Skip to main content

Molecularly Targeted Therapy for Infant ALL

  • Chapter
  • First Online:
Molecularly Targeted Therapy for Childhood Cancer

Abstract

Rational combinations of molecularly targeted agents with synergistic conventional cytotoxic chemotherapeutic agents or, ultimately, with one another are urgently needed for infants with acute leukemia. Leukemia is the commonest malignancy during infancy, comprises 2.5 to 5% of ALL and 6 to 14% of AML in pediatrics overall, (Gurney et al. 1999; Smith et al. 1999a; Pui et al. 1995; SEER Cancer Statistics Review 1975–2006) and represents a special leukemia subtype characterized by MLL (Mixed Lineage Leukemia) gene translocations. MLL translocations with heterogeneous partner genes, of which there are >60, (Meyer et al. 2009) are the primary molecular aberrations in infant ALL and infant AML alike; approximately 75 to 80% of infant ALL cases and myelomonocytic/monoblastic AML feature MLL translocations (Pui et al. 1995; Rubnitz et al. 1994; Robinson et al. 2009). Within infant ALL cases with MLL translocations, 70 and 13% involve the AF4 (ALL-1 fused gene from chromosome 4) or ENL (Eleven-nineteen leukemia) partner genes, respectively, (Pui et al. 2003) whereas the partner genes in AML are more diverse. In one recent infant ALL treatment study, these more common partner genes were associated with only approximately 30% 5-year event free survival, with a poorer outcome associated with the CD10 immunophenotype and younger age at diagnosis (Hilden et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Gurney JG, Smith MA, Ross JA. Cancer among infants. In: Ries LAG, Smith MA, Gurney JG, et al., eds. Cancer Incidence and Survival among children and adolescents: United States SEER program 1975–1995. Bethesda, MD: National Cancer Institute, SEER Program. NIH; 1999.

    Google Scholar 

  • Smith MA, Gloeckler-Ries LA, Gurney JG, Ross JA. Leukemia. In: Ries LAG, Smith MA, Gurney JG, et al., eds. Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. Bethesda, MD: National Cancer Institute, SEER Program, NIH; 1999.

    Google Scholar 

  • Pui CH, Kane JR, Crist WM. Biology and treatment of infant leukemias. Leukemia. 1995;9:762–769.

    PubMed  CAS  Google Scholar 

  • SEER Cancer Statistics Review, 1975–2006; seer.cancer.gov/csr/1975_2006/

    Google Scholar 

  • Meyer C, Kowarz E, Hofmann J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia. 2009.

    Google Scholar 

  • Rubnitz JE, Link MP, Shuster JJ, et al. Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood. 1994;84:570–573.

    PubMed  CAS  Google Scholar 

  • Pui CH, Chessells JM, Camitta B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia. 2003;17:700–706.

    Article  PubMed  CAS  Google Scholar 

  • Robinson BW, Devidas M, Carroll AJ, et al. Specific MLL partner genes in infant acute lym-phoblastic leukemia (ALL) associated with outcome are linked to age and white blood cell count (WBC) at diagnosis: A report on the Children’s Oncology Group (COG) P9407 trial. Blood (ASH Annual Meeting Abstracts) 2009;114(22):907.

    Google Scholar 

  • Hilden JM, Dinndorf PA, Meerbaum SO, et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children’s Oncology Group. Blood. 2006;108:441–451.

    Article  PubMed  CAS  Google Scholar 

  • Balgobind BV, Raimondi SC, Harbott J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood. 2009;114:2489–2496.

    Article  PubMed  CAS  Google Scholar 

  • Felix CA, Kolaris CP, Osheroff N. Topoisomerase II and the etiology of chromosomal translocations. DNA Repair (Amst). 2006;5:1093–1108.

    Article  CAS  Google Scholar 

  • Smith MA, Rubinstein L, Anderson JR, et al. Secondary leukemia or myelodysplastic syndrome after treatment with epipodophyllotoxins. J Clin Oncol. 1999;17:569–577.

    PubMed  CAS  Google Scholar 

  • Liedtke M, Cleary ML. Therapeutic targeting of MLL. Blood. 2009.

    Google Scholar 

  • Ziemin-van der Poel S, McCabe NR, Gill HJ, et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA. 1991;88:10735–10739.

    Article  PubMed  CAS  Google Scholar 

  • Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet. 1992;2:113–118.

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Nakamura T, Alder H, et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell. 1992;71:701–708.

    Article  PubMed  CAS  Google Scholar 

  • Tkachuk DC, Kohler S, Cleary ML. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell. 1992;71:691–700.

    Article  PubMed  CAS  Google Scholar 

  • Ford AM, Ridge SA, Cabrera ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature. 1993;363:358–360.

    Article  PubMed  CAS  Google Scholar 

  • Megonigal MD, Rappaport EF, Jones DH, et al. t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc Natl Acad Sci U S A. 1998;95:6413–6418.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama A, Kitabayashi I, Ayton PM, Cleary ML, Ohki M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood. 2002;100:3710–3718.

    Article  PubMed  CAS  Google Scholar 

  • Hess JL. MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med. 2004;10:500–507.

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Chen DY, Westergard TD, et al. Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev. 2006;20:2397–2409.

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Cheng EH, Hsieh JJ. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev. 2007;21:2385–2398.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30:41–47

    Article  PubMed  CAS  Google Scholar 

  • Meyer C, Schneider B, Jakob S, et al. The MLL recombinome of acute leukemias. Leukemia. 2006;20:777–784.

    Article  PubMed  CAS  Google Scholar 

  • Ayton PM, Cleary ML. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 2003;17:2298–2307.

    Article  PubMed  CAS  Google Scholar 

  • Martin ME, Milne TA, Bloyer S, et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell. 2003;4:197–207.

    Article  PubMed  CAS  Google Scholar 

  • Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev. 2007.

    Google Scholar 

  • Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006;10:257–268.

    Article  PubMed  CAS  Google Scholar 

  • Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442:818–822.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Iwasaki H, Krivtsov A, et al. Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J. 2005;24:368–381.

    Article  PubMed  CAS  Google Scholar 

  • FDA. Challenges and opportunity on the critical path to new medical products. 2004.

    Google Scholar 

  • Brown P, Small D. FLT3 inhibitors: a paradigm for the development of targeted therapeutics for paediatric cancer. European journal of cancer (Oxford, England : 1990). 2004;40:707.

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK. 2003;17:1738.

    Article  CAS  Google Scholar 

  • Carow CE, Levenstein M, Kaufmann SH, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood. 1996;87:1089.

    PubMed  CAS  Google Scholar 

  • Rosnet O, Buhring HJ, Marchetto S, et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia. 1996;10:238–248.

    PubMed  CAS  Google Scholar 

  • Birg F, Courcoul M, Rosnet O, et al. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood. 1992;80:2584–2593.

    PubMed  CAS  Google Scholar 

  • Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1:133–143.

    Article  PubMed  CAS  Google Scholar 

  • Ross ME, Zhou X, Song G, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood. 2003;102:2951–2959.

    Article  PubMed  CAS  Google Scholar 

  • Zheng R, Levis M, Piloto O, et al. FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood. 2004;103:267.

    Article  PubMed  CAS  Google Scholar 

  • Drexler HG. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia. 1996;10:588–599.

    PubMed  CAS  Google Scholar 

  • Meierhoff G, Dehmel U, Gruss HJ, et al. Expression of FLT3 receptor and FLT3-ligand in human leukemia-lymphoma cell lines. Leukemia. 1995;9:1368–1372.

    PubMed  CAS  Google Scholar 

  • Brasel K, Escobar S, Anderberg R, de Vries P, Gruss HJ, Lyman SD. Expression of the flt3 receptor and its ligand on hematopoietic cells. Leukemia. 1995;9:1212–1218.

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97:2434.

    Article  PubMed  CAS  Google Scholar 

  • Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol. 2001;113:983–988.

    Article  PubMed  CAS  Google Scholar 

  • Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911–1918.

    PubMed  CAS  Google Scholar 

  • Lavagna-Sevenier C, Marchetto S, Birnbaum D, Rosnet O. FLT3 signaling in hematopoietic cells involves CBL, SHC and an unknown P115 as prominent tyrosine-phosphorylated substrates. Leukemia. 1998;12:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Mantel C, Broxmeyer HE. Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. J Leukoc Biol. 1999;65:372–380.

    PubMed  CAS  Google Scholar 

  • Zhang S, Broxmeyer HE. Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp-2, grb2, and PI3 kinase. Biochem Biophys Res Commun. 2000;277:195–199.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Fukuda S, Lee Y, et al. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling. J Exp Med. 2000;192:719–728.

    Article  PubMed  CAS  Google Scholar 

  • Kiyoi H, Towatari M, Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia. 1998;12:1333–1337.

    Article  PubMed  CAS  Google Scholar 

  • Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene. 2002;21:2555–2563.

    Article  PubMed  CAS  Google Scholar 

  • Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97:89.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SA, Mabon ME, Silverman LB, et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood. 2004;103:3544–3546.

    Article  PubMed  CAS  Google Scholar 

  • Taketani T, Taki T, Sugita K, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004;103:1085–1088.

    Article  PubMed  CAS  Google Scholar 

  • Kelly LM, Kutok JL, Williams IR, et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci U S A. 2002;99:8283–8288.

    Article  PubMed  CAS  Google Scholar 

  • Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99:310–318.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Piloto O, Nguyen HB, et al. Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood. 2008;111:3849–3858.

    Article  PubMed  CAS  Google Scholar 

  • Meshinchi S, Alonzo TA, Stirewalt DL, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;108:3654.

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Allebach J, Tse KF, et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood. 2002;99:3885.

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Meshinchi S, Levis M, et al. Pediatric AML primary samples with FLT3/ITD mutations are preferentially killed by FLT3 inhibition. Blood. 2004;104:1841.

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Pham R, Smith BD, Small D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood. 2004;104:1145.

    Article  PubMed  CAS  Google Scholar 

  • Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103:3669–3676.

    Article  PubMed  CAS  Google Scholar 

  • Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105:54–60.

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Levis M, Shurtleff S, Campana D, Downing J, Small D. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood. 2005;105:812–820.

    Article  PubMed  CAS  Google Scholar 

  • Meshinchi S, Stirewalt DL, Alonzo TA, et al. Activating mutations of RTK/RAS signal transduction pathway in pediatric acute myeloid leukemia. Blood. 2003;102:1474–1479.

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Levis M, McIntyre E, Griesemer M, Small D. Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK. 2006;20:1368.

    Google Scholar 

  • Piloto O, Nguyen B, Huso D, et al. IMC-EB10, an anti-FLT3 monoclonal antibody, prolongs survival and reduces nonobese diabetic/severe combined immunodeficient engraftment of some acute lymphoblastic leukemia cell lines and primary leukemic samples. Cancer research. 2006;66:4843.

    Article  PubMed  CAS  Google Scholar 

  • Piloto O, Levis M, Huso D, et al. Inhibitory anti-FLT3 antibodies are capable of mediating antibody-dependent cell-mediated cytotoxicity and reducing engraftment of acute myelogenous leukemia blasts in nonobese diabetic/severe combined immunodeficient mice. Cancer Res. 2005;65:1514–1522.

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Brown P, Smith BD, et al. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006;108:3477–3483.

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Smith BD, Beran M, et al. A randomized, open-label study of lestaurtinib (CEP-701), an oral FLT3 inhibitor, administered in sequence with chemotherapy in patients with relapsed AML harboring FLT3 activating mutations: clinical response correlates with successful FLT3 inhibition. ASH Annual Meeting Abstracts. 2005;106:403.

    Google Scholar 

  • Robinson BW, Behling KC, Gupta M, et al. Abundant anti-apoptotic BCL-2 is a molecular target in leukaemias with t(4;11) translocation. Br J Haematol. 2008;141:827–839.

    Article  PubMed  CAS  Google Scholar 

  • Zhang AY, Robinson BW, Kao K, et al. Cell death regulatory gene expression correlates with MLL rearrangement status and prognostic clinical covariates in acute leukemia in infants. ASH Annual Meeting Abstracts. 2008;112:2255.

    Google Scholar 

  • Green D. Apoptotic pathways: ten minutes to dead. Cell. 2005;121:671–674.

    Article  PubMed  CAS  Google Scholar 

  • Reed JC. Apoptosis-based therapies. Nat Rev Drug Discov. 2002;1:111–121.

    Article  PubMed  CAS  Google Scholar 

  • Reed JC. Apoptosis-targeted therapies for cancer. Cancer Cell. 2003;3:17–22.

    Article  PubMed  CAS  Google Scholar 

  • Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–219.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen M, Marcellus RC, Roulston A, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A. 2007;104:19512–19517.

    Article  PubMed  CAS  Google Scholar 

  • Gewirtz AM, Sokol DL, Ratajczak MZ. Nucleic acid therapeutics: state of the art and future prospects. Blood. 1998;92:712–736.

    PubMed  CAS  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–192.

    Article  PubMed  CAS  Google Scholar 

  • Garber K. Targeting mitochondria emerges as therapeutic strategy. J Natl Cancer Inst. 2005;97:1800–1801.

    Article  PubMed  Google Scholar 

  • Nicholson DW. From bench to clinic with apoptosis based therapeutic agents. Nature. 2000;407:810–816.

    Article  PubMed  CAS  Google Scholar 

  • Marcucci G, Byrd JC, Dai G, et al. Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood. 2003;101:425–432.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien SM, Cunningham CC, Golenkov AK, Turkina AG, Novick SC, Rai KR. Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol. 2005;23:7697–7702.

    Article  PubMed  CAS  Google Scholar 

  • Waters JS, Webb A, Cunningham D, et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkins lymphoma. J Clin Oncol. 2000;18:1812–1823.

    PubMed  CAS  Google Scholar 

  • Deng X, Gao F, May WS, Jr. Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood. 2003;102:3179–3185.

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Okumura K, Sinicrope FA. BH3 mimetic obatoclax enhances TRAIL-mediated apoptosis in human pancreatic cancer cells. Clin Cancer Res. 2009;15:150–159.

    Article  PubMed  CAS  Google Scholar 

  • Williamson NR, Fineran PC, Gristwood T, Chawrai SR, Leeper FJ, Salmond GP. Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol. 2007;2:605–618.

    Article  PubMed  CAS  Google Scholar 

  • Campas C, Cosialls AM, Barragan M, et al. Bcl-2 inhibitors induce apoptosis in chronic lymphocytic leukemia cells. Exp Hematol. 2006;34:1663–1669.

    Article  PubMed  CAS  Google Scholar 

  • Galan P, Roue G, Villamor N, Campo E, Colomer D. The Small Molecule Pan-Bcl-2 Inhibitor GX15–070 Induces Apoptosis In Vitro in Mantle Cell Lymphoma (MCL) Cells and Exhibits a Synergistic Effect in Combination with the Proteasome Inhibitor Bortezomib. ASH Annual Meeting Abstracts. 2005;106:1490.

    Google Scholar 

  • Perez-Galan P, Roue G, Villamor N, Campo E, Colomer D. The BH3-mimetic GX15-070 synergizes with bortezomib in mantle cell lymphoma by enhancing Noxa-mediated activation of Bak. Blood. 2007;109:4441–4449.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Viallet J, Haura EB. A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother Pharmacol. 2007.

    Google Scholar 

  • Li J, Viallet J, Haura EB. A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother Pharmacol. 2008;61:525–534.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Paniagua MA, Vega MI, Huerta-Yepez S, et al. Direct and enhanced cytotoxicity of the Bcl-2 family inhibitor GX15-070 on rituximab-sensitive and rituximab-resistant B-NHL clones. ASH Annual Meeting Abstracts. 2007.

    Google Scholar 

  • Trudel S, Li ZH, Rauw J, Tiedemann RE, Wen XY, Stewart AK. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood. 2007;109:5430–5438.

    Article  PubMed  CAS  Google Scholar 

  • Witters LM, Witkoski A, Planas-Silva MD, Berger M, Viallet J, Lipton A. Synergistic inhibition of breast cancer cell lines with a dual inhibitor of EGFR-HER-2/neu and a Bcl-2 inhibitor. Oncol Rep. 2007;17:465–469.

    PubMed  CAS  Google Scholar 

  • Konopleva M, Watt J, Contractor R, et al. Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res. 2008;68:3413–3420.

    Article  PubMed  CAS  Google Scholar 

  • Bebb G, Muzik H, Nguyen S, Morris D, Stewart DA. In Vitro and In Vivo Anti Lymphoma Effect of GX15-070 in Mantle Cell Lymphoma. Blood (ASH Annual Meeting Abstracts). 2006;108:4756.

    Google Scholar 

  • Yazbeck VY, Georgakis GV, Li Y, McConkey D, Andreeff M, Younes A. Inhibition of the Pan-Bcl-2 Family by the Small Molecule GX15-070 Induces Apoptosis in Mantle Cell Lymphoma (MCL) Cells and Enhances the Activity of Two Proteasome Inhibitors (NPI-0052 and Bortezomib), and Doxorubicin Chemotherapy. Blood (ASH Annual Meeting Abstracts). 2006;108:2532.

    Google Scholar 

  • Hernandez-Ilizaliturri FJ, Iqbal A, Alam N, et al. Targeting BH3-Domain Anti-Apoptotic Proteins with GX15-070 Decreases DNA Synthesis, Induces Cell Death and Sensitizes Rituximab-Sensitive and Resistant Non-Hodgkins Lymphoma Cell Lines to the Anti-Tumor Activity of Chemotherapy Agents. Blood (ASH Annual Meeting Abstracts). 2006;108:2523.

    Google Scholar 

  • Hernandez-Ilizaliturri FJ, Bhat S, Iqbal A, Olejniczak S, Knight J, Czuczman MS. Targeting BH3-Domain Anti-Apoptotic Proteins with GX15-070 Significantly Increases Rituximab-Mediated Antibody Dependent Cellular Cytotoxicity (ADCC) and Complement Mediated Cytotoxicity (CMC) Against B-Cell Lymphomas. Blood (ASH Annual Meeting Abstracts). 2006;108:2502.

    Google Scholar 

  • Borthakur G, O’Brien S, Ravandi-Kashani F, et al. A Phase I Trial of the Small Molecule Pan-Bcl-2 Family Inhibitor Obatoclax Mesylate (GX15-070) Administered by 24 Hour Infusion Every 2 Weeks to Patients with Myeloid Malignancies and Chronic Lymphocytic Leukemia (CLL). ASH Annual Meeting Abstracts. 2006;108:2654.

    Google Scholar 

  • Goy A, Ford P, Feldman T, et al. A phase 1 trial of the pan Bcl-2 family inhibitor obatoclax mesylate (GX15-070) in combination with bortezomib in patients with relapsed/refractory mantle cell lymphoma. ASH Annual Meeting Abstracts. 2007.

    Google Scholar 

  • O’Brien SM, Claxton DF, Crump M, et al. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood. 2009;113:299–305.

    Article  PubMed  CAS  Google Scholar 

  • Schimmer AD, Brandwein J, O’Brien SM, et al. A phase I trial of the small molecule pan-Bcl-2 family inhibitor obatoclax mesylate (GX15-070) administered by continuous Infusion for up to four days to patients with hematological malignancies. ASH Annual Meeting Abstracts. 2007.

    Google Scholar 

  • Verstovsek S, Raza A, Schimmer AD, Viallet J, Kantarjian H. A Phase II trial of the small molecule Pan-Bcl-2 family inhibitor obatoclax mesylate (GX15-070) administered by a 24-h continuous infusion every 2 weeks to patients with chronic idiopathic myelofibrosis (CIMF). ASH Annual Meeting Abstracts. 2007.

    Google Scholar 

  • Goy A, Ford P, Feldman T, et al. A Phase 1 Trial of the Pan Bcl-2 Family Inhibitor Obatoclax Mesylate (GX15-070) in Combination with Bortezomib in Patients with Relapsed/Refractory Mantle Cell Lymphoma. ASH Annual Meeting Abstracts. 2007;110:2569.

    Google Scholar 

  • Schimmer AD, Brandwein J, O’Brien SM, et al. A Phase I Trial of the Small Molecule Pan-Bcl-2 Family Inhibitor Obatoclax Mesylate (GX15-070) Administered by Continuous Infusion for up to Four Days to Patients with Hematological Malignancies. ASH Annual Meeting Abstracts. 2007;110:892.

    Google Scholar 

  • Stubbs MC, Faber J, Kung AL, Cameron S, Armstrong SA. HOXA9 represses bim expression in MLL rearranged leukemia: implications for drug therapy. ASH Annual Meeting Abstracts. 2007.

    Google Scholar 

  • Thomas M, Gessner A, Vornlocher HP, Hadwiger P, Greil J, Heidenreich O. Targeting MLL-AF4 with short interfering RNAs inhibits clonogenicity and engraftment of t(4;11)-positive human leukemic cells. Blood. 2005;106:3559–3566.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith KC, Liu X, Dam V, et al. BH3 peptidomimetics potently activate apoptosis and demonstrate single agent efficacy in neuroblastoma. Oncogene. 2006;25:4525–4533.

    Article  PubMed  CAS  Google Scholar 

  • Xia SJ, Pressey JG, Barr FG. Molecular pathogenesis of rhabdomyosarcoma. Cancer Biol Ther. 2002;1:97–104.

    PubMed  CAS  Google Scholar 

  • Bhojwani D, Kang H, Menezes RX, et al. Gene expression signatures predictive of early response and outcome in high-risk childhood acute lymphoblastic leukemia: A Children’s Oncology Group Study [corrected]. J Clin Oncol. 2008;26:4376–4384.

    Article  PubMed  CAS  Google Scholar 

  • Flotho C, Coustan-Smith E, Pei D, et al. A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood. 2007;110:1271–1277.

    Article  PubMed  CAS  Google Scholar 

  • Holleman A, den Boer ML, de Menezes RX, et al. The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood. 2006;107:769–776.

    Article  PubMed  CAS  Google Scholar 

  • Bonapace L, Bornhauser BC, Cario G, et al. The BH3-Mimetic Obatoclax Restores the Response to Dexamethasone in Glucocorticoid-Resistant ALL through Induction of Autophagy. ASH Annual Meeting Abstracts. 2007;110:806.

    Google Scholar 

  • van Delft MF, Wei AH, Mason KD, et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell. 2006;10:389–399.

    Article  PubMed  CAS  Google Scholar 

  • Zhang AY, Robinson BW, Wang L-S, et al. Pan-Anti-Apoptotic BCL-2 Family Inhibitor, Obatoclax, Activates Autophagic Cell Death Pathway and Has Potent Cytotoxicity in Infant and Pediatric MLL-Rearranged Leukemias. ASH Annual Meeting Abstracts. 2008;112:2647.

    Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008;4:151–175.

    PubMed  CAS  Google Scholar 

  • Maiuri MC, Le Toumelin G, Criollo A, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. Embo J. 2007;26:2527–2539.

    Article  PubMed  CAS  Google Scholar 

  • Zhang AY, Barrett JS, Danet-Desnoyers G, et al. Obatoclax Biodistribution in MLL leukemia NOG Mouse Model is predicted by modeling and simulation and shows high tissue penetration at clinically important sites. J Clin Pharmacol. 2008;48:1130.

    Google Scholar 

  • Zhang AY, Barrett JS, Beauparlant P, et al. Modeling and Simulation Approach to Advance Molecularly-Targeted Pro-Apoptotic Agents for Infant Leukemias. J Clin Pharmacol. 2007;47:1209.

    Google Scholar 

  • Kang MH, Kang YH, Szymanska B, et al. Activity of vincristine, L-ASP, and dexamethasone against acute lymphoblastic leukemia is enhanced by the BH3-mimetic ABT-737 in vitro and in vivo. Blood. 2007.

    Google Scholar 

  • Trudel S, Stewart AK, Li Z, et al. The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan. Clin Cancer Res. 2007;13:621–629.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan D, Velankar M, Brahmandam M, et al. A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene. 2007;26:2374–2380.

    Article  PubMed  CAS  Google Scholar 

  • Konopleva M, Contractor R, Tsao T, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10:375–388.

    Article  PubMed  CAS  Google Scholar 

  • Kline MP, Rajkumar SV, Timm MM, et al. ABT-737, an inhibitor of Bcl-2 family proteins, is a potent inducer of apoptosis in multiple myeloma cells. Leukemia. 2007;21:1549–1560.

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Konopleva M, Samudio IJ, Schober WD, Bornmann WG, Andreeff M. Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle. 2006;5:2778–2786.

    Article  PubMed  CAS  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–681.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SA, Kung AL, Mabon ME, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell. 2003;3:173–183.

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Levis M, McIntyre E, Griesemer M, Small D. Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia. 2006;20:1368–1376.

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Small D. FLT3 inhibitors: a paradigm for the development of targeted therapeutics for paediatric cancer. Eur J Cancer. 2004;40:707–721, discussion 722–704.

    Article  PubMed  CAS  Google Scholar 

  • Stam RW, den Boer ML, Schneider P, et al. Targeting FLT3 in primary MLL gene rearranged infant acute lymphoblastic leukemia. Blood. 2005.

    Google Scholar 

  • Stubbs MC, Armstrong SA. FLT3 as a therapeutic target in childhood acute leukemia. Curr Drug Targets. 2007;8:703–714.

    Article  PubMed  CAS  Google Scholar 

  • Rodila RC, Kim JC, Ji QC, El-Shourbagy TA. A high-throughput, fully automated liquid/liquid extraction liquid chromatography/mass spectrometry method for the quantitation of a new investigational drug ABT-869 and its metabolite A-849529 in human plasma samples. Rapid Commun Mass Spectrom. 2006;20:3067–3075.

    Article  PubMed  CAS  Google Scholar 

  • Carlson DM, Steinberg JL, Gordon G. Targeting the unmet medical need: the Abbott Laboratories oncology approach. Clin Adv Hematol Oncol. 2005;3:703–710.

    PubMed  Google Scholar 

  • Dai Y, Hartandi K, Ji Z, et al. Discovery of N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N′-(2-fluoro-5-methylphenyl)urea (ABT-869), a 3-aminoindazole-based orally active multitargeted receptor tyrosine kinase inhibitor. J Med Chem. 2007;50:1584–1597.

    Article  PubMed  CAS  Google Scholar 

  • Shankar DB, Li J, Tapang P, et al. ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia. Blood. 2007;109:3400–3408.

    Article  PubMed  CAS  Google Scholar 

  • Albert DH, Tapang P, Magoc TJ, et al. Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol Cancer Ther. 2006;5:995–1006.

    Article  PubMed  CAS  Google Scholar 

  • Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood. 2007;109:1643–1652.

    Article  PubMed  CAS  Google Scholar 

  • Kohl TM, Hellinger C, Ahmed F, et al. BH3 mimetic ABT-737 neutralizes resistance to FLT3 inhibitor treatment mediated by FLT3-independent expression of BCL2 in primary AML blasts. Leukemia. 2007.

    Google Scholar 

  • Kawagoe H, Kawagoe R, Sano K. Targeted down-regulation of MLL-AF9 with antisense oligodeoxyribonucleotide reduces the expression of the HOXA7 and -A10 genes and induces apoptosis in a human leukemia cell line, THP-1. Leukemia. 2001;15:1743–1749.

    Article  PubMed  CAS  Google Scholar 

  • Niitsu N, Hayashi Y, Honma Y. Downregulation of MLL-CBP fusion gene expression is associated with differentiation of SN-1 cells with t(11;16)(q23;p13). Oncogene. 2001;20:375–384.

    Article  PubMed  CAS  Google Scholar 

  • Akao Y, Mizoguchi H, Misiura K, et al. Antisense oligodeoxyribonucleotide against the MLL-LTG19 chimeric transcript inhibits cell growth and induces apoptosis in cells of an infantile leukemia cell line carrying the t(11;19) chromosomal translocation. Cancer Res. 1998;58:3773–3776.

    PubMed  CAS  Google Scholar 

  • Bitoun E, Oliver PL, Davies KE. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet. 2007;16:92–106.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan RS, Nesbit JB, Marrero L, Erfurth F, LaRussa VF, Hemenway CS. The synthetic peptide PFWT disrupts AF4-AF9 protein complexes and induces apoptosis in t(4;11) leukemia cells. Leukemia. 2004;18:1364–1372.

    Article  PubMed  CAS  Google Scholar 

  • Erfurth F, Hemenway CS, de Erkenez AC, Domer PH. MLL fusion partners AF4 and AF9 interact at subnuclear foci. Leukemia. 2004;18:92–102.

    Article  PubMed  CAS  Google Scholar 

  • Palermo CM, Bennett CA, Winters AC, Hemenway CS. The AF4-mimetic peptide, PFWT, induces necrotic cell death in MV4-11 leukemia cells. Leuk Res. 2008;32:633–642.

    Article  PubMed  CAS  Google Scholar 

  • Bennett CA, Winters AC, Barretto NN, Hemenway CS. Molecular targeting of MLL-rearranged leukemia cell lines with the synthetic peptide PFWT synergistically enhances the cytotoxic effect of established chemotherapeutic agents. Leuk Res. 2009;33:937–947.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature. 2008;455:1205–1209.

    Article  PubMed  CAS  Google Scholar 

  • Wiech H, Buchner J, Zimmermann R, Jakob U. Hsp90 chaperones protein folding in vitro. Nature. 1992;358:169–170.

    Article  PubMed  CAS  Google Scholar 

  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 1997;89:239–250.

    Article  PubMed  CAS  Google Scholar 

  • Terasawa K, Minami M, Minami Y. Constantly updated knowledge of Hsp90. J Biochem. 2005;137:443–447.

    Article  PubMed  CAS  Google Scholar 

  • Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J. 2003;22:3557–3567.

    Article  PubMed  CAS  Google Scholar 

  • Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH. FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res. 2003;9:4483–4493.

    PubMed  CAS  Google Scholar 

  • Belova L, Brickley DR, Ky B, Sharma SK, Conzen SD. Hsp90 regulates the phosphorylation and activity of serum- and glucocorticoid-regulated kinase-1. J Biol Chem. 2008;283:18821–18831.

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Sato S, Ishida A, Tsuruo T. Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem. 2002;277:10346–10353.

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Luo D, Miao R, et al. Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene. 2005;24:3954–3963.

    Article  PubMed  CAS  Google Scholar 

  • Picard D. Hsp90 invades the outside. Nat Cell Biol. 2004;6:479–480.

    Article  PubMed  CAS  Google Scholar 

  • Eustace BK, Jay DG. Extracellular roles for the molecular chaperone, hsp90. Cell Cycle. 2004;3:1098–1100.

    Article  PubMed  CAS  Google Scholar 

  • Eustace BK, Sakurai T, Stewart JK, et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol. 2004;6:507–514.

    Article  PubMed  CAS  Google Scholar 

  • Yocum AK, Busch CM, Felix CA, Blair IA. Proteomics-based strategy to identify biomarkers and pharmacological targets in leukemias with t(4;11) translocations. J Proteome Res. 2006;5:2743–2753.

    Article  PubMed  CAS  Google Scholar 

  • Yao Q, Weigel B, Kersey J. Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin Cancer Res. 2007;13:1591–1600.

    Article  PubMed  CAS  Google Scholar 

  • Yao Q, Nishiuchi R, Kitamura T, Kersey JH. Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: the key role of the STAT5 signal transduction pathway. Leukemia. 2005;19:1605–1612.

    Article  PubMed  CAS  Google Scholar 

  • Tonelli R, Sartini R, Fronza R, et al. G1 cell-cycle arrest and apoptosis by histone deacetylase inhibition in MLL-AF9 acute myeloid leukemia cells is p21 dependent and MLL-AF9 independent. Leukemia. 2006;20:1307–1310.

    Article  PubMed  CAS  Google Scholar 

  • Niitsu N, Hayashi Y, Sugita K, Honma Y. Sensitization by 5-aza-2′-deoxycytidine of leukaemia cells with MLL abnormalities to induction of differentiation by all-trans retinoic acid and 1alpha,25-dihydroxyvitamin D3. Br J Haematol. 2001;112:315–326.

    Article  PubMed  CAS  Google Scholar 

  • Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–2281.

    Article  PubMed  CAS  Google Scholar 

  • Brown VI, Fang J, Alcorn K, et al. Rapamycin is active against B-precursor leukemia in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling. Proc Natl Acad Sci U S A. 2003;100:15113–15118.

    Article  PubMed  CAS  Google Scholar 

  • Teachey DT, Sheen C, Hall J, et al. mTOR inhibitors are synergistic with methotrexate: an effective combination to treat acute lymphoblastic leukemia. Blood. 2008;112:2020–2023.

    Article  PubMed  CAS  Google Scholar 

  • Wei G, Twomey D, Lamb J, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006;10:331–342.

    Article  PubMed  CAS  Google Scholar 

  • Pieters R, den Boer ML, Durian M, et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia--implications for treatment of infants. Leukemia. 1998;12:1344–1348.

    Article  PubMed  CAS  Google Scholar 

  • Palle J, Frost BM, Forestier E, et al. Cellular drug sensitivity in MLL-rearranged childhood acute leukaemia is correlated to partner genes and cell lineage. Br J Haematol. 2005;129:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Zwaan CM, Reinhardt D, Corbacioglu S, et al. Gemtuzumab ozogamicin: first clinical experiences in children with relapsed/refractory acute myeloid leukemia treated on compassionate-use basis. Blood. 2003;101:3868–3871.

    Article  PubMed  CAS  Google Scholar 

  • Arceci RJ, Sande J, Lange B, et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood. 2005;106:1183–1188.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work is supported by Leukemia & Lymphoma Society SCOR 7372-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn A. Felix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brown, P.A., Felix, C.A. (2010). Molecularly Targeted Therapy for Infant ALL. In: Houghton, P., Arceci, R. (eds) Molecularly Targeted Therapy for Childhood Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69062-9_3

Download citation

Publish with us

Policies and ethics