ infiltration, infection, or transformation to acute myeloid leukemia. Stem cell transplantation is also associated with significant acute and chronic morbidity in young children. Therefore, new approaches to therapy are needed for children with newly diagnosed and relapsed JMML.


Acute Myeloid Leukemia Hematopoietic Stem Cell Transplantation Protein Tyrosine Phosphatase Malignant Peripheral Nerve Sheath Tumor Noonan Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, Hanson LJ, Gore L, Chow L, Leong S, Maloney L, Gordon G, Simmons H, Marlow A, Litwiler K, Brown S, Poch G, Kane K, Haney J, Eckhardt SG (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 26:2139–46PubMedCrossRefGoogle Scholar
  2. Archambeault S, Flores NJ, Yoshimi A, Kratz CP, Reising M, Fischer A, Noellke P, Locatelli F, Sedlacek P, Flotho C, Zecca M, Emanuel PD, Castleberry RP, Niemeyer CM, Bader P, Loh ML (2008) Development of an allele-specific minimal residual disease assay for patients with juvenile myelomonocytic leukemia. Blood 111:1124–7PubMedCrossRefGoogle Scholar
  3. Arico M, Biondi A, Pui CH (1997) Juvenile myelomonocytic leukemia. Blood 90:479–88PubMedGoogle Scholar
  4. Ashery U, Yizhar O, Rotblat B, Elad-Sfadia G, Barkan B, Haklai R, Kloog Y (2006) Spatiotemporal organization of signaling: rasosomes and the galectin switch. Cell Mol Neurobiol 26:471–95PubMedCrossRefGoogle Scholar
  5. Barkan B, Starinsky S, Friedman E, Stein R, Kloog Y (2006) The inhibitor ­farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. Clin Cancer Res 12:5533–42PubMedCrossRefGoogle Scholar
  6. Bergo MO, Leung GK, Ambroziak P, Otto JC, Casey PJ, Gomes AQ, Seabra MC, Young SG (2001) Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J Biol Chem 276:5841–5PubMedCrossRefGoogle Scholar
  7. Bollag G, Clapp DW, Shih S, Adler F, Zhang Y, Thompson P, Lange BJ, Freedman MH, McCormick F, Jacks T, Shannon K (1996) Loss of NF1 results in activation of the signaling pathway and leads to aberrant growth in murine and human hematopoietic cells. Nat Genet 12:144–48PubMedCrossRefGoogle Scholar
  8. Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J, Le Beau MM, Jacks TE, Shannon KM (2004) Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 101:597–602PubMedCrossRefGoogle Scholar
  9. Caraglia M, Tassone P, Marra M, Budillon A, Venuta S, Tagliaferri P (2006) Targeting Raf-kinase: molecular rationales and translational issues. Ann Oncol 17 Suppl. 7:vii124–7Google Scholar
  10. Castleberry RP, Loh ML, Jayaprakash N, Peterson A, Casey V, Chang M, Widemann B, Emanuel PD (2005) Phase II WIndow Study of R115777(Zarnesta) in Untreated Juvenile Myelomonocytic Leukemia (JMML): a Children’s Oncology Group Study. Blood 106:727aGoogle Scholar
  11. Chan G, Kalaitzidis D, Usenko T, Kutok JL, Yang W, Mohi MG, Neel BG (2009) Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis. Blood 113:4414–24PubMedCrossRefGoogle Scholar
  12. Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H, Johnson L, Akashi K, Tuveson DA, Jacks T, Gilliland DG (2004) Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 113:528–38PubMedGoogle Scholar
  13. Chen L, Sung SS, Yip ML, Lawrence HR, Ren Y, Guida WC, Sebti SM, Lawrence NJ, Wu J (2006) Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol Pharmacol 70:562–70PubMedCrossRefGoogle Scholar
  14. Cichowski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104:593–604PubMedCrossRefGoogle Scholar
  15. Cuiffo B, Ren R (2010) Palmitoylation of oncogenic N is essential for leukemogenesis. Blood 115:3598–605PubMedCrossRefGoogle Scholar
  16. de Vries AC, Stam RW, Kratz CP, Zenker M, Niemeyer CM, van den Heuvel-Eibrink MM (2007a) Mutation analysis of the BRAF oncogene in juvenile myelomonocytic leukemia. Haematologica 92:1574–5PubMedCrossRefGoogle Scholar
  17. de Vries AC, Stam RW, Schneider P, Niemeyer CM, van Wering ER, Haas OA, Kratz CP, den Boer ML, Pieters R, van den Heuvel-Eibrink MM (2007b) Role of mutation independent constitutive activation of FLT3 in juvenile myelomonocytic leukemia. Haematologica 92:1557–60PubMedCrossRefGoogle Scholar
  18. Donovan S, Shannon KM, Bollag G (2002) GTPase activating poteins: critical regulators of intracellular signaling. BBA Rev Cancer 1602:23–45Google Scholar
  19. Emanuel PD, Bates LJ, Castleberry RP, Gualtieri RJ, Zuckerman KS (1991) Seletive hypersensitivity to granulocyte-macrophage colony stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 77:925–9PubMedGoogle Scholar
  20. Emanuel PD, Shannon KM, Castleberry RP (1996) Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Mol Med Today 2:468–75PubMedCrossRefGoogle Scholar
  21. Emanuel PD, Snyder RC, Wiley T, Gopurala B, Castleberry RP (2000) Inhibition of juvenile myelomonocytic leukemia cell growth in vitro by farnesyltransferase inhibitors. Blood 95:639–45PubMedGoogle Scholar
  22. Flotho C, Steinemann D, Mullighan CG, Neale G, Mayer K, Kratz CP, Schlegelberger B, Downing JR, Niemeyer CM (2007) Genome-wide single-nucleotide polymorphism analysis in juvenile myelomonocytic leukemia identifies uniparental disomy surrounding the NF1 locus in cases associated with neurofibromatosis but not in cases with mutant or PTPN11. Oncogene 26:5816–21PubMedCrossRefGoogle Scholar
  23. Flotho C, Valcamonica S, Mach-Pascual S, Schmahl G, Corral L, Ritterbach J, Hasle H, Arico M, Biondi A, Niemeyer CM (1999) mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 13:32–7PubMedCrossRefGoogle Scholar
  24. Hellmuth K, Grosskopf S, Lum CT, Wurtele M, Roder N, von Kries JP, Rosario M, Rademann J, Birchmeier W (2008) Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking. Proc Natl Acad Sci USA 105:7275–80PubMedCrossRefGoogle Scholar
  25. Hexner EO, Serdikoff C, Jan M, Swider CR, Robinson C, Yang S, Angeles T, Emerson SG, Carroll M, Ruggeri B, Dobrzanski P (2008) Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 111:5663–71PubMedCrossRefGoogle Scholar
  26. Hingorani SR, Tuveson DA (2003) Targeting oncogene dependence and resistance. Cancer Cell 3:414–7PubMedCrossRefGoogle Scholar
  27. Iversen PO, Emanuel PD, Sioud M (2002) Targeting Raf-1 gene expression by a DNA enzyme inhibits juvenile myelomonocytic leukemia cell growth. Blood 99:4147–53PubMedCrossRefGoogle Scholar
  28. Jacks T, Shih S, Schmitt EM, Bronson RT, Bernards A, Weinberg RA (1994) Tumorigenic and developmental consequences of a targeted Nf1 mutation in the mouse. Nat Genet 7:353–61PubMedCrossRefGoogle Scholar
  29. Keilhack H, David FS, McGregor M, Cantley LC, Neel BG (2005) Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem 280:30984–93PubMedCrossRefGoogle Scholar
  30. Kim E, Ambroziak P, Otto JC, Taylor B, Ashby M, Shannon K, Casey PJ, Young SG (1999) Disruption of the mouse Rce1 gene results in defective processing and mislocalization of within cells. J Biol Chem 274:8383–90PubMedCrossRefGoogle Scholar
  31. Kotecha N, Flores NJ, Irish JM, Simonds EF, Sakai DS, Archambeault S, Diaz-Flores E, Coram M, Shannon KM, Nolan GP, Loh ML (2008) Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 14:335–43PubMedCrossRefGoogle Scholar
  32. Kratz CP, Niemeyer CM, Thomas C, Bauhuber S, Matejas V, Bergstrasser E, Flotho C, Flores NJ, Haas O, Hasle H, van den Heuvel-Eibrink MM, Kucherlapati RS, Lang P, Roberts AE, Stary J, Strahm B, Swanson KD, Trebo M, Zecca M, Neel B, Locatelli F, Loh ML, Zenker M (2007) Mutation analysis of Son of Sevenless in juvenile myelomonocytic leukemia. Leukemia 21:1108–9PubMedGoogle Scholar
  33. Largaespada DA, Brannan CI, Jenkins NA, Copeland NG (1996) Nf1 deficiency causes mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet 12:137–43PubMedCrossRefGoogle Scholar
  34. Lauchle JO, Braun BS, Loh ML, Shannon K (2006) Inherited predispositions and hyperactive in myeloid leukemogenesis. Pediatr Blood Cancer 46:579–85PubMedCrossRefGoogle Scholar
  35. Lauchle JO, Le DT, Kim D, Akagi K, Gorman MF, Tran M, Sebolt-Leopold J, Wolff L, Parada LF, Jenkins N, Copeland N, Shannon KM (2007) Mutations that cooperate with Nf1 inactivation in leukemogenesis influence therapeutic response to MEK inhibition. Blood 110:594Google Scholar
  36. Kong N, Zhu Y, Lauchle JO, Aiyigari A, Braun BS, Wang E, Kogan SC, Lebeau MM, Parada L, Shannon KM (2004) Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 103:4243–50PubMedCrossRefGoogle Scholar
  37. Liu YL, Castleberry RP, Emanuel PD (2004) Rapamycin a potential mechanistically targeted therapeutic for juvenile myelomonocytic leukemia. Blood 104:653aGoogle Scholar
  38. Locatelli F, Nollke P, Zecca M, Korthof E, Lanino E, Peters C, Pession A, Kabisch H, Uderzo C, Bonfim CS, Bader P, Dilloo D, Stary J, Fischer A, Revesz T, Fuhrer M, Hasle H, Trebo M, van den Heuvel-Eibrink MM, Fenu S, Strahm B, Giorgiani G, Bonora MR, Duffner U, Niemeyer CM (2005) Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 105:410–9PubMedCrossRefGoogle Scholar
  39. Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, Cheng JW, Lee CM, Stokoe D, Bonifas JM, Curtiss NP, Gotlib J, Meshinchi S, Le Beau MM, Emanuel PD, Shannon KM (2004) Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 103:2325–31PubMedCrossRefGoogle Scholar
  40. Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, Mullighan CG, Chen L, Bergstraesser E, Bueso-Ramos CE, Emanuel PD, Hasle H, Issa JP, van den Heuvel-Eibrink MM, Locatelli F, Stary J, Trebo M, Wlodarski M, Zecca M, Shannon KM, Niemeyer CM (2009) Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 114:1859–63PubMedCrossRefGoogle Scholar
  41. Mahgoub N, Taylor BR, Gratiot M, Kohl NE, Gibbs JB, Jacks T, Shannon KM (1999) In vitro and In vivo effects of a farnesyltransferase inhibitor on Nf1- deficient hematopoietic cells. Blood 94:2469–76PubMedGoogle Scholar
  42. Michaelson D, Ali W, Chiu VK, Bergo M, Silletti J, Wright L, Young SG, Philips M (2005) Postprenylation CAAX processing is required for proper localization of but not Rho GTPases. Mol Biol Cell 16:1606–16PubMedCrossRefGoogle Scholar
  43. Miles DK, Freedman MH, Stephens K, Pallavicini M, Sievers EL, Weaver M, Grunberger T, Thompson P, Shannon KM (1996) Patterns of hematopoietic lineage involvement in children with neurofibromatosis type 1 and malignant myeloid disorders. Blood 88:4314–20PubMedGoogle Scholar
  44. Miyauchi J, Asada M, Sasaki M, Tsunematsu Y, Kojima S, Mizutani S (1994) Mutations of the N-ras gene in juvenile chronic myelogenous leukemia. Blood 83:2248–54PubMedGoogle Scholar
  45. Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H, Akashi K, Gilliland DG, Neel BG (2005) Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 7:179–91PubMedCrossRefGoogle Scholar
  46. Nakamura Y, Ito M, Yamamoto T, Yan XY, Yagasaki H, Kamachi Y, Kudo K, Kojima S (2005) Engraftment of NOD/SCID/gammac(null) mice with multilineage neoplastic cells from patients with juvenile myelomonocytic leukaemia. Br J Haematol 130:51–7PubMedCrossRefGoogle Scholar
  47. Niihori T, Aoki Y, Ohashi H, Kurosawa K, Kondoh T, Ishikiriyama S, Kawame H, Kamasaki H, Yamanaka T, Takada F, Nishio K, Sakurai M, Tamai H, Nagashima T, Suzuki Y, Kure S, Fujii K, Imaizumi M, Matsubara Y (2005) Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. J Hum Genet 50:192–202PubMedCrossRefGoogle Scholar
  48. Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, Yan C, McConnell P, Spessard C, Banotai C, Mueller WT, Delaney A, Omer C, Sebolt-Leopold J, Dudley DT, Leung IK, Flamme C, Warmus J, Kaufman M, Barrett S, Tecle H, Hasemann CA (2004) Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 11:1192–7PubMedCrossRefGoogle Scholar
  49. Pardanani A (2008) JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia 22:23–30PubMedCrossRefGoogle Scholar
  50. Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L, Knight ZA, Shokat KM, Azar N, Viguie F, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2008) PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia 22:1698–706PubMedCrossRefGoogle Scholar
  51. Peterson YK, Kelly P, Weinbaum CA, Casey PJ (2006) A novel protein geranylgeranyltransferase-I inhibitor with high potency, selectivity, and cellular activity. J Biol Chem 281:12445–50PubMedCrossRefGoogle Scholar
  52. Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, Hamid O, Varterasian M, Asbury P, Kaldjian EP, Gulyas S, Mitchell DY, Herrera R, Sebolt-Leopold JS, Meyer MB (2004) Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 22:4456–62PubMedCrossRefGoogle Scholar
  53. Rotblat B, Ehrlich M, Haklai R, Kloog Y (2008) The inhibitor farnesylthiosalicylic acid (Salirasib) disrupts the spatiotemporal localization of active: a potential treatment for cancer. Methods Enzymol 439:467–89PubMedCrossRefGoogle Scholar
  54. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, Tamura A, Honda H, Sakata-Yanagimoto M, Kumano K, Oda H, Yamagata T, Takita J, Gotoh N, Nakazaki K, Kawamata N, Onodera M, Nobuyoshi M, Hayashi Y, Harada H, Kurokawa M, Chiba S, Mori H, Ozawa K, Omine M, Hirai H, Nakauchi H, Koeffler HP, Ogawa S (2009) Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460:904–8PubMedCrossRefGoogle Scholar
  55. Schubbert S, Lieuw K, Rowe SL, Lee CM, Li X, Loh ML, Clapp DW, Shannon KM (2005) Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood 106:311–7PubMedCrossRefGoogle Scholar
  56. Shannon KM, O’Connell P, Martin GA, Paderanga D, Olson K, Dinndorf P, McCormick F (1994) Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 330:597–601PubMedCrossRefGoogle Scholar
  57. Side L, Taylor B, Cayouette M, Connor E, Thompson P, Luce M, Shannon K (1997) Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med 336:1713–20PubMedCrossRefGoogle Scholar
  58. Sun J, Ohkanda J, Coppola D, Yin H, Kothare M, Busciglio B, Hamilton AD, Sebti SM (2003) Geranylgeranyltransferase I inhibitor GGTI-2154 induces breast carcinoma apoptosis and tumor regression in H transgenic mice. Cancer Res 63:8922–9PubMedGoogle Scholar
  59. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–8PubMedCrossRefGoogle Scholar
  60. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hahlen K, Hasle H, Licht JD, Gelb BD (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34:148–50PubMedCrossRefGoogle Scholar
  61. Wahlstrom AM, Cutts BA, Karlsson C, Andersson KM, Liu M, Sjogren AK, Swolin B, Young SG, Bergo MO (2007) Rce1 deficiency accelerates the development of K-induced myeloproliferative disease. Blood 109:763–8PubMedCrossRefGoogle Scholar
  62. Wahlstrom AM, Cutts BA, Liu M, Lindskog A, Karlsson C, Sjogren AK, Andersson KM, Young SG, Bergo MO (2008) Inactivating Icmt ameliorates K-induced myeloproliferative disease. Blood 112:1357–65PubMedCrossRefGoogle Scholar
  63. Watanabe S, Itoh T, Arai K (1996) Roles of JAK kinases in human GM-CSF receptor signal transduction. J Allergy Clin Immunol 98:S183–91PubMedCrossRefGoogle Scholar
  64. Weinstein IB (2002) Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science 297:63–4PubMedCrossRefGoogle Scholar
  65. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–109PubMedCrossRefGoogle Scholar
  66. Winter-Vann AM, Casey PJ (2005) Post-prenylation-processing enzymes as new targets in oncogenesis. Nat Rev Cancer 5:405–12PubMedCrossRefGoogle Scholar
  67. Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ, Marth JD, Parada LF (2001) Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 15:859–76PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Helen Diller Family Cancer Research Building (Optional)University of CaliforniaSan FranciscoUSA

Personalised recommendations